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Configuration-constrained cranking Hartree-Fock pairing calculations for sidebands of nuclei
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Background: Nuclear collective rotations have been successfully described by the cranking Hartree-Fock-
Bogoliubov (HFB) model. However, for rotational sidebands which are built on intrinsic excited configurations,
it may not be easy to find converged cranking HFB solutions. The nonconservation of the particle number in
the BCS pairing is another shortcoming. To improve the pairing treatment, a particle-number-conserving (PNC)
pairing method was suggested. But the existing PNC calculations were performed within a phenomenological
one-body potential (e.g., Nilsson or Woods-Saxon) in which one has to deal the double-counting problem.
Purpose: The present work aims at an improved description of nuclear rotations, particularly for the rotations of
excited configurations, i.e., sidebands.
Methods: We developed a configuration-constrained cranking Skyrme Hartree-Fock (SHF) calculation with the
pairing correlation treated by the PNC method. The PNC pairing takes the philosophy of the shell model which
diagonalizes the Hamiltonian in a truncated model space. The cranked deformed SHF basis provides a small but
efficient model space for the PNC diagonalization.
Results: We have applied the present method to the calculations of collective rotations of hafnium isotopes
for both ground-state bands and sidebands, reproducing well experimental observations. The first up-bendings
observed in the yrast bands of the hafnium isotopes are reproduced, and the second up-bendings are predicted.
Calculations for rotational bands built on broken-pair excited configurations agree well with experimental data.
The band-mixing between two Kπ = 6+ bands observed in 176Hf and the K purity of the 178Hf rotational state
built on the famous 31 yr Kπ = 16+ isomer are discussed.
Conclusions: The developed configuration-constrained cranking calculation has been proved to be a powerful tool
to describe both the yrast bands and sidebands of deformed nuclei. The analyses of rotational moments of inertia
help to understand the structures of nuclei, including rotational alignments, configurations, and competitions
between collective and single-particle excitations.
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I. INTRODUCTION

Cranking calculations with phenomenological one-body
potentials (e.g., Nilsson, Woods-Saxon) or effective two-
body forces (e.g., Skyrme force or relativistic mean field)
have been successful in the description of nuclear collective
rotations. In cranking calculations, the self-consistence in
pairing and deformation plays an important role in explaining
experimental observations [1]. However, the self-consistent
numerical calculation of the cranking HFB approach is difficult
when it is applied to multiquasiparticle (multi-qp) rotations
where pairing is reduced remarkably. It was pointed out that,
in band-crossing regions, special attention is needed in the
numerical iteration of the cranking calculations [2]. Most of
existing cranking HFB calculations are for the yrast bands.
Pairing calculations based on microscopic two-body forces
are still lacking for sidebands.

In the HFB model, the particle number is not conserved.
The spurious pairing collapse (also called spurious pairing
phase transition) arising from the cranking HFB calculations
[3–6] would be related to the violation of the particle number
conservation. As well, the spurious phase transition occurs in

*frxu@pku.edu.cn

band-crossing regions [7,8]. It was addressed that the phase
transition cannot be described properly in mean-field methods
for finite systems, due to the particle-number fluctuation
[9,10]. To consider the effect from the particle number
fluctuation, one can project the HFB wave function onto a
good particle number before variation [11–13]. But it greatly
complicates the algorithm and sometimes fails to describe the
high-lying part of the rotational spectrum [14]. Although the
approximate particle-number-projected Lipkin-Nogami (LN)
pairing method improves the cranking HFB solution, the
problem of the spurious phase transition is not fully solved
for the rotations of exited configurations where the pairing is
reduced significantly [15,16].

To overcome the particle-number fluctuation problem, a
particle-number-conserving (PNC) pairing method was de-
veloped [17] and has been successfully applied to cranking
calculations [18–20]. The PNC pairing method has the
concept of the “standard” shell model which diagonalizes
the Hamiltonian within a truncated model space. Different
from the numerical iterations of the cranking HFB equations,
the diagonalization easily gives a numerical solution, and its
convergence can be checked against the model dimension
chosen. Due to taking a cranked deformed basis, the cranking
PNC calculation has a fast convergence against the model
dimension. Usually a dimension of 800–1000 should be
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enough for the spectroscopic calculations of heavy nuclei
[16,21]. Furthermore, the PNC method defines configurations
in a single-particle basis similar to shell model, and therefore
exact blocking calculation can be easily done by blocking
the specific single-particle orbits in wave functions. In the
Bogoliubov pairing, one usually blocks quasiparticle orbits,
because it gets very complicated to use a single-particle
scheme for unpaired particles and a quasiparticle scheme
for paired particles in one framework of the model. But in
principle, one should block real-particle orbits (i.e., single
particles) that specify the configuration of a state, which is
important for the calculations of broken-pair states [16,18].

