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Finite-size effects on the phase diagram of the thermodynamical cluster model
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The thermodynamical cluster model is known to present a first-order liquid-gas phase transition in the idealized
case of an uncharged, infinitely extended medium. However, in most practical applications of this model, the
system is finite and charged. In this paper we study how the phase diagram is modified by finite size and Coulomb
effects. We show that the thermodynamic anomalies which are associated to the finite-system counterpart
of first-order phase transitions are correctly reproduced by this effective model. However, approximations in
the calculation of the grand-canonical partition sum prevent obtaining the exact mapping between statistical
ensembles which should be associated to finite systems. The ensemble inequivalence associated to the transition
persists in the presence of Coulomb effects, but the phase diagram is deeply modified with respect to the simple
liquid-gas phase transition characteristic of the neutral system.
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I. INTRODUCTION

In dilute media governed by a hard-core repulsion and a
short-range attractive interaction, it is reasonable to assume
that correlations are largely exhausted by clusterization [1–3].
As a consequence, cluster models appear extremely successful
in quantitatively describing systems as different as simple
fluids, atomic and molecular clusters, metallic alloys, nuclear
multifragmentation, and neutron star crusts [4–11]. The
thermodynamics of such models is very well known at the
thermodynamic limit [12,13], but very few formal studies exist
for finite systems, even if these latter are a primary field of
application of such models.

In particular, exactly solvable microscopic models have
been shown to exhibit thermodynamic anomalies [14]. When
a first-order phase transition exists at the thermodynamical
limit, the microcanonical entropy of the corresponding finite
system presents a positive convexity, which is forbidden at the
thermodynamic limit and leads to a negative heat capacity in
the microcanonical ensemble [16]. This concept was extended
to other statistical ensembles [17]. A negative susceptibility
should be observed if the order parameter is a conserved
quantity, while in the statistical ensemble where the order
parameter is fixed by an external field, the phase transition is
signalled by bimodal distributions of observables correlated to
the order parameter [17].

A case of particular interest concerns frustrated systems,
because the long-range Coulombic interaction is known to
quench the phase transition of simple fluids [18], a phe-
nomenology which is notably at play in the astrophysical
context of neutron star crusts [19].

Concerning cluster models, negative susceptibilities have
been reported both in the canonical [20] and in the Monte
Carlo version of the microcanonical ensemble [21] if clusters
are electrically neutral. In both cases it was shown that phase
transition signals are affected by the presence of the Coulomb
interaction, and the liquid-gas phase transition is quenched for
heavily charged systems. However, in these works the phase
diagram of the model was not computed and it is not clear if
the fragmentation phenomenon under strong Coulomb fields

can still be viewed as a manifestation of the liquid-gas phase
transition [20,22].

In Ref. [23], the phase diagram of the finite charged
three-dimensional Ising model was computed. It was reported
that the introduction of the Coulomb interaction leads to a deep
modification of the phase diagram, where the liquid-gas phase
transition is replaced by a different, Coulomb-induced, first-
order fragmentation transition at lower temperature, similar to
the phenomenon of nuclear fission. Based on these findings,
it was suggested that the phenomenon of nuclear multi-
fragmentation could be associated to this Coulomb-driven
transition. However, this connection could only be qualitative,
because the classical lattice gas model cannot quantitatively
describe nuclear data. It is therefore interesting to see if a
similar phenomenology is present in the cluster model, whose
predictive power in the description of fragmentation data was
clearly proved over the past decades [6,7].

Based on these motivations, in this paper we study the phase
diagram of the finite cluster model and its modifications in the
presence of the Coulomb interaction.

We show that approximations in the calculation of the
grand-canonical partition sum prevent recovery of the ana-
lytical relationships among statistical ensembles which should
hold in finite systems. In spite of that, the thermodynamic
anomalies which have been reported in the finite-system coun-
terpart of first-order phase transitions are correctly reproduced
by such effective model when neutral clusters are considered.
In a finite system, density can be varied both by varying the
number of particles inside a fixed volume and by varying
the volume of the box in which a fixed number of particles
is contained. Only this latter situation is relevant for the
description of the fragmentation phase transition observed in
nuclear collisions. We show in detail that these two physical
situations lead to deeply different phase diagrams, though in
both cases a liquid-gas phase transition is observed. In the
presence of a sufficiently strong Coulomb interaction, the
liquid-gas phase transition is quenched, in agreement with
previous studies. This suggests that the transition might be
better observable in nuclear fragmentation of light systems.
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However, a marginal region of ensemble inequivalence persists
at low temperature and high density, related to a transition
between a dilute gas phase and a phase of finite-size droplets.
Interestingly enough, a backbend in the P (ρ) equation of state,
which is perhaps the most intuitive signal proposed for the
nuclear liquid-gas phase transition, systematically observed in
all mean-field models, is only observed by varying the number
of particles in a fixed volume, while in the physical situation
relevant for nuclear fragmentation there is no upraised branch
at high density.

