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Numerical accuracy of mean-field calculations in coordinate space
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Background: Mean-field methods based on an energy density functional (EDF) are powerful tools used to
describe many properties of nuclei in the entirety of the nuclear chart. The accuracy required of energies for
nuclear physics and astrophysics applications is of the order of 500 keV and much effort is undertaken to build
EDFs that meet this requirement.

Purpose: Mean-field calculations have to be accurate enough to preserve the accuracy of the EDF. We study this
numerical accuracy in detail for a specific numerical choice of representation for mean-field equations that can
accommodate any kind of symmetry breaking.

Method: The method that we use is a particular implementation of three-dimensional mesh calculations. Its
numerical accuracy is governed by three main factors: the size of the box in which the nucleus is confined, the
way numerical derivatives are calculated, and the distance between the points on the mesh.

Results: We examine the dependence of the results on these three factors for spherical doubly magic nuclei,
neutron-rich **Ne, the fission barrier of 2*°Pu, and isotopic chains around Z = 50.

Conclusions: Mesh calculations offer the user extensive control over the numerical accuracy of the solution
scheme. When appropriate choices for the numerical scheme are made the achievable accuracy is well below the

model uncertainties of mean-field methods.
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I. INTRODUCTION

The self-consistent mean-field approach, based on an
energy density functional (EDF), is a tool of choice to study
nuclei in any region of the nuclear chart [1]. It allows one
to calculate the properties of the ground state but also of
alternative configurations, like shape isomers, or to follow the
behavior of a nucleus along rotational bands or along fission
paths. Often, one is directly interested not in the total binding
energy of a specific nucleus but in its evolution along a series
of isotopes or isotones, which can signal structural changes for
given neutron or proton numbers.

Motivated by the needs of the nuclear physics and astro-
physics communities, major efforts are under way to push
the predictive power of nuclear mass models well below the
500-keV level. To reach this goal, the protocols used to adjust
the EDF parameters have been revisited. In particular, methods
are being developed [2—4] to quantify the statistical uncertainty
of these parameters. However, besides the errors in observables
due to these uncertainties, there is also a numerical error due
to the way the self-consistent mean-field equations are solved.
One needs to verify that the numerics does not introduce errors
that are larger than the maximum error tolerated for mass
models. More importantly, these errors should not vary too
rapidly from one nucleus to another, to avoid spurious behavior
of mass differences.

“wryssens @ulb.ac.be
fphheenen@ulb.ac.be

0556-2813/2015/92(6)/064318(16)

064318-1

PACS number(s): 21.60.Jz

The numerical methods used to solve mean-field equations
can be classified according to the way the single-particle
wave functions are represented: by coordinate-space tech-
niques or by a basis expansion. Coordinate-space techniques
represent the single-particle wave functions in a discretized,
finite volume. Several discretization techniques exist, utilizing
finite-difference (FD) formulas [5], Fourier transformations
[6], B splines [7], wavelets [8,9], and the Lagrange-mesh (LM)
method [10-12].

The second family of numerical representations involves
expanding single-particle wave functions in some chosen
(finite) set of basis states. Usually these basis states are
harmonic oscillator (HO) eigenstates, although the details
often vary.

While the origin of numerical errors is quite different for
the two families of representations, the type of EDF does not
seem to influence the accuracy of the methods very much.
The three main families (relativistic EDFs, zero-range Skyrme
EDFs, and finite-range EDFs) require similar numbers of basis
states to achieve a similar precision (see, e.g., [13—17]). In what
follows, we limit ourselves to the study of zero-range Skyrme
EDFs.

It is the aim of this paper to study the numerical accuracy
of a specific implementation of coordinate-space techniques:
representation on a three-dimensional (3D) Cartesian mesh
of equidistant points. We focus on two specific techniques—
FD formulas and the LM method—which are the ones
implemented in our codes. As far as we can infer from the
tests published in the literature, the accuracy obtained with the
other techniques mentioned above is similar to that obtained
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within our LM scheme. Most of the information relative to
the tools that we have developed has been presented for the
particular implementation made in the Ev8 code [18,19]. More
involved implementations have also been used, which differ
from Ev8 only in that they impose fewer symmetries on the
nucleus. The presence of these symmetries in general allows
for a reduction of the dimension of the problem; e.g., in EV8 it
allows for the reduction of the space by a factor of 1/8.