Previous cranking PNC calculations were performed with
the Nilsson potential (e.g., in Refs. [18–20,22]). The cal-
culation was performed with a fixed deformation [18–20],
and the result is dependent on which deformation is taken.
The choice of deformation parameters relies somewhat on
data usually, which limits the predictive power of the model.
Moreover, deformations can vary with increasing angular
momentum or with changing configuration. The deformation
variation and incurred effects can be remarkable in soft
nuclei. Therefore, a self-consistent deformation which is
determined by the model itself is desired. In our recent
works [16,23], we have replaced the Bogoliubov pairing by
the PNC pairing in the total-Routhian-surface (TRS) method
with the Woods-Saxon potential adopted. The self-consistent
deformation is determined by minimizing the calculated TRS
at each given rotational frequency [16,23]. A significant
improvement for rotational calculations is obtained [16,23].
The calculations give the evolution of the rotational behavior
with increasing angular momentum and/or with changing
configuration [16,23].

However, the Hamiltonian based on a one-body potential
raises the double counting problem. Usually, we use the
Strutinsky method to remove the double-counting problem ap-
proximately. But in the TRS method, the energy change due to
rotation is simply written as 〈�ω|Ĥ ω|�ω〉 − 〈�ω|Ĥ ω|�ω〉ω=0

[1,24]. Although the double counting effect should be largely
canceled by calculating the energy difference between fre-
quencies ω and zero, it is not removed exactly. The double
counting problem does not appear in models based on the
Hartree-Fock (HF) approximation with a two-body nuclear
force (e.g., Skyrme or Gogny force), in which the energy of
the many-body system is not simply written as a summation of
single-particle energies. In the present work, we incorporate
the PNC pairing into the Skyrme HF (SHF) model. We mainly
focus on the rotational sidebands of deformed nuclei.

II. THE MODEL

Using the second quantization, we write the cranked many-
body Hamiltonian of nucleus as

Ĥ ω =
∑

ij

tij a
†
i aj + 1

4

∑

ijkl

V ijkla
†
i a

†
j alak − ω

∑

ij

j
y
ij a

†
i aj ,

(1)

where tij = 〈i|t̂ |j 〉 gives the matrix elements of single-
particle kinetic energies in the basis |i〉 (i = 1,2, . . . ) with

corresponding creation and annihilation operators a
†
i and aj ,

respectively. V ijkl = 〈ij |V̂ |kl〉 − 〈ij |V̂ |lk〉 is the antisym-
metrized two-body interaction. In the present work, we choose
the Skyrme force for the two-body interaction V̂ (r1,r2). The
last term is from the Coriolis force with a rotational frequency
ω. We assume that the rotation is around the principle axis y.
In the matrix element j

y
ij = 〈i|ĵ y |j 〉, ĵ y is the single-particle

angular momentum operator projected onto the y axis. All the
notation is standard.

Starting with a harmonic oscillator (HO) basis {a†
i ,ai}, we

can define a HF basis in the body-fixed reference frame by a
unitary transformation,

b†μ =
∑

i

ciμa
†
i , (2)

where b†μ(bμ) is the single-particle creation (annihilation)
operator in the body-fixed HF basis, giving single-particle
Routhians (i.e., single-particle orbits in the rotating reference
frame). The HF wave function in the body-fixed reference
frame is written as

|Gω〉 =
A∏

μ=1

b†μ|−〉, (3)

where |−〉 is the vacuum. The wave function |Gω〉 gives the
lowest-energy state at a given rotational frequency ω, with
a defined symmetry (e.g., with given parity and signature).
It should be noted that the HF wave function ignores the
residual two-body correlation which is usually treated using
the Bogoliubov pairing method. The total HF energy in the
cranked reference frame (usually called total Routhian) is
obtained by

EHF
G (ω) = 〈Gω|Ĥ |Gω〉 =

∑

ij

tij ρ
ω
ji + 1

2

∑

ijkl

V ijklρ
ω
ikρ

ω
jl

−ω
∑

ij

j
y
ij ρ

ω
ji, (4)

where ρω
ij = 〈Gω|a†

j ai |Gω〉 = ∑A
μ=1 ciμc∗

jμ is the cranked
density matrix element written in the deformed HO basis
{a†

i ,ai}. The HF single-particle eigen wave functions described
by {ciμ} are determined by diagonalizing the cranked single-
particle HF Hamiltonian,

hω
ij = tij − ωj

y
ij +

∑

kl

V kilj ρ
ω
lk. (5)