II. THE (GRAND CANONICAL) CANONICAL
THERMODYNAMICAL MODEL

As we have stated in the introduction, the basic principle
of the thermodynamic cluster model is the hypothesis [3]
that in dilute media governed by short-range attractive forces,
interparticle interactions essentially lead to the formation of
clusters. The system of interacting particles is thus considered
as an ideal gas of noninteracting clusters.

For simplicity we assume a simple fluid of stuctureless
particles of mass m, though cluster models of binary fluids and
binary alloys have been developed for different applications
[4,5,7].

Assuming that the ground-state energy E0(s) of a cluster of
size s and mass M(s) = sm + E0(s) is known as well as its
full spectrum of excited states Ei(s), the partition sum of an
isolated cluster at inverse temperature β = T −1 in a volume
V reads

ωs = V

h3

(
2πms

β

)3/2 ∑
i

gi(s) exp[−βEi(s)]

= V

h3

(
2πms

β

)3/2

exp[−βFβ(s)], (1)

where gi is the degeneracy of state i, the cluster entropy is given
by exp S(s,e) = ∑

i gi(s)δ[e − Ei(s)], and we have made a
saddle-point approximation,∫ ∞

−∞
de exp[S(s,e) − βe] ≈ exp[−βFβ(s)], (2)

where the cluster free energy is given by Fβ = 〈E(s)〉β −
T 〈S(s)〉β .

An exact calculation of the cluster energy states from the
microscopic Hamiltonian is out of our scope, especially if
the constituent particles have to be treated within quantum
mechanics, as is the case, for instance, for nuclear clusters.
However, mean-field or density functional methods can be
employed. In this paper we will use a standard phenomeno-
logical prescription [1,3] consisting of a volume and a surface
term

〈F (s)〉β = Fb(β,s)s + Fs(β,s)s2/3 (3)

appropriate for compact clusters in three dimensions. To
optimize the predictive power for nuclear clusters, we choose
the temperature dependence appropriate for fermion systems,

Fb = W0 + ε−1
0 β−2; Fs = −σ (β), (4)

and fix the numerical value of the parameters such as to
reproduce nuclear phenomenology: W0 = 15.8 MeV, ε0 =
16.0 MeV, and σ (β) = σ0{(β−2

c − β−2)/(β−2
c + β−2)}5/4,

where σ0 = 18.0 MeV and βc = 1/18.0 MeV−1.
An important point in the definition of a cluster model

concerns the definition of the cluster self-volume. Early
applications considered pointlike clusters [1,2]. The simplest
implementation of a finite self-volume consists in assuming
completely incompressible clusters with a radius Rs ∝ s1/3

in three dimensions. Within this description, the volume
appearing in Eq. (1) has to be reduced from total volume
(Vtot ) by the volume occupied by the clusters. This is readily
calculated if the density is homogeneous (compact clusters):
V = Vtot − V0(N ), where V0 represents the volume which
would be occupied if all of the N particles would make a single
cluster. In this paper we will adopt this description and discuss
in detail the important implications that this excluded volume
mechanism induces in the grand-canonical thermodynamics.
Specifically, we will show that the grand-canonical partition
sum cannot be analytically calculated for finite systems in
the presence of excluded volume. An interesting extension of
the cluster model to compressible clusters can be found in
Refs. [24,25].

Equation (4) describes charge-neutral clusters. The intro-
duction of electric charge leads to an interfragment interaction
which in principle breaks the ideal-gas free-energy additivity.
It is, however, very well known that a good approximation
of the Coulomb energy of a system of uniformly charged
spherical clusters is given by the so-called Wigner-Seitz
approximation [6]:

EC = 3

5

N2e2

4R
+

smax(V )∑
s=2

nsEs, (5)

where ns is the number of clusters of size s, R = (3V/4π )1/3,
smax is the maximum cluster size allowed in the total volume V ,
and we have assumed for simplicity that all clusters are charge
symmetric, with an effective charge q = es/2. The energies
appearing in the second term read

Es = 3

5

s2e2

4Rs

[
1 −

(
V0

Vtot

)1/3]
. (6)

We can see that the exact result for the Coulomb energy is
recovered in the limit Vtot → ∞, where it converges to the sum
of the clusters of Coulomb energies, and in the limit Vtot → V0,
where it gives the energy of a single cluster occupying the
whole volume.

The free energy expression (4) with the inclusion of
a Coulomb energy term in the form (5) was successfully
employed in the past in the description of nuclear multifrag-
mentation [7]. For an application to the inner crust of neutron
star and core-collapse supernova matter [8,11], the charge
screening from the presence of a uniform electron background
has to be accounted for. This can also be readily implemented
in the Wigner-Seitz approximation [9] and gives a free-energy
functional intermediate between the physical case of neutral
and charged clusters. In this paper, we will limit ourselves to
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the two extreme cases of neutral and fully charged systems and
will not consider applications requiring electron screening.

III. MAPPING THE DIFFERENT ENSEMBLES

The canonical partition function for a system of N particles
at a given inverse temperature β = T −1 is given by

QN =
∑ ∏ ωns

s

ns!
. (7)

Here the sum is over all possible cluster partitions which satisfy
the conservation laws, and ns is the number of the composites
of size s in the given partition.