The article is organized as follows: First, we define precisely
the quantities that are used to characterize the accuracy of
mean-field calculations. Next, we review the basic ingredients
needed to define wave functions on a Cartesian mesh and to
calculate derivatives and integrals in this representation. We
then discuss the main sources of numerical errors: the size of
the box in which the nucleus is confined and the step size of
the mesh. We discuss the numerical accuracy that can be
achieved by comparing energies and radii of doubly magic
nuclei with those obtained with a spherical code. Finally,
we check the convergence of energies, radii, and multipole
moments of deformed nuclei by comparing results obtained
with decreasing mesh discretization lengths.

II. DEFINITION OF USEFUL QUANTITIES

A mean-field configuration is characterized by its energy,
its root-mean-square (rms) radius, and multipole moments. In
this section we define these quantities, whose dependence on
the mesh parameters is studied.

A. Total energy

For a time-reversal-invariant system as assumed here, the
total (tot) energy is composed of the kinetic (kin) energy, the
Skyrme energy describing the strong interaction in the particle-
hole channel, the pairing (pair) energy, the Coulomb (Coul)
energy, and a center-of-mass (c.m.) correction [19]:

Elot = Ekin + ESkyrme + Epair + ECoul + Ec.m.~ (])

For the parametrizations used throughout this article, the
Skyrme EDF takes the form of the sum of various bilinear
combinations of the isoscalar (t = 0) and isovector (t = 1)
local densities p;(r), kinetic densities 7,(r), and spin-current
densities J; ,,(r), where u, v =x, y, z,

Eskyme = Ep2 + Eprve + Epr + Epnp + Epvy + Ejy
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with coupling constants as defined in Ref. [19]. The kinetic
energy just depends on the kinetic density
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Ein= ) / &’r 2, 0@ 3)

q=n,p

PHYSICAL REVIEW C 92, 064318 (2015)

of protons and neutrons. While the Skyrme and kinetic energies
are local functionals of the densities, the direct Coulomb
energy is a nonlocal functional of the proton density p,(r):

< //d3r & P o) @)

Elyy =
Coul 2 Ir—r|

Compared to the other terms contributing to the total energy,
(1), the exact calculation of the Coulomb exchange energy
is orders of magnitude more costly, as it is a functional
of the complete nonlocal one-body density matrix. As a
consequence, the local Slater approximation, whose numerical
cost is similar to that of the Skyrme energy, (2), is used instead:

3¢2 3\
ECou = —T(;> fd37 Py 3(@), ®)
The pairing energy contribution to the energy is
Epair = Z fk Uk Vg fm UmUm ﬁ/}:g:zrh’ (6)
k,m>0

where the vz, are antisymmetrized matrix elements of the
pairing interaction and the f; are cutoff factors, both of which
are specified in Appendix B.

The expression for the cm correction, which is not relevant
for our discussion, can be found in Ref. [19].

B. Dimensionless multipole moments

As in [19], the dimensionless multipole moments Sy, are
related to the matrix elements of the multipole operators
le = ’,.Z Ylm(r) by

O )
3R(Z)A (fm )

ﬁ(ﬁm =
where Ry = 1.2A'/3 fm. When m is omitted we imply it to be
0.

C. Radii

Another set of observables, related to the density profile
of the nucleus, is the mean-square (ms) radii, rms radii, and
isotopic shifts. The ms radius of the proton (¢ = p), neutron
(g = n), and total density distribution is defined as

1
rq2 = Fq /d3r 0g (1) r2, (8)

1
=5 [ e+ 1. ©

The rms radii are then the square root of the corresponding ms
radius.

Similarly, we present results for the isotope shift of charge
radii, which are calculated as the difference between the proton
ms radius of an isotope with N neutrons and that of a reference

isotope with Ny neutrons,
8r*(N.Z) = ry(N,Z) — r2(No.Z), (10)

without any corrections.
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III. COORDINATE-SPACE REPRESENTATION

Assuming a 3D Cartesian mesh, a function ®(r) =
®(x,y,z) is represented by the tensor @, of its values at
the collocation points (x,,y4,2s):

&(r) = {cb(xpquazs)} = {chqs}- (1D

A mesh can be defined in several ways, depending on the
choice of the collocation points. For example, the origin of
the coordinate system and the boundaries of the box can
be included as collocation points or not. Different choices
can also be made for the boundary conditions at the edge of
the box.