In the wave function |Gω〉 and corresponding energy EHF
G (ω),

it has been assumed in fact that nucleons occupy the single-
particle Routhians from the lowest one to the cranking Fermi
surface. Combining Eqs. (4) and (5), we can calculate the yrast
rotational band. We repeat that the HF calculation neglects
higher-order nucleon correlations, e.g., the residual two-body
pairing which is treated usually using the Bogoliubov pairing
method. In the present work, we will adopt the PNC pairing
method to treat the residual two-body interaction.

Choosing the HF wave function |Gω〉 as a reference state
and using Wick’s theorem, we can rewrite the cranked total
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Hamiltonian (1) as

Ĥ ω = EHF
G (ω) +

∑

ij

hω
ij : a

†
i aj : +1

4

∑

ijkl

V ijkl : a
†
i a

†
j alak : ,

(6)

where : a
†
i aj : and : a

†
i a

†
j alak : are the normally ordered

products of the creation and annihilation operators. It is
required that all annihilation and creation operators which
make |Gω〉 be zero when acting on |Gω〉 are to the right of
all other operators which do not make |Gω〉 be zero.

If one uses the cranked HF basis in which hω
ij has been

already diagonalized, the cranked total Hamiltonian (6) can be
expressed in a simple form,

Ĥ ω = EHF
G (ω) +

∑

μ�A+1

eω
μb†μbμ −

A∑

μ=1

eω
μbμb†μ + Ĥ ′, (7)

with

Ĥ ′ = 1

4

∑

μ1μ2μ3μ4

V μ1μ2μ3μ4 : b†μ1
b†μ2

bμ4bμ3 : , (8)

where eω
i is the single-particle Routhian (i.e., the HF single-

particle eigenenergy in the rotating reference frame). In Eq. (7),
the second and third terms give particle-hole excitations, with
the second term for particle channel and the third one for
hole channel. The fourth term Ĥ ′ is the residual two-body
interaction. For the HF wave function |Gω〉 which gives the
lowest energy in the body-fixed reference frame, we have
〈Gω|Ĥ ′|Gω〉 = 0, which indicates that the residual two-body
correlation is not included in |Gω〉.

It seems that, by including particle-hole excitations, Hamil-
tonian (7) can construct various excited configurations with
respect to the lowest HF state |Gω〉. In the HF theory, an excited
configuration in principle can be solved self-consistently by
defining its own HF wave function with the specific single-
particle orbits occupied or unoccupied. The change of the
orbital occupations can result in variation of the HF mean field,
which in turn affects the HF single-particle states. Indeed, the
self-consistent interplay between the HF mean field and the
specific configuration is missing if one ignores the residual
two-body correlation Ĥ ′ in Eq. (7). In fact, Ĥ ′ produces
various two-body couplings and leads to various configuration
mixings. This is similar to the standard shell model. If the
Ĥ ′ term is treated exactly, i.e., one calculates the Ĥ ′ matrix
elements and diagonalizes the full Hamiltonian, the calculation
should include the interplay between the HF mean field and the
specific configuration. Such an argument has been discussed
by Greiner et al. [25].

The exact shell-model treatment of Ĥ ′ is a tedious work for
deformed nuclei. In mean-field model, the residual two-body
interaction is usually approximated by the residual pairing
interaction. In the present work, we use the PNC method to
treat the pairing [16,20].

In a nonrotating basis, the residual pairing interaction is
written as

Hp = −G
∑

ξη

a
†
ξ a

†
ξ̄
aη̄aη, (9)

where ξ̄ (η̄) indicate the time-reversed state. In the rotational
case, the time-reversal symmetry is broken, but we can
define new good quantum number(s). In the cranking HF
solver (named HFODD [26]), three one-dimension HO bases
are taken for the three directions of the x, y, and z axes,
corresponding to a three-dimension deformed HO basis. In
HFODD, the good number is called the simplex, which is defined
by Ŝy = P̂ e−iπĵy with P̂ being the parity. In quadrupole,
hexadecapole, and other even-multipole deformations, both
parities and signature (e−iπĵy ) are conserved. One can make a
transformation from the time-reversal symmetric basis to the
simplex basis by [26]

β
†
ξ,s=+i = 1√

2
(iny a

†
ξ − i−ny+1a

†
ξ̄
),

(10)

β
†
ξ,s=−i = 1√

2
(−iny+1a

†
ξ + i−ny a

†
ξ̄
),

where ny is the oscillation quantum number in the y axis. In
the simplex basis, the pairing interaction can be written as

Hp = −G
∑

ξη

β
†
ξ+β

†
ξ−βη−βη+, (11)

where ξ+ (ξ−) represents the basis eigenstate ξ with a positive
(negative) simplex, and G is the pairing strength.