The average number of clusters with s particles is seen
easily from the above equation to be

〈ns〉 = ωs

QN−s

QN

. (8)

The canonical particle-number conservation constraint N =∑
s × ns can be used to obtain a recursion relation for the

partition function

QN = 1

N

∑
s

sωsQN−s . (9)

This recursion relation allows computing all different
observables by successive partial derivatives, using standard
statistical mechanics expressions. Specifically, the pressure,
chemical potential, and mean energy are given by

βpβ(N,V ) = ∂ ln QN

∂V

∣∣∣∣
N,β

, (10)

βμβ(N,V ) = −∂ ln QN

∂N

∣∣∣∣
V,β

, (11)

Eβ(N,V ) = −∂ ln QN

∂β

∣∣∣∣
NV

, (12)

where all the partial derivatives are numerically calculated
from finite differences.

Now let us turn to the definition of the grand-canonical
ensemble. The standard statistical definition of the grand-
canonical partition sum, which in principle should be valid
in any model, reads (we note the fugacity α = βμ)

Zα =
Nmax(V )∑

N=0

QN exp αN = Q0 +
Nmax(V )∑

N=1

QN exp αN, (13)

where QN is the canonical partition sum corresponding to the
same volume, the same temperature, and N particles. In our
model, we can access all QN via the recursion relation, pro-
vided 1 � N � Nmax(V ). Going towards the thermodynamic
limit implies V → ∞ and also Nmax(V ) → ∞. This means
that in principle we can calculate via recursion all QN whatever
is N , even if of course increasing N will become numerically
more expensive.

The only unknown is then the vacuum partition sum Q0.
As we have discussed in Ref. [22], if we have an alternative
expression for Zα we can deduce this unknown from the

condition of normalization of probabilities:

1 =
∞∑

N=0

Pα(N ) = 1

Zα

∞∑
N=0

QN exp αN

= 1

Zα

Q0 + 1

Zα

∞∑
N=1

QN exp αN. (14)

Here we want to work in a finite system and not at the
thermodynamical limit. Then V is a fixed finite number, and if
N > Nmax(V ), QN = 0 because we cannot fit the particles in
the finite volume. Again, if we have an alternative expression
for Zα , we can deduce Q0 from the condition of normalization
of probabilities (14).

It is customary [7,22] to utilize this alternative expression
for Zα in the (Grand Canonical) Canonical Thermodynamical
Model [(G)CTM] using cluster multiplicities. Indeed if we
replace in Eq. (13) the CTM expression for the canonical
partition sum we get

Zα =
∞∑

N=0

∑
�n:N

smax∏
s=1

ωns
s

ns!
exp αN, (15)

which can be rewritten as

Zα =
∞∑

n1=0

ω
n1
1

n1!
· · ·

∞∑
nsmax =0

ω
nsmax
smax

nsmax !
exp αN

=
smax∏
s=1

∞∑
ns=0

ωns
s

ns!
exp

(
α

smax∑
s=1

nss

)
(16)

=
smax∏
s=1

∞∑
ns=0

(ωs exp βμs)ns

ns!

=
smax∏
s=1

exp(ωs exp βμs), (17)

which is the standard expression of the grand-canonical
partition sum ZGC (where μs=μs) as given in the literature [7].

In this equation, smax = Nmax(V ). If we consider the
thermodynamic limit, everything is coherent and correct.
The canonical and grand-canonical partition sums satisfy the
general relation Eq. (13), the quantity Pα(N ) defined by
Eq. (14) can indeed be interpreted as a probability, and we
can plug Eq. (17) into Eq. (14) in order to get Q0.

Expression (17) has been very often used in the literature.
Its great advantage from the computation viewpoint is that the
expression of cluster multiplicities is extremely simple,

〈ns〉βμ = ωs exp βμs, (18)

and all thermodynamic quantities are defined in terms of
cluster multiplicities,

βpβμ = ∂ ln Zα

∂V

∣∣∣∣
βμ

= T

∑
s〈ns〉βμ

V
, (19)

Eβμ = −∂ ln Zα

∂β

∣∣∣∣
V μ

=
∑

s

〈ns〉βμE(s), (20)

Nβμ = ∂ ln Zα

∂βμ

∣∣∣∣
Vβ

=
∑

s

〈ns〉βμs, (21)
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meaning that the model is fully analytical and no numerical
calculation is needed.

A problem, however, arises if we work out of the thermo-
dynamic limit and V is a finite volume where no more than
Nmax particles can be fitted. This means that the sums over
multiplicities in Eqs. (16) and (17) should not go up to infinity
but only to a maximum finite multiplicity nmax

s . For instance,
the last sum in Eq. (16) should have only two terms, nsmax = 0
and nsmax = 1, because at most one fragment of that size filling
the whole available volume can be found.

Equation (16) should then be transformed to

Zα =
Nmax(V )∑
n1=0

ω
n1
1

n1!
· · ·

1∑
nsmax =0

ω
nsmax
smax

nsmax !
exp αN. (22)

But if we introduce upper bounds on these sums we lose
the simple expression Eq. (17).