To set up self-consistent mean-field equations, one has to
vary the EDF with respect to ® . This requires defining the
prescriptions to calculate derivatives and integrals from the
values of ®,,; on the mesh. Several choices for derivatives
have been explored over the years.

A. Derivatives on a mesh

The most straightforward possibility for setting up a
coordinate-space representation of self-consistent mean-field
equations is provided by the FD method, a widely used
tool for solving partial differential equations [20]. In this
scheme, the derivatives are calculated with n-point FD for-
mulas, and the integrals are obtained by summing up the
integrand at the mesh points multiplied by a suitable volume
element.

There are three factors that determine the accuracy that
can be achieved with the FD method. First is the overall
resolution scale provided by the mesh spacing; decreasing the
distance between mesh points improves the accuracy. Second,
the higher the order of the FD formulas used for a given
mesh spacing, the better the accuracy. In both cases, however,
a higher accuracy means also an increase in the numerical
cost. Third, there are internal inconsistencies introduced by
the method itself. For example, taking twice the numerical
first-order derivatives of a given function is not equivalent
to applying the numerical second-order derivatives. Also, the
numerical derivatives are not the inverse of the numerical
integrations. Only for very small step sizes, well below 0.1 fm,
do these internal inconsistencies become irrelevant. While
such small step sizes can be easily handled in spherical 1D
codes [21], the required storage is prohibitive in axial 2D
and Cartesian 3D codes. In addition, such step sizes are much
smaller than what can be expected to be the physically relevant
resolution scale; see, for example, the arguments brought
forward in Ref. [22].

Several other schemes have been developed in the past
with a better consistency between derivation and integra-
tion. For instance, derivatives have been defined through a
Fourier transformation to momentum space [6,23,24], which
is equivalent to the assumption that the functions on the mesh
can be developed into a set of plane waves. In this method,
the derivatives are quasiexact for a given resolution of the
mesh, and first- and second-order derivatives are internally
consistent. Similar ideas have been developed in quantum
chemistry under the label discrete variable representation
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(DVR) [25-27]. A similar formalism that provides an internal
consistent scheme for derivatives and integrals is the LM
method, which we sketch in the following section.

B. Lagrange-mesh representation

The idea underlying the LM method is that for each
Gauss quadrature one can construct a set of basis func-
tions for which orthogonality and completeness relations are
exactly fulfilled when evaluated with the given quadrature
[10,28,29]. This additional condition makes the LM method
a special case of the slightly less rigorous concept of
DVR [26,29].

LMs have been constructed for a multitude of different
geometries and used for a wide range of applications (see [29]
and references therein). We use here the case of an equidistant
3D Cartesian mesh. Its three directions are separable in the
formalism, such that presentation of the principles of the
method for one dimension is sufficient.

The underlying basis of a 1D Cartesian equidistant LM is
constructed as the set of functions ¢ (x), whose orthogonality
relations are exact when evaluated by a simple 2N-point
rectangular quadrature rule, sometimes called the midpoint
rule [10],

b
/ dx o (x) pp(x) = dx Z(p;:(xr)(pk’(xr) = S, (12)

where dx is the distance between the collocation points located
at

X, = rdx = £dx/2,£3dx/2, ..., (N — )dx/2 (13)

and where a and b are the boundaries of the numerical box
[a,b] = [-Ndx,+Ndx]. A convenient representation of the
2N basis functions ¢ (x) are plane waves of the form

() = = ex <2mk ) (14)
Pr(x VL P I X s
where L = 2Ndx is the length of the numerical box and where
k= :l:%, :I:%, o, (N — %). The real part of the ¢r(x) is
symmetric and has nodes on the boundaries of the box and a
maximum at the origin, whereas their imaginary part is skew-
symmetric and, consequently, has a node at the origin and
maxima on the boundaries of the box. This also implies that
or(x) = p_i(x).
The @i (x,) form a complete set of functions to describe any
function on the mesh points

dx > @p(6) Q(xs) = by (15)
k

Note that the box size L is not a multiple of the wavelength
of the basis functions. Instead, twice the box size is an odd
multiple of the wavelengths, which take the values 2L =
2L/1,2L/3,2L/5,...,2L/(2N — 1). Both the real and the
imaginary parts of all plane waves in Eq. (14) are nonzero at
all mesh points.