In order to reduce the model space, the cranking PNC
pairing calculation takes the cranked deformed HF single-
particle eigenstates as the model basis for the diagonalization
of the full Hamiltonian Hω. The cranked deformed basis can
efficiently include cranking- and deformation-sensitive states
(e.g., intruder states) and leads to an efficient reduction of the
model space which is truncated according to the energies of
the cranked many-particle configurations of the model [16]. In
the simplex basis, the eigenstates |μs〉 (μ = 1,2, . . . ; s = ±i)
of the cranked deformed HF single-particle Hamiltonian (5)
can be expressed as [16]

|μs〉 =
∑

ξ

cμξ (s)|ξs〉, (12)

where |ξs〉 stands for noncranked deformed HO single-particle
eigenstates in the simplex scheme, defined by Eq. (10)
(i.e., β+

ξ,s=±i). The coefficients cμξ (s) are determined by
diagonalizing the Hamiltonian (5) in the simplex basis. In
fact, the coefficients are automatically given in the cranking
HF calculations [26]. A cranked many-particle configuration
of the N -body system can be written as

|μ1μ2 · · ·μn〉 = b†μ1
b†μ2

· · · b†μn
|−〉, (13)

where b†μ is the cranked deformed HF single-particle creation
operator that appeared in Eq. (2). According to Eq. (12), we
have

b
†
μ± =

∑

ξ

cμξ (±)β†
ξ±, (14)

where the sign “ ± ” indicates the positive or negative simplex
(i.e., s = +i or −i). In the cranked simplex basis, therefore,
with Eqs. (11) and (14), we derive the residual two-body
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pairing interaction as

Hp = −G
∑

μμ′νν ′
f ∗

μμ′fνν ′b
†
μ+b

†
μ′−bν−bν ′+, (15)

with

fμμ′ =
∑

ξξ ′
c∗
μξ (+)cμ′ξ ′(−). (16)

As mentioned above, the coefficients c
†
μξ (+) and c

†
μξ (−) have

been determined in the cranked HF calculation, which gives
single-particle Routhians [26]. The full Hamiltonian (7) is then
approximated by

Ĥ ω = EHF
G (ω) +

∑

μ�A+1

eω
μb†μbμ −

A∑

μ=1

eω
μbμb†μ + Hp, (17)

with the approximation of Hp = Ĥ ′. As explained in Eq. (4),
EHF

G (ω) is the lowest HF total Routhian with a given simplex
that is conserved. The eigenstates of the total Hamiltonian Ĥ ω

are written as [16]

|ψ〉ω =
∑

i

Cω
i |i〉ω, (18)

with {|i〉ω; i = 1,2, . . . } = {|μ1μ2 · · · μn〉; scanning}, taking
all possible configurations in the truncated space [16]. If there
is some symmetry (e.g., conserved simplex or parity and
signature, depending on deformation), all the configurations
taken in diagonalization should keep the symmetry.

The Hamiltonian (17) is diagonalized in a sufficiently large
model space of cranking many-particle configurations. We
make a model space truncation by setting a cutoff according
to configuration energies; i.e., the model configurations with
Ei − E0 � Ec are taken into account, with Ei , E0, and Ec

being the energy of the configuration |i〉, the energy of
the lowest configuration, and the cutoff energy, respectively.
The coefficient Cω

i for the eigenstates are obtained in the
diagonalization. The total angular momentum Jy of the
rotational state |ψ〉ω is calculated by

〈ψ |Ĵy |ψ〉ω =
∑

i

∣∣Cω
i

∣∣2〈i|Ĵy |i〉ω + 2
∑

i<j

Cω
i Cω

j 〈i|Ĵy |j 〉ω,

(19)
with Ĵy = ∑

ĵy .
The practical steps of the numerical calculation are as

follows: (i) At each given rotational frequency, we first perform
a cranking HF calculation by using the HFODD solver [26],
which gives EHF