This means that in (G)CTM the grand-canonical model
(17) fulfils the thermodynamic relation (13) only in the ther-
modynamic limit. When applied to a finite system, it should
always be seen as an approximation of the canonical model. In
particular, it does not correctly describe the equilibrium of a
finite system with an external particle bath, which in principle
a grand-canonical model is supposed to do.

Out of the thermodynamic limit, two situations still exist
where the grand-canonical model is correct. The first situation
concerns systems with Coulomb and volumes which are big
enough such that the statistical weight of partitions with N >
Nmax(V ) is negligible. In this case we can safely make the
approximation

nmax
s∑

ns=0

ω
ns

1

ns!
≈

∞∑
ns=0

ω
ns

1

ns!
(23)

and we can recover Eq. (17).
The second possibility is to consider a model without

excluded volume. If we can pile up an arbitrary number of
fragments in the finite volume, we will still have a maximum
cluster mass smax = Nmax(V ) because of the finite volume,
but we do not have any more a maximum multiplicity in
the calculation of the grand-canonical partition sum, meaning
that the upper limit in the sums of (16) is nmax

s = ∞ and
Eq. (17) is again correct. In this case, if we want to calculate
the grand-canonical partition sum out of Eq. (13), we should
also calculate the sum up to convergence, because without
excluded volume there is no upper limit on the maximum
number of particles even in a finite volume. This is, however,
not a satisfactory solution. Indeed, from a computation
viewpoint, Eq. (13) cannot be used because we know that
the convergence is very slow [13]. From the physical point
of view, excluded volume is important and we can conclude
that the grand-canonical model Eq. (17) has to be seen only
as an approximation to the grand-canonical thermodynamics,
allowing infinite multiplicity of any cluster size even in a finite
volume. In particular, the grand-canonical particle number
distribution

Pα(N ) = 1

ZGC

QN exp αN (24)

with ZGC given by Eq. (17) is not normalized. Still we will
employ in the following Eq. (17) to get an approximate
estimation of the grand-canonical partition sum and fix the
relation between μ and N , giving the mapping between the
grand-canonical and canonical ensemble in the standard [7]
way, that is, solving the equation

N =
Nmax(V )∑

s=1

s exp (ωs exp βμs)

(
Nmax(V )∑

s=1

exp (ωs exp βμs)

)−1

.

(25)

IV. PHASE DIAGRAM OF THE NEUTRAL SYSTEM

The neutral system is a simple fluid which should exhibit
a liquid-gas phase transition. The order parameter of this
transition is the particle density. At the thermodynamic limit, a
variation of the particle density is obtained by varying both the
volume and the particle number in such a way that their ratio
stays finite even when N and V diverge. In a finite system, a
variation of the particle density can be obtained in two different
ways, namely changing the number of particles in a given
finite volume, or changing the volume in which a given finite
number of particles is considered. Because of the different
finite-size effects, these different procedures are not expected
to be necessarily equivalent. If we consider the dense phase
where a single cluster occupies the whole volume, to have
at constant volume the same energetic properties obtained at
constant particle number for a system of size N0, we should
consider a volume V0 such that Nmax(V0) = N0. In this volume,
a unique partition is possible for any density below 1/V0, while
a huge number of different partitions including bound clusters
can be considered for the system of size N0 at the same density
obtained with a volume V = N0V0.

In the following we therefore separately consider the phase
diagram of a system composed of a finite number of particles
and of a system of particles contained in a finite box.

A. Finite volume

In the last section we have shown that, for a neutral finite
system, the grand-canonical model as defined by the standard
expression Eq. (17) is not consistent. To derive the phase
diagram of the model, we will therefore rely on Eq. (13)
which is always correct. We use the same technique as in
Ref. [23]. In the absence of Coulomb, the transition belongs
to the liquid-gas universality class with particle number as
an order parameter. In this situation, according to the general
definitions of phase transitions in finite systems [15,16], at each
temperature the transition chemical potential is determined
by the condition that the grand-canonical particle number
probability presents two peaks of equal height. In the cluster
model, due to the hypothesis of incompressible clusters,
the high density peak is always located at N = Nmax(V )
[13,22]. Noting N1(T ,V ) the particle number corresponding
to the low density peak, the transition chemical potential is
then given by the analytical relation βμt (V ) = {ln QN [N =
Nmax(V )] − ln QN (N1)}/[Nmax(V ) − N1]. The corresponding
grand-canonical particle number distributions are shown for
different temperatures and a volume V = 5V0(200) (where
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FIG. 1. (Color online) Left side: grand-canonical particle number distributions at different temperatures. The thick solid line gives the
temperature border of the first-order phase transition. Right side: average size of the largest cluster, normalized to the total particle number, as
a function of the temperature in the canonical ensemble at fixed volume for different sizes of the system. Calculations are done at a volume
V = 5V0(200) (see text).