As recalled in Ref. [22], in Cartesian DVR and LM
coordinate-space methods, where the derivatives are defined
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through an expansion in plane waves, the analysis of a
calculation’s infrared and ultraviolet cutoffs introduced by
the basis is straightforward. This has to be contrasted with
the much more involved analyses required when working
with an HO basis [30-32]. It is also argued in Ref. [22]
that a DVR or LM representation of the nuclear many-body
problem covers the relevant part of the phase space with a
much smaller number of basis states than required by an
HO basis. In practice, however, HO bases typically used for
self-consistent mean-field calculations are much smaller than
the typical number of mesh points used in the same kind of
calculation. For a box with 20 points in every direction the
number of linearly independent states is 64 000, compared
with an HO expansion with 20 shells, which contains 14 168
states.

While the basis functions ¢i(x) in Eq. (14) are useful to
discuss the mathematical properties of the LM method, the
actual coordinate representation then employs the set of 2N

J
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Lagrange interpolation functions f;(x) obtained as [10,28,29]

1 sin [;—x(x —r dx)]

r =d ‘ r = A
fr(x) x;wk(x)gok(x) AN sin [ ]

(16)

By construction, the Lagrange interpolation functions have the
property of being equal to 1 at the mesh point, x, = r dx, and
0 at all others, f.(x;) = 8,5 [10,28,29]. When developed into
Lagrange functions, any function ¢(x) on the mesh,

$x) =Y d(x,) [(x) =) ¢ f(x), (17)

is then simply represented by its values ¢, = ¢(x,) at 2N mesh
points.

The Lagrange functions are smooth and infinitely derivable.
They can be used to define matrices representing the first and
second derivatives of functions discretized through' Eq. (17):

o | o
p = Y _ VY o wwapam for D# (18)
’ dx |,_, 0 for i=j;
i1 2 cos [x(i—)/2N)] o
p? = d? fi(x) _ T () SR for i # (19)
jii = 2 - 2 . .
ji dx* | —2=(1- W) for i=]j.

The first derivative of any function ¢(x) on the mesh is
obtained by multiplying the 2N x 2N matrix D) by the
vector ¢,,

¢, =¢'(x)=>_ D¢ (20)

and similarly for the second derivatives. Note that the
derivative matrices have the property D® = DM DD py
construction [29], which is not the case for FD formulas. As the
derivatives of Egs. (18) and (19) correspond to full 2N x 2N
matrices, their application is more time-consuming than that
of FD derivatives, which correspond to a sparse band matrix.

The full Cartesian 3D representation of a function ®(r) is
then provided by

D) =Y Dpgs £,(x) £1() f1(2), @1

pgs

where the number of discretization points does not have to be
the same in each direction. In this case, the derivative matrices
in Egs. (18) and (19) have to be set up separately for each
direction.

As pointed out in Refs. [26] and [33], a variational
calculation using DVR or LM derivatives delivers very precise

'Unfortunately, the corrections of these expressions as given in
the corrigendum to Ref. [19] still contain a typographical error: the
formula for the second derivative has a superfluous factor of 2 when

i# .

(

values for the total energy in spite of the individual matrix
elements’ being much less accurate. In what follows, we
illustrate that this property implies very accurate total energies,
while separate terms of the Skyrme EDF are less well
represented. In addition, we show that using an LM results
in a variational calculation.

IV. NUMERICAL CONSIDERATIONS

A. Numerical parameters of parameterizations

Unless explicitly stated, we have used the SLy4
parametrization. To explore the dependence of the numerical
accuracy on the EDF, we have, in addition, tested a representa-
tive set of Skyrme parametrizations, as listed in Appendix A.

In the next two sections, we present calculations for the
doubly magic spherical nuclei 40Ca, 1B28n, and 29%Pb; the
neutron-rich nucleus **Ne; Cd, Sn, and Te isotope chains; and
the fission path of *°Pu. It is noteworthy that we only include
pairing for the isotopic chains and for >*°Pu (see Appendix B
for details). In all other cases, pairing has been neglected. In
Appendix C we comment on the precise physical constants
used during our calculations.