G (ω) and the cranked deformed single-particle
basis. The HF solver gives a self-consistent deformation at
each given frequency by minimizing the cranking HF energy
[26]. (ii) Within the cranked deformed HF basis, we perform
the PNC calculations; i.e., we construct various cranked many-
particle configurations in the truncated model space mentioned
above, calculating the Ĥ ω matrix elements and diagonalizing.
(iii) By comparing the wave functions of obtained many-
particle eigenstates |ψ〉ω, we identify the specific configuration
and track it with increasing rotational frequency, which gives
the rotational band of the intrinsic configuration. The second
and third terms in the full Hamiltonian (17) have been

diagonalized already in the cranked basis, while the residual
pairing interaction Hp has off-diagonal matrix elements which
bring configuration mixings. As discussed above, the cranked
deformed HF basis with a truncation of cranking many-particle
configurations can leads to a strikingly small model space. We
have well tested that a dimension of 800–1000 is sufficient for
the calculations of collective rotations [16,27].

In the calculation of a rotational sideband, one of the key
steps is to identify and track the specific single-particle Routhi-
ans which define the intrinsic configuration at bandhead.
With the cranked HF single-particle basis wave functions, we
can calculate the expectation (averaged) values of the orbital
Nilsson numbers �[N,nz,�]. The numbers are not conserved,
but evolve smoothly with changing rotational frequency or
deformation [28]. The calculated Nilsson numbers can be
used to track the given single-particle orbits involved in
the configuration of the sideband. In practice, there are two
alternative methods for the configuration-tracked calculation.
At each given frequency, one diagonalizes the full Hamiltonian
with the shell-model wave functions defined by Eq. (18). After
diagonalizing, the configurations of resulting eigenstates can
be identified by looking at the occupation probabilities of orbits
using the averaged Nilsson numbers. The investigated state
can be found with the specific orbits almost fully occupied
(orbital occupation probabilities close to 1) and their partner
orbits almost unoccupied (occupation probabilities near zero).
There would be several eigenstates corresponding to the
given configuration, with similar occupation probabilities
of the specific orbits. Always, the lowest one should be
taken. The cranked deformed single-particle basis provides
a “good” condition to give the “pure” specific configuration,
which has been well tested in previous calculations [18–23].
The processes of model diagonalization and configuration
identification are repeated at the next rotational frequency,
and the given sideband can be established by linking the
calculations at different frequencies.

Another alternative method is to adiabatically block the
specific orbits in the shell-model wave functions; i.e., keep the
given orbits occupied in the wave functions. For example, for
a seniority s = 1 state in an odd nucleus, one can write the
shell-model wave functions as

|i〉ω = b
†
λ|μ1μ2 · · ·μn−1〉 (λ �= μ1 �= μ2 �= · · · �= μn−1),

(20)

with the λth orbit blocked adiabatically while |μ1μ2 · · · μn−1〉,
scanning all possible shell-model configurations except the
blocked orbit [16]. The adiabatic blocking can be achieved
by using the averaged Nilsson numbers. For a seniority s = 2
state which happens in even nuclei, we have

|i〉ω = b
†
λb

†
σ |μ1μ2 · · ·μn−2〉

(λ �= σ �= μ1 �= μ2 �= · · · �= μn−2). (21)

Similarly, we can write the adiabatically blocked wave
functions for higher-seniority states. The diagonalizing is
processed in a model space with (n − s) unblocked particles,
i.e, {|μ1μ2 · · · μn−s〉}, scanning all possible shell-model con-
figurations except the blocked orbits [16]. After diagonalizing,
the resulting lowest eigenstate is just the state of the given
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configuration. The final results obtained in the two methods
should be similar. In the present work, we adopted the first
method as described above.

We should mention that the shape polarization effect from
the blocked orbits is neglected in the methods described above.
As explained already, we take the deformation determined by
minimizing the cranking HF energy, which should correspond
to the deformation of the yrast state. The polarization effect
has been discussed, e.g., in Refs. [29,30]. In soft shapes or
high seniorities, the polarization effect can be significant [30].
In the present model, the shape polarization can be included
easily by adding the excitation energy from the unpaired orbits
in the minimization of the energy against the deformation.
The residual pairing should not change the deformation. We
will include the shape polarization in our future calculations.
The polarization effect would play an important role in the
calculations of the electromagnetic quadrupole transitions
[29]. However, in the present work, we are investigating
low-seniority (two- and four-qp) states in the hard Hf isotopes.
Therefore, the polarization effect should be small.