V0(200) is the volume of a nucleus containing 200 particles
at the normal nuclear density) arbitrarily chosen such that
Nmax(V ) = 1000 in the left part of Fig. 1. We can see that for all
the considered temperatures the low-density phase is peaked
at a particle number N1 > 0. The problem, discussed in the
last section, concerning the evaluation of the vacuum partition
sum Q0 thus does not deform the shape of the distribution
and the extraction of μt and only affects the normalization. In
Fig. 1 we have arbitrarily fixed the undetermined normalization
factor by requiring the peak’s height be numerically equal to
the temperature. As a consequence, the thick line joining the
probability maxima in Fig. 1 represents the phase diagram of
the (G)CTM model in the temperature-particle number plane
for our choice of volume. We can see that a large portion of
the phase diagram corresponds to the coexistence region of
the liquid-gas phase transition. From the phenomenological
point of view, this region is defined by characteristic U-shaped
cluster distributions where a huge bound cluster dominates the
global energetics, while the supercritical region above the thick
line corresponds to exponential distributions dominated by
monomers. It is, however, important to stress that the U-shaped
mass distribution is in no way a proof of coexistence. U-shaped
distributions are systematically found in the inner crust of
protoneutron stars [8,11], and they do not correspond to a
first-order phase transition but to a macroscopic phase with
local inhomogeneities due to the phenomenon of Coulomb
frustration. Other counterexamples can be found in Ref. [26].
The indication of the phase transition comes from the bimodal-
ity of the order parameter, as shown in the left part of Fig. 1.

An alternative order parameter is the size of the largest
cluster. Its behavior with temperature normalized to the total
particle number is shown in the right side of Fig. 1 for the
canonical ensemble. We can see that the largest cluster behaves
as a percolating cluster, exhausting most of the available mass
inside the coexistence region. This is another typical signal
associated to the liquid-gas phase transition. In particular, the
ending point of the coexistence zone is precisely evidenced

by the sudden drop of Nbig/N , but this signal can only be
exploited for relatively large particle numbers or the order of
N = 1000. For smaller systems finite-size effects lead to the
well-known rounding of the phase transition. It is, however,
important to stress that this latter can still be spotted through
the bimodality signal.

The phase diagram shown in the left part of Fig. 1 was
obtained using the grand-canonical information of the particle
number distribution. However, this information is consistent
with the finding in the right part of the same figure, which
was computed in the canonical ensemble. Indeed, the phase
diagram is representative of the model and not of the specific
ensemble. A proof of this statement comes from the fact that
the same phase diagram information can be extracted from the
study of the canonical chemical potential [17]. Indeed, using
the definition of the canonical chemical potential, Eqs. (11)
and (24), we get

μβ = −T
∂ ln Pα

∂N
+ μ. (26)

Integrating over N between two arbitrary points N1,N2 gives∫ N2

N1

μβ(N ) = −T [ln Pα(N2) − ln Pα(N1)] + μ(N2 − N1).

(27)
Now let us choose, for the given T ,V , the grand-canonical
chemical potential μ = μt that corresponds to a pβμ(N ) with
two peaks of equal height. We call the particle numbers
associated to the two peaks N1,N2 and apply Eq. (27) to get∫ N2

N1

μβ(N ) = μt (N2 − N1). (28)

We can identify this situation as the phase transition. Between
the beginning N1 and the end N2 of the coexistence region, the
canonical backbending chemical potential fulfills an equal area
Maxwell construction (28). The points N1 and N2 represent
the particle numbers associated to the dilute and dense phases,
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FIG. 2. (Color online) Left part: canonical chemical potential divided by the temperature as a function of particle density for the same
temperature and volume conditions as in Fig. 1. Solid lines: canonical results. Dotted lines: grand-canonical results. Dashed line: coexistence
plateau from Fig. 1 above. Right part: same as the left part, but for a fixed temperature and different values for the volume.

respectively, which are equally probable at the transition
grand-canonical chemical potential μt .

The pertinent equation of state at fixed volume is the
functional relation between particle number and chemical
potential. This equation of state is represented for the two
ensembles in Fig. 2, in the same thermodynamic conditions as
before. As is well known, while the grand-canonical equation
of state is monotonous, the canonical one shows an inverse
(decreasing) behavior, which is the typical signal of the phase
transition. The verification that Eq. (28) holds in the numerical
calculations of the (G)CTM is also given in the same figure.
The canonical chemical potential from Eq. (11) is represented
as a function of the particle number at a given volume and for
different temperatures, together with the value corresponding
to the equal area construction, Eq. (28). We can see that this
phase transition definition leads to the same phase diagram as
in Fig. 1. The consistency of the phase diagram of the cluster
model calculated from different statistical ensembles has not
been verified before to our knowledge. The effect of the volume
on the phase diagram is explored in the right part of Fig. 2. We
can see that the qualitative behavior of the phase diagram is
independent of the volume. At a given temperature, decreasing
the volume has only a very small effect on the density width of
the coexistence zone (N2 − N1)/N2, but leads to an increase
of the transition chemical potential. This result is consistent
with the liquid-gas transition phenomenology of simple fluids,
while the small sensitivity of the density transition point with
the volume might be attributed to our simplifying hypothesis
of incompressible clusters.