B. Measuring accuracy

The accuracy of a coordinate-space calculation is limited
by the size of the box, the discretization length dx, and the way
derivatives and integrals are calculated. In order to properly
judge these effects we employ two ways of analyzing results.
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FIG. 1. (Color online) Comparison between the errors in the total
energy of 28Pb obtained in calculations using different combinations
of formulas for the derivatives (see text). Differences are taken with
respect to the total energy obtained with LENTEUR [21].

For spherical nuclei we can compare our 3D results with a
1D spherical code that also represents the single-particle wave
functions in coordinate space. Because of spherical symmetry,
we can use extremely fine discretizations and the results can
thus be considered exact to a very high precision. For this
purpose we use LENTEUR [21] as a reference.

For deformed nuclei, we no longer have access to such a
comparison. Here we have to resort to looking at 3D results
as a function of both box size and mesh spacing: we compare
results in small boxes with a large mesh spacing to results in
very large boxes with a very fine mesh spacing.

C. Use of derivatives and the variational principle

The numerical cost of using LM derivatives is much higher
than that of the FD alternative. To control the computational
time, three options have been considered: they differ in the way
derivatives are calculated during the mean-field iterations and
after convergence. The first option (FD + FD) has been used in
the first applications of the codes [S5], where derivatives were
exclusively calculated by FD. The second one (FD + LM) has
been the most used for more than 20 years: FD derivatives
are used during the iterations but the energies are recalculated
after convergence by LM formulas. Finally, in the last option
(LM + LM), the LM formulas are used during the iterations
and after convergence.

In practice, we use a seven-point difference formula for
the first-order and a nine-point formula for the second-order
derivatives when employing FD formulas. It is shown in
Ref. [34] that this provides an efficient compromise in terms
of overall speed and precision.

Figure 1 illustrates the accuracy of the total energy obtained
using these three options. The LM + LM choice is by far the
most accurate. As reported in Table II, the result obtained
with a mesh size of 1.0 fm differs by only 25 keV from the
LENTEUR result. The FD + LM option is less accurate but
already sufficient for most applications, with an error of around
100 keV for dx = 0.8 fm. It is better by nearly an order of
magnitude than the FD + FD choice. Results presented in the
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following were obtained with the FD 4+ LM option, unless
otherwise stated.

Both the FD + LM and the LM + LM calculations
underestimate the binding energy, as it should be for a
variational calculation. This is due to the fact that the single-
particle wave functions are expanded on a complete and closed
basis for a given box size and mesh discretization length [see
Eq. (14)]. Increasing the box size and/or decreasing the mesh
discretization length enlarges the accessible subspace of the
Hilbert space [29] and leads to a monotonous convergence
of the energy. In contrast, such a basis cannot be defined for
the FD + FD option, for which the calculation systematically
overestimates the binding energy of 2*Pb.

The same applies to mesh calculations with Fourier deriva-
tives, as can be deduced from the convergence analyses in
Refs. [6] and [23]. While for a given dx the overall accuracy
of the binding energy found there is very similar to that we
find for LM + LM calculations, the energy does not converge
monotonically with decreasing dx.

While the use of LM derivatives after having used FD ones
during the iterations (FD + LM) is sufficient to obtain an upper
bound of the total energy since any wave function discretized
on a mesh can be expanded on the LM basis, the errors in the
various individual terms of the Skyrme EDF can be very large,
as reported in Table I. While the total energy varies by slightly
less than 1 MeV when dx is decreased from 1.0 to 0.549 fm,
the variation in the kinetic energy is of the order of 40 MeV,
counterbalanced by a similar change in the Skyrme energy.
The situation for the LM + LM scheme is reported in Table I1.
It indicates a similar effect, but on a much smaller scale: the
total energy varies by 20 keV, while the kinetic energy varies
by roughly 150 keV.

When performing symmetry restoration and configuration
mixing by the generator coordinate method, a high level of
accuracy is required to avoid buildup numerical noise while
solving the Hill-Wheeler-Griffin equation. This calls for the
use of LM derivatives in these calculations, as done since our
first applications [35].

10 % ‘ ‘
’ »-x Ca
10! ‘X,' e 182gp ]
S ! X 28Ppp
U .42
s 107}
- X
H A}
210°F N
=
i
510"}
w
5 .
10 e T
hed
10°

FIG. 2. (Color online) Energy difference between a reference
calculation performed with 23 points and calculations performed with
N points for the three nuclei *°Ca, '32Sn, and 2%*Pb. In all cases, the
step size is equal to 1.0 fm.
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TABLE I. Decomposition of the total energy between the terms of the Skyrme parametrization SLy4 for 2%8Pb, using the FD -+ LM option.
All energies are in MeV. See Sec. II A fore definitions of terms. Values obtained with the spherical 1D code LENTEUR are given for comparison.