The pairing strength G is determined by the odd-even
mass difference using the three-point formula [31]. In the
conventional BCS pairing method, the calculated pairing
gap is considered to reproduce the experimental odd-even
mass difference, which is used to determine the BCS pairing
strength. However, it has been pointed out that the pairing
gap is not exactly the same as the odd-even mass difference,
in which there are blocking and mean-field effects [31,32].
The PNC pairing model does not invoke the quantity of the
pairing gap. In the present calculations, both theoretical and
experimental odd-even mass differences are calculated using
the same formula. Then, the pairing strength G is determined
by fitting the experimental odd-even mass difference, which
includes the blocking and mean-field effects, as discussed in
Refs. [31,32].

III. RESULTS AND DISCUSSIONS

In the present work, we calculate the moments of inertia
(MoI) for the yrast bands and the sidebands of broken-pair
intrinsic excited states in the Hf isotopes. These nuclei provide
a good playground for the theoretical investigations of various
rotational bands with rich experimental data available. In the
numerical solving of the cranking SHF equations, we took
680 deformed Cartesian HO basis states which cover the HO
shells up to Nx = 13, Ny = 13, and Nz = 14. Such a basis
space was used in the calculations of transfermium nuclei
[33]. Therefore, it should be large enough for the calculation
of rare-earth nuclei.

Figure 1 plots the kinematic moments of inertia J = Jy/ω
for the yrast bands of the hafnium isotopes. For comparison, we
have also calculated the MoI’s using the cranking Skyrme HFB
model with Lipkin-Nogami pairing (indicated by HFB) [37]. In
the Skyrme HFB calculations, a volume pairing is used with the
strength determined by fitting the odd-even mass difference. In
both the HFP and HFB calculations, the Skyrme force of SLY4
[38] is adopted. The cranking HFP calculations reproduce well
the experimental MoI’s and up-bendings that are caused by
the alignment of the νi13/2 neutrons. The second up-bendings

FIG. 1. (Color online) Calculated and experimental MoI’s for
yrast bands in 172–178Hf. Experimental MoI’s are extracted with data
from Refs. [34–36]. The pairing strengths for proton and neutron are
Gp = 0.40 MeV and Gn = 0.52 MeV, respectively, determined by
fitting experimental odd-even mass differences. HFP indicates the
present Hartree-Fock plus PNC pairing calculations.

around �ω ≈ 0.55 MeV are predicted, which are caused by
the alignment of the πh11/2 protons. The second alignment
was observed in 172Hf. The cranking HFB calculations stop at
�ω ≈ 0.4 MeV where the band crossing between the ground-
state and first two-quasiparticle (two-qp) bands occurs. For
the excited band, the two-qp excitation should be explicitly
included in the HFB wave function. By blocking adiabatically
the two orbits which cause the alignment, one should be able
to obtain the converged HFB solution [39]. The present HFB
calculation does not include such a quasiparticle excitation.

In the present HFP calculations for this mass region, we take
a cutoff energy of Ec = 6.2 MeV which gives a dimension
about 800. The pairing strength is determined within the
chosen dimension, by fitting the experimental odd-even mass
difference. It has been well tested that such a model space
is sufficient for the cranking calculations of rotational bands
[16,23]. Figure 2 displays the calculated MoI for the 172Hf
yrast band at different cutoff energies. Figure 3 gives the
plots of energies as a function of angular momentum for
the yrast and Kπ = 6+ and 8− bands in 172Hf at different
cutoffs, compared with experimental data [34,40]. We see
that the calculations with Ec � 6.2 MeV (correspondingly
dimension �800) give similar results for both MoI’s and
energies. The calculated bandhead energies of the two excited
bands are in good agreement with data. At different cutoffs,
the pairing strength G needs to be readjusted to reproduce the
experimental odd-even mass difference.

In the mass 180 region, there is an abundance of broken-pair
multiquasiparticle states and associated rotational bands (see
Refs. [41–45], and references therein). The bands built on
excited configurations are called sidebands (relative to the
ground-state band), providing rich information for nuclear
structure studies. Multiquasiparticle states built on high-�
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FIG. 2. (Color online) The HFP calculations of MoI for the 172Hf
yrast band at different cutoff energies (Ec) which give different model
dimensions. D600, D800, D1200, and D1400 indicate the dimensions
of 600, 800, 1200, and 1400, respectively.

orbits can form high-K isomers. In the Z = 72 Hf iso-
topes, rotational bands built on the two-proton π5/2+[402] ⊗
7/2+[404] (Kπ = 6+) and π9/2−[514] ⊗ 7/2+[404] (Kπ =
8−) configurations have been observed systematically
[40,46–49]. Figures 4 and 5 show the calculations of the

FIG. 3. (Color online) The HFP calculations of energies as a
function of angular momentum for the three bands in 172Hf
at different cutoffs, compared with experimental data [40]. The
configurations are Kπ = 6+ : π5/2+[402] ⊗ π7/2+[404] and Kπ =
8− : π9/2−[514] ⊗ π7/2+[404].