The dashed lines in Fig. 2 give the grand-canonical results,
where the correspondence 〈N〉βμ(μ) is given by Eq. (25).
Coherently with the general theory of phase transitions in
finite systems [16,17], the grand-canonical chemical potential
is monotonous and very close to a plateau in the density
region corresponding to the backbending. Previous studies
have shown [7,12] that a plateau is exactly recovered in the
thermodynamic limit, as expected for the liquid-gas phase
transition of a simple fluid. It is interesting to remark that

the chemical potential value of the plateau is very close to
the grand-canonical transition chemical potential defined by
Eq. (28), in spite of the fact that Eq. (25) uses the approximate
expression ZGC from Eq. (17) to evaluate the grand-canonical
partition sum. This result implies that the incorrect treatment
of excluded volume does not affect the phase properties of the
system in an important way.

In previous works [7,12], the possibility of introducing a
maximum cluster size smax in the grand-canonical ensemble
was discussed. In these works, it was already shown that
the thermodynamic properties of the model strongly depend
on the choice of this parameter. The effect on the chemical
potential of modifying the maximum cluster size in the
grand-canonical ensemble is shown in the left part of Fig. 3 for
a representative value of volume and temperature. We can see
that indeed the transition chemical potential wildly changes by
modifying smax. This is easy to understand, because a partition
containing a single cluster of size smax is the best finite-system
approximation of the dense liquid phase. Changing smax thus
amounts to artificially changing, for a fixed finite size given by
the finite volume, the finite-size effects on the phase transition.
Figure 3 shows that smax is not a free parameter, and it has to be
fixed as smax = Nmax(V ) in order to have thermodynamically
consistent results in the (G)CTM model.

The behavior of the canonical and grand-canonical pressure
from Eqs. (10) and (19) is shown in the right part of Fig. 3,
in the same thermodynamic conditions as for the left part of
the figure. Again, the choice of the maximum cluster size
has a deep influence on the grand-canonical equation of state
and only the result obtained fixing smax = Nmax(V ) should be
considered as physically meaningful and thermodynamically
consistent. We can see that, similar to the behavior of the
chemical potential, the two ensembles are equivalent for very
low particle numbers, where according to the phase diagram
(Fig. 1) the system is in a pure gas phase. If smax = Nmax(V ),
the point where ensemble inequivalence starts to appear
perfectly coincides with the border of the coexistence line,
showing again that the approximate expression ZGC from
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FIG. 3. (Color online) Left part: canonical (full line) and grand-canonical (dotted lines) chemical potential at T = 6 MeV for the same
volume as in Fig. 1. The different grand-canonical curves correspond to different maximum cluster sizes allowed in the volume V = 5V0, with
Nmax(V ) = 1000. Right part: same as for the left part, but for the pressure.

Eq. (17) is good enough to determine the phase properties
of the system. Also, the spinodal region can be equiva-
lently defined from the presence of negative susceptibility
(∂μβ/∂N < 0) or negative compressibility (∂Pβ/∂N < 0).

B. Finite particle number

In the previous figures we have analyzed the phase transition
by considering a fixed finite box which could be filled with a
different number of particles. This situation can be physically
relevant for metallic nanoparticles in rigid structures [5].
In the case of fragmentation of atomic nuclei or atomic
clusters, the finiteness of the system is rather manifested
by the fact that a finite and fixed number of particles can
occupy different volumes (for instance, because it evolves
in the vacuum following an excitation process). In this case
the order parameter is volume and the equation of state to
be analyzed is P (V ). This situation has been already studied
many times in the past [7,12,20]. A representative calculation
is presented in Fig. 4 for a system of N = 200 neutral particles.

The corresponding P (N ) diagram for fixed volume V = 5V0

is plotted in the left panel for the same value of temperatures
for both the ensembles.

Though still very much evocative of the liquid-gas phase
transition of simple fluids at the thermodynamical limit,
the behavior of the isotherm is deeply different from the
observations at fixed volume. The canonical and grand-
canonical calculations only converge at high temperature,
in the supercritical region. The grand-canonical pressure
presents no plateau and is always monotonically decreasing
as expected in an ideal gas. This is expected. Because the
order parameter is the volume, a plateau can only be
found in the canonical isobar ensemble, that is, by fixing
the particle number and letting the volume fluctuate with
the introduction of a conjugated pressure field. This has
been done in the Monte Carlo microcanonical version of the
cluster model in Ref. [21]. Concerning the canonical calcu-
lations, the low-temperature isotherms appear monotonously
decreasing, indicating a pure liquidlike phase independent of
the volume. At higher temperature a negative compressibility

FIG. 4. (Color online) Canonical (full lines) and grand-canonical (dashed lines) pressure as a function of (i) the number of particle for a
fixed volume V = 5V0(200) (left column) and (ii) the volume for a system of N = 200 uncharged particles (right column). In the right column,
for T = 6 MeV, the thick line represents the Maxwell equal-area construction.
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appears, signaling the finite-system counterpart of the phase
coexistence. The phase diagram can be obtained with the same
procedure that we have followed for the constant volume case.
The canonical isobar ensemble is defined by the partition sum

Zβp =
∞∑

V =V0(N)

QN (V ) exp βpV (29)

and the volume probability distribution is given by

Pβp = Z−1
βp QN (V ) exp βpV. (30)