Energy (MeV)
dx =1.0fm dx = 0.83 fm dx =0.71 fm dx = 0.549 fm LENTEUR
Kinetic 4+ c¢.m. correction 3908.548 3880.647 3872.035 3867.506 3866.190
Direct Coulomb 831.801 829.241 828.433 828.004 827.876
Coulomb exchange —31.415 —31.319 —31.289 —31.273 —31.269
Ep —22749.578 —22510.048 —22435.391 —22395.941 —22384.379
E,. 1368.924 1343.506 1335.611 1331.436 1330.206
E e 14812.851 14631.848 14575.413 14545.584 14536.832
E,np 323.771 318.147 316.431 315.539 315.287
E,vy —99.730 —97.595 —-96.917 —96.554 —96.445
Total Skyrme energy —6343.762 —6314.142 —6304.854 —6299.937 —6298.501
Total energy —1634.828 —1635.574 —1635.675 —1635.700 —1635.703

D. Determining box sizes and mesh spacings

The first requirement for a coordinate-space calculation is
that the box in which the nucleus is confined is large enough
to avoid any spurious effect due to the truncation of the wave
functions. The influence of the box size on the total energy for
three spherical nuclei is represented in Fig. 2. The same mesh
size, dx = 1.0 fm, is used in all calculations while the number
of discretization points is varied, thus changing the volume of
the box. The calculation in the largest box, using 23 points, is
taken as a reference. The errors decrease quickly when the box
size is enlarged. If one requires that the error is smaller than
1 keV, we see that taking boxes with half-sides of 11 fm for
40Ca, 15 fm for ¥2Sn, and 20 fm for 2°8Pb is sufficient. Since
the numerical effort required for *°Ca is very low we opted
to use the slightly larger half-side of 13 fm in order to further
increase our accuracy to about 0.1 keV.

Similar analyses have been performed for all nuclei
considered in this paper. Since several nuclei in the isotopic
chains around Z = 50 are deformed, we have performed all
calculations with the same box size as 2°Pb. This choice
allows us to calculate all isotopes with the same numerical
conditions. The box dimensions are listed in Table III. The
columns Cy, Cy, and C; indicate the size of the box in which
the Coulomb problem is solved. For every system, the box

size was varied for fixed dx until the energy did not change by
more than 0.1 keV, with the exception of *°Pu, for which this
limit was 1 keV.

A nonambiguous comparison between calculations per-
formed with different mesh discretizations dx can only be
achieved when the volume of the box is conserved. This
is realized by determining the value of dx in such a way
that the box has the same size for each number of mesh
points.

E. Convergence of the iterative procedure

Decreasing the mesh size improves the accuracy. However,
this has a price in computing time. First, keeping the same box
size requires increasing the number of discretization points.
Second, the time step of the imaginary-time-step method
[36,37] implemented in the codes [19] has to be decreased with
decreasing mesh size, thus increasing the number of iterations
necessary to reach convergence and, by consequence, also
the computing time. This considerably slows down the
convergence. In Fig. 3 we show the evolution of the error
in the total energy relative to LENTEUR during the iterations
for the *°Ca nucleus for different mesh discretizations dx.
The most accurate result after 100 iterations is obtained with
dx = 1.0 fm. Gaining an order of magnitude of accuracy after

TABLE II. Same as Table I, but for the LM + LM option.

Energy (MeV)
dx = 1.0 fm dx = 0.83 fm dx =0.71 fm dx = 0.549 fm LENTEUR
Kinetic 4+ c¢.m. correction 3866.323 3866.165 3866.182 3866.182 3866.190
Direct Coulomb 827.922 827.889 827.882 827.878 827.876
Coulomb exchange —31.269 —31.268 —31.268 —31.268 —31.269
E —22384.936 —22384.188 —22384.322 —22384.320 —22384.379
E,. 1330.300 1330.193 1330.201 1330.200 1330.206
E e 14537.174 14536.691 14536.789 14536.787 14536.832
E np 315.238 315.275 315.284 315.284 315.287
E vy —96.430 —96.444 —96.445 —96.445 —96.445
Total Skyrme energy —6298.657 —6298.473 —6298.493 —6298.494 —6298.501
Total energy —1635.678 —1635.687 —1635.696 —1635.700 —1635.703
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TABLE III. Edge lengths (in fm) of boxes used to solve self-
consistent mean-field equations (L,,) and to determine the Coulomb
potential (C,) for nuclei studied in this paper. Depending on the
symmetries imposed on the nucleus, only half of of the length is
treated numerically in most cases.