FIG. 4. (Color online) Calculated and experimental MoI’s for the
Kπ = 6+(π5/2+[402] ⊗ π7/2+[404]) bands in 172–178Hf. Experi-
mental MoI’s are obtained with data from Refs. [35,40,46–49].

MoI’s for the Kπ = 6+ and 8− rotational bands, com-
pared with experimental data. We can see that the present
calculations can reproduce the experimental MoI’s well.
In 172,174Hf, the mixture between the two-proton Kπ =
6+ (π5/2+[402] ⊗ π7/2+[404]) and two-neutron Kπ = 6+
(ν7/2−[514] ⊗ 5/2−[512]) configurations is weak [46,50],
while the mixture becomes obvious with increasing the neutron
number [47,49]. This may be the reason to explain the
difference between the calculated and experimental MoI’s in
178Hf. In the cranking shell model, the band mixture (between
different bands) is not included.

Figure 5 displays the MoI’s of the Kπ = 8− rotational
bands which are built on the π9/2−[514] ⊗ 7/2+[404]

FIG. 5. (Color online) Calculated and experimental MoI’s for
the two-proton Kπ = 8−(π9/2−[514] ⊗ π7/2+[404]) bands in
172−178Hf. For 178Hf, the two-neutron Kπ = 8−(ν7/2−[514] ⊗
9/2+[624]) band is also calculated. Experimental MoI’s are obtained
with data from Refs. [35,40,46–49].
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FIG. 6. (Color online) Calculated and experimental MoI’s
for the Kπ = 14− (π{9/2−[514],7/2+[404]} ⊗ ν{7/2−[514] ⊗
5/2−[512]}) bands in 176Hf. Experimental MoI’s are obtained with
data from Ref. [53].

configuration in 172–178Hf as a function of rotational fre-
quency. The self-consistent configuration-constrained crank-
ing Skyrme HF calculations with the PNC pairing give
reasonable results compared with data. In Refs. [40,46,47,51],
it was commented that the Kπ = 8− states have a relatively
pure two-proton π9/2−[514] ⊗ 7/2+[404] configuration in
172,174,176Hf with a small admixture of a two-neutron Kπ = 8−
(ν9/2+[624] ⊗ 7/2−[514]) configuration, while the mixture
becomes obvious in 178Hf. Different configuration admixtures
were suggested for the low 8− band in 178Hf, according to the
different choices of the rotational gyromagnetic factors [49].
To give an insight into the configuration of the observed 8−
band, we have also calculated the neutron 8− configuration
using the present HFP method, shown in Fig. 5. It seems that
the two-neutron 8− configuration gives a better quantitative
description of the data. The mixing between π8− and ν8−
is possible. Further, the two-proton π9/2−[514] ⊗ 7/2+[404]
configuration coupling to the two-neutron ν7/2−[514] ⊗
5/2−[512] makes a four-quasiparticle Kπ = 14− state, which
was observed to be an isomer at an energy of 2866 keV with a
half-life of 401 μs in 176Hf [52], and a built-on rotational
band was identified [53]. Figure 6 shows the calculated
rotational moment of inertia for the observed Kπ = 14− band
in 176Hf, giving a reasonable agreement with experimental
MoI extracted from data [53].

In the mass 180 region, many phenomena were observed
to be related to band mixing, configuration mixing, and K-
forbidden electromagnetic decays [40,49,54–56]. It is believed
that the K-selection rule governs the decays of high-K bands,
such that γ -ray transitions involving large changes in K values
are forbidden. The violation of the K selection indicates the K
mixing associated with nonaxial deformations or the Coriolis
force. For example, two Kπ = 6+ band were observed in 176Hf
[47]. It is special that no intraband transition is observed in
the 6+

2 band with a bandhead energy at 1761 keV [47]. In
Fig. 7, we have calculated for both the proton and neutron

FIG. 7. (Color online) Calculated and experimental MoI’s for
the two Kπ = 6+ bands in 176Hf. The proton or neutron Kπ =
6+ configurations are π5/2+[402] ⊗ π7/2+[404] or ν7/2−[514] ⊗
5/2−[512], respectively. Experimental MoI’s are obtained with data
in Ref. [47].