If at a given temperature the canonical pressure backbends,
this means that in the isobar canonical ensemble the volume
probability distribution must present two peaks, located at
two values V1(T ), V2(T ). These peaks are equally probable
at a given pressure pt (T ). With the same reasoning as in the
previous section, we can define the coexistence zone from
an equal area construction of the canonical equation of state,
according to ∫ V2

V1

pβ(N ) = pt (V2 − V1), (31)

which can be used to define pt . This construction, defining
the borders of the coexistence zone, is shown in the right
column of Fig. 4 by the thick line. We can see that at moderate
temperatures the coexistence zone covers a large part of the
phase diagram, as we have seen in the fixed volume case.
Still, the smallest volumes (see, for instance, the isotherm at
T = 5.5 MeV in the left panel of Fig. 1) correspond to a
pure liquid phase. If we consider, for instance, the point T =
4,V = 5V0,N = 200, such a thermodynamic situation, which
is characterized by a U-shaped cluster size distribution, is
interpreted as a coexistence in the phase diagram of V = 5V0,
and as a pure liquid phase in the phase diagram of N = 200.

This example is a nice illustration of the importance of
working in the physically meaningful statistical ensemble
when studying the statistical mechanics of finite systems.

V. PHASE DIAGRAM OF THE CHARGED SYSTEM

We now turn to examine the complete model where the
long-range Coulomb interactions are approximately accounted
for in the Wigner-Seitz approximation.

The particle number distributions, Eq. (24), at different
temperatures and chemical potentials are displayed in Fig. 5,
to be compared to the similar analysis for the uncharged system
in the left panel of Fig. 1.

The first, relatively trivial effect of the inclusion of the
Coulomb interaction is that normal distributions, typical of a
pure phase, are obtained at temperatures as low as 5 MeV, a
temperature which still corresponds to the coexistence region
in the uncharged system (see Fig. 1). These distributions are
not pure Gaussians as is typically expected from finite-size
effects because of the border effect given by the fact that
a particle number cannot extend below zero. Still, they
show an approximate Gaussian behavior as it is seen in the
uncharged system above the thermodynamical critical point,
with a width increasing with the temperature following the
thermodynamical relation which relates the susceptibility χ
to the particle number fluctuation σ 2: χ = ∂Nβμ/∂μ = βσ 2

N .
This quenching of the phase transition, with a reduction of the
critical temperature, is expected due to the repulsive character
of the Coulomb interaction.

However, the effect of Coulomb is much more drastic than
a simple shift of the phase diagram, as shown in the left part
of Fig. 5. The purely bimodal behavior of the distribution is
not recovered at any temperature and is replaced by a complex
structure showing different peaks with approximately equal
spacing. As was already observed in Ref. [22], these peaks
indicate preferential fragmentation structures corresponding
to higher multiplicity of clusters of similar size.

Still, up to around T ≈ 4 MeV, a transition chemical poten-
tial μt (T ) can be defined such that the probability associated
to the vapor (N = 1) is equal to the probability associated to
the droplet (N ≈ 200). This can be easily understood from the
fact that, due to Coulomb effects, the liquid phase apparent in
Fig. 1 is replaced by a phase constituted of clusters.

FIG. 5. (Color online) Particle number distribution in the grand-canonical ensemble for T = 3 MeV (left) and T = 5 MeV (right), with
the same volume as in Fig. 1 above and different average particle numbers, given in the figure.
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FIG. 6. (Color online) Thermodynamics of a charged system. Canonical (full lines) and grand-canonical (dotted lines) chemical potential
(upper part) and pressure (lower part) as a function of the particle number at fixed value and as a function of the volume for a fixed particle
number (lower right). Different temperatures are considered.

The model with Coulomb does not admit a thermodynami-
cal limit; therefore, it is not possible to study the behavior for
N or V → ∞. However, it is easy to verify that an increase
of the total volume does not change the structure of the two
phases, but simply leads to a displacement of the second peak
towards higher particle numbers, corresponding to a higher
number of clusters in the dense phase.

Because of this persistence of phase-transition signals in
the presence of Coulomb effects, we can expect inequivalence
signals to arise in the different equations of state, similar to the
neutral case studied in the previous section. This is confirmed
by Fig. 6, which displays the behavior of chemical potential
and pressure in the same thermodynamic conditions explored
for the neutral system. We can appreciate the considerable
quenching of the phase transition at high temperature. Still,
a region of ensemble inequivalence and inverse slope for the
canonical equations of state persists at low temperature and
high density, reminiscent of the liquid-gas phenomenology
above.

In order to show that we are still facing a coexistence
phenomenon between a vapor of monomers and (charged)
droplets, we show in Fig. 7 the distributions of the heaviest
cluster [7] associated to each fragmented configuration in
the ensemble inequivalence region. We can see that the

grand-canonical distribution, even when very high particle
numbers are implied, is always characterized by two peaks,
corresponding to the monomer solution and the droplet
solution. The mass of the largest cluster in the denser phase
obviously depends on the available volume but is always upper
limited because of the repulsive Coulomb force.