Nucleus L,=L, L, C,=C, C,
“Ca 26 26 26 26
1328n 30.8 30.8 46.8 46.8
208pp 40 40 60 60
Z =50 40 40 60 60
240py 40 60 80 120

convergence requires carrying out roughly 100 more iterations
for the step sizes represented in the figure.

F. Treatment of the long-range Coulomb interaction

The direct Coulomb energy requires a special treatment
because of its long range. One of the spatial integrations
in Eq. (4) can be eliminated through the calculation of
the Coulomb potential of the protons, which satisfies the
electrostatic Poisson equation

AU(r) = —4me?p,(r), (22)

where ¢? is the square of the elementary charge. When solving
this equation, boundary conditions need to be imposed at the
edge of the box. These can be easily constructed when recalling
that at large distances the potential is entirely determined by the
multipoles of the nuclear charge distribution (Q,, ). Expanding
the Coulomb potential on spherical harmonics and keeping the
terms up to £ = 2, the Coulomb potential outside the box is
approximated by

e’Z 5 (00)Y20(r) + (02) ReYa(r)

Ur)= —= +e : .23
r r

= dx = 1.000 fm
=X dx = 0.765 fm ||
X=X dx = 0.619 fm

2 e dx = 0.520 fm ||

= — dx = 0.448 fm

g

ur

)

w

10 : : : :
0 100 200 300 400 500

Iterations

FIG. 3. (Color online) Error in the total energy using the FD +
LM option as a function of the number of mean-field iterations
for “°Ca for different values of dx. Calculations were initialized
with Nilsson-model single-particle wave functions. The box length
is 26 fm.
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FIG. 4. (Color online) Differences between the total energy of
208pb calculated on a 3D mesh with different approximations in the
calculation of the Coulomb energy and that obtained with LENTEUR.
The three lines correspond to the use of three-, five-, and seven-point
FD formulas for calculation of the Laplacian in the Poisson equation.

which provides the boundary condition for the numerical
solution of Eq. (22). The direct Coulomb energy is then
calculated as

1
ES = 3 / d’r U(r) p,(r). (24)

As for the nuclear part of the energy, the accuracy of the
electrostatic potential, obtained by solving Eq. (22), is limited
by three factors: the size of the box, the mesh discretization
length dx, and the way derivatives are calculated.

A suitable box size for the Coulomb problem has to be larger
than that for the Skyrme EDF. This is a direct consequence
of the long range of the Coulomb force. To make negligible
the contributions to the boundary conditions of terms higher
than £ = 2 [see Eq. (23)], one has to calculate the Coulomb
potential in a box larger than the one used for the nuclear part
of the interaction. Typical values are listed in Table III. For
light nuclei such as “°Ca, no extra points for Coulomb need
to be added, while the box has to be significantly enlarged for
heavier systems in the '*2Sn and 2*® Pb regions. For calculation
of the fission barrier of heavy nuclei such as ?*°Pu up to very
large deformations, the Coulomb box size has to be two times
larger than the one needed for the Skyrme EDF to obtain the
same nuclear accuracy in all the energies.

The Laplacian in Eq. (22) has to be approximated on the
mesh in such a way that the accuracy of the Coulomb energy is
similar to that of the other terms in the EDF. We show in Fig. 4
the gain in accuracy of the total energy of 2%Pb obtained by
going from a three-point to a seven-point FD formula for the
Laplacian. Already a five-point formula provides the required
accuracy and is used in all other calculations reported here.
One can easily understand that a lower-order FD formula than
the one used to calculate the kinetic energy is sufficient for the
Laplacian in Eq. (22): the typical length scale of the variation
of the Coulomb potential is much larger than the scale on
which the wave functions vary.
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FIG. 5. (Color online) Differences between the total energy calculated with our 3D code and that calculated with the spherical code
LENTEUR for “°Ca (a), '*2Sn (b), and 2®Pb (c), as a function of the mesh distance dx. Results are plotted for a representative set of Skyrme
parametrizations, without pairing. Results for SLyS5, T22, and T65 are not shown but are indistinguishable from the SLy4 results at the scale of

this graph.