Kπ = 6+ configurations, compared with experimental bands.
The calculated MoI’s of the two 6+ configurations are close
to each other (agreeing with data as well). This would imply
a strong mixing of the two configurations in the observed 6+

1
and 6+

2 bands, supported by the experimental observation of the
strong interband electromagnetic transitions from the members
of the 6+

2 band to those of the 6+
1 band [47]. From the MoI

calculations, we might assign that the 6+
1 band should mainly

possess the proton π5/2+[402] ⊗ π7/2+[404] configuration
and the 6+

2 band has a major component of the neutron
ν7/2−[514] ⊗ 5/2−[512] configuration, with configuration
mixing between them.

In the Hf isotopes, one of the most remarkable isomers is

the second metastable state 178Hf
m2

observed in the nucleus
178Hf. The isomer lies at 2.4 MeV above the ground state,
and has angular momentum and parity Iπ = Kπ = 16+ with
a half-life of 31 years [57,58]. The configuration is assigned
with one broken neutron pair (ν7/2−[514] ⊗ 9/2+[624]) and
a proton pair (π7/2+[404] ⊗ 9/2−[514]), both coupling to
Iπ = 8−. The exceptionally long lifetime of this isomer is
not only because of its low excitation energy compared with
other states around I = 16, but also its high-K value which
largely forbids electromagnetic decays into lower K states.
We have calculated the MoI of the 178Hf Kπ = 16+ band,
shown in Fig. 8, giving a good agreement with data. A constant
MoI would imply a pure configuration, which was already
commented on in the experimental paper [49].

It should be explained in more details that, in the calcula-
tions above, we performed the HF and pairing calculations
by two separate processes. We first run the cranking HF
iterations, obtaining the converged HF solution. Then, with
the obtained HF density, the full Hamiltonian is diagonalized
with the pairing interaction. Such a calculation is time saving,
but neglects the interplay between the HF mean field and
pairing correlation. The interplay would be important, which
may result in the change of the order of single-particle levels.
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FIG. 8. (Color online) Calculated and experimental MoI’s for the
famous Kπ = 16+ band in 178Hf. Experimental MoI’s are extracted
with data from Ref. [35].

In the present model, this interplay can be taken into account
by processing density iterations. The detailed steps of the
iterations are as follows: (i) For each given frequency, we
first run an one-step cranking HF iteration (in this stage
the HF solution has not been converged). After the one-step
HF iteration, we calculate pairing matrix elements using
Eqs. (15) and (16). Then the full Hamiltonian with pairing
is diagonalized, which gives a new density that includes
the pairing effect. (ii) The new density is put back into the
HF equations for another HF iteration, giving another new
density. Such iterations are repeated until a converged density
is obtained. Such a calculation includes the interplay between
the HF mean field and pairing correlation. We indeed see
that the interplay can cause a change of the order of some
single-particle levels.

Figure 9 and 10 display comparisons between the two
types of calculations with and without the density iteration.

FIG. 9. (Color online) Comparisons of calculations with and
without the density iteration (DI), indicated by HFP-DI and HFP,
respectively, for the yrast bands in 172–178Hf.

FIG. 10. (Color online) Similar to Fig. 9, but for the Kπ =
6+(π5/2+[402] ⊗ π7/2+[404]) bands.

Resulting differences seem small for both the yrast and high-K
bands. For the investigated Hf isotopes, the differences in
binding energy calculations are less than 0.1%. The differences
in high-K excitation energy calculations are less than 200 keV.
The density iteration calculation is much time-consuming.
However, we should perform the self-consistent density
iteration calculations in our future works.

IV. SUMMARY

We have developed a configuration-constrained cranking
calculation within the Skyrme Hartree-Fock plus particle-
number-conserving pairing. The PNC pairing takes the
technique of the shell-model diagonalization. The cranked
deformed HF basis gives an efficient inclusion of all important
configurations (e.g., the deformation- and rotation-sensitive
intruder states) in a rather small model space. The given
configuration can be identified and tracked by using the
wavefunctions of the PNC diagonalization, giving a rotational
band built on the specific configuration.

The cranking Skyrme Hartree-Fock pairing calculation has
been successfully applied to the investigations of the yrast
bands and sidebands of hafnium isotopes, well reproducing
the moments of inertia and up-bending properties. The
rotational bands built on Kπ = 6+ and 8− isomers in 172–178Hf
isotopes have been analyzed. The rotation of the famous
178Hf Kπ = 16+ T1/2 = 31yr isomer has been calculated, with
the experimental moment of inertia reproduced well.
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