The interesting point of this figure is that the low Amax peak
is always located at Amax = N = 1; that is, it corresponds to
much lower density than the high Amax peak. Density can
therefore be viewed as the order parameter of the transition
even in the presence of Coulomb effects. This original result
means that, in the framework of this model, fragmentation
can still be viewed as a liquid-gas-type phase transition
even in the presence of Coulomb effects. When the mass-
conservation constraint is implemented at the same time as
the volume-conservation constraint (canonical ensemble) the
vapor solution becomes inaccessible because a much higher
volume would be needed in order to reach its low density.
As a consequence, a complex distribution with two peaks
corresponding to different heaviest cluster sizes are observed,
as we have already pointed out in our previous work [20]. We
can, however, observe that by increasing the particle number
such that the conservation constraint becomes less strict (right
part of Fig. 7), the distribution becomes single peaked again,
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FIG. 7. (Color online) Distribution of the largest fragment associated to each fragmented configuration in the ensemble inequivalence
region in the grand-canonical (dotted lines) and canonical (full lines) ensemble. Left side: the total number of particles (average number for
the GC calculation) is fixed to N = 200 and three different volumes 2V (200) (black), 2.25V (200) (red [gray]), and 2.5V (200) (green [gray])
are considered. Right part: two different (average in the GC case) number of particles N = 200 (red [gray]) and N = 1000 (blue [gray]) are
considered and the volume is fixed such that V = 2.25V0(N ). Calculations are done at a fixed temperature T = 4 MeV.

corresponding to fragmentation configurations where multiple
droplets of the biggest size permitted by Coulomb are formed.

We can therefore conclude that the presence of a peak
at Amax ≈ N/2 in the canonical fragmentation of the small
system (left part of Fig. 7) is, at least in this model and in the
framework of the Wigner-Seitz approximation, an effect of par-
ticle number conservation and not the manifestation of a new
fissionlike phase transition. From the nuclear physics point of
view, these findings imply that the bimodality signal appears as
a robust signal of the phase transition in nuclear fragmentation.

VI. CONCLUSIONS

In this paper we have studied the phase diagram of the
thermodynamical cluster model in the presence of finite-size
and Coulomb effects. We have shown that, even for arbitrarily
small particle numbers, a phase coexistence region can be
clearly identified by the behavior of the grand-canonical parti-
cle number distribution. The different phase-transition signals
proposed in the literature (backbendings and bimodality of
the heaviest cluster distribution) are consistently found in this
coexistence region. Depending on the statistical ensemble, the
behavior of the equations of state and the definition itself of the
different phases can be very different. To give a single example,
no backbending is observed in the μ(N ) relation at low
temperature if V is fixed, while a clear backbending is visible in
p(V ) for fixed N . In both cases, however, a transition chemical
potential and pressure can be clearly defined by the associated
grand-canonical distributions. Because of this complexity,
the clearest signals of phase transition are given by the
simple fact that qualitative differences in the observables are
obtained using different statistical ensembles. This ensemble
inequivalence as a signature of phase transition persists even
in the presence of the Coulomb interaction. In particular, an
equal probability is observed in the grand-canonical ensemble
between a vapor and a condensed solution. This condensed
solution is given by a phase characterized by a number of

the heaviest clusters that Coulomb can sustain, the number
of clusters being essentially determined by the available total
particle number and/or volume.

This discussion on the implications of the phase transition in
the different ensembles is a somewhat academic discussion for
the physical situations which can be experimentally accessible.
Some examples exist in low-dimensional condensed-matter
physics [5], where it is possible to produce finite systems in
different statistical ensembles, and it would be very interesting
to apply these consideration to the physics of nanowires. How-
ever, concerning nuclear physics for which the cluster model
was originally developed, the statistical ensemble can hardly
be varied. Specifically, in the standard canonical ensemble,
which is believed to be the most appropriate to describe the
experimentally accessible situation of nuclear fragmentation,
the conservation law on both the total particle number and total
volume prevents us from observing this bimodal behavior,
but a (strongly deformed) bimodality signal persists in the
distribution of the heaviest cluster, as it was reported previously
[20,22]. Even if baryon number is exactly conserved, different
traditional models of nuclear physics violate this conservation
law. This is especially true in the case of pairing, where
particle number conservation, violated by the BCS theory, is
typically accounted for by (approximate) projection methods.
In view of our results, it would be very interesting to study the
finite-size effects with the methods introduced in this paper, in
the superfluid-normal fluid phase transition.

An other interesting prolongation of the present work
concerns the case of stellar matter, which constitutes an
intermediate case between the charged and uncharged case.
Finite-temperature matter formed in core-collapse supernova
and in the crust of protoneutron stars is in equilibrium with
respect to strong interactions. Its density is not fixed by a
conservation law but imposed by the external gravitational
pressure. This means that, at variance with the laboratory
situation, the grand-canonical ensemble is the appropriate
ensemble for a statistical description of dense matter. However,
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most theoretical modelings are performed in the canonical
ensemble constituted by a finite Wigner-Seitz cell. If the
ensemble inequivalence we have observed is kept in the case of

stellar matter, this could have interesting consequences on the
composition of the crust of neutron stars at finite temperature.
This perspective is left for future work.
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