The final factor for the accuracy of the Coulomb solution is
the mesh discretization length dx. As the effect of the Coulomb

term is already incorporated in all of the applications, we do
not discuss it separately.

V. DISCUSSION
A. Binding energies

Provided that the box size is large enough, the main factor
determining the accuracy of our implementation of mesh cal-
culations is the discretization length. In Fig. 5 the energy differ-
ence with respect to LENTEUR results is plotted for three doubly
magic spherical nuclei, as a function of the mesh discretization
dx for a representative set of Skyrme parametrizations. It is
remarkable that the interactions are grouped according to their
effective mass (see Appendix A for the actual values): interac-
tions with a larger effective mass m* give systematically more
accurate results than interactions with a smaller mass. This
property is related to the term E . term of the Skyrme EDF in
Eq. (2), which, in our experience, is the least well represented
on a mesh. Since the magnitude of this term increases when
the effective mass decreases, the accuracy obtained for a given
mesh size deteriorates for a lower effective mass.
One can see that the accuracy obtained with a mesh
discretization as large as dx = 1.0 fm is less than 1.0 MeV
for 2%8Pb. The energy difference decreases to a few hundred
keV for dx = 0.8 fm and to a few keV for dx = 0.6 fm. Note
that a similar accuracy for dx = 0.6 fm was found for a 2D
code based on splines [8]. To obtain an agreement between the
spherical code LENTEUR and our 3D codes below the 1-keV
level would require increasing the box size but also making
the codes more similar. For a nucleus with a binding energy
higher than 1 GeV, this implies a relative discrepancy of better
than 10~7 and there are several sources of differences in the
codes that can play a role, none of which is easy to control.

B. Deformation energy curves

Let us now study the convergence properties of our
numerical scheme for the fission path of 2*°Pu. Our motivation

is twofold: ?*°Pu is a frequent benchmark for models that
describe fission [39—44] but also for numerical algorithms
[8,13]. The energy curve of this nucleus presents two minima
at prolate deformations, the ground state and a fission isomer.
InFig. 6, we show the variation of the energy with deformation.

The box used for these calculations has the same size for all
discretizations, as indicated in Table III. When the left-right
symmetry is broken, the number of points along the z direction
is doubled. We have performed calculations with four mesh
discretizations, dx = 1.0, 0.82, 0.69 and 0.60 fm, and tested
the convergence as a function of dx by taking the difference
with respect to the results obtained with dx = 0.6 fm. For
each value of dx, the energy at each deformation is the energy
relative to the prolate ground state.

The energy curve obtained with dx = 0.6 fm is shown in
Fig. 6. The topography obtained for other values of dx is the
same. Shapes are triaxial in the vicinity of the first barrier,
whereas everywhere else they remain axial. At deformations

18 ‘ ‘
=X Axial
L X
16 * X « -« Triaxial
14% l:* Y e -e Reflection asymmetric |
s12y 4
19 %
= - 1 @
- X X Iy o “‘\
o> 8 \ Pt s -
9] ' £y [ ™
Lﬁ 6’ 1 ” \ ﬁ ®q
4 I
2 g
X,
%5 00 0.5 1.0 1.5 2.0
By

FIG. 6. (Color online) Energy curve for **°Pu calculated with
dx = 0.6 fm. Regions where the deformation is axial [(blue)
crosses], triaxial [small (green) filled circles], or axial and reflection
asymmetric [large (red) filled circles] are indicated.
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FIG. 7. (Color online) Energy differences between the results
obtained for ?*°Pu with dx = 1.0, 0.82, and 0.69 fm and those
corresponding to dx = 0.6 fm.

smaller than the one of the fission isomer the configurations
are reflection symmetric, whereas at larger deformations they
are increasingly asymmetric.

We use this curve as a reference to determine the accuracy
of the calculations carried out for other values of dx. For each
dx, the ground-state energy is taken as the O of the energy. The
results are shown in Fig. 7. The properties of the minimum
are listed in Table IV. The error decreases roughly by an order
of magnitude upon going from dx = 1.0 to dx = 0.82 fm
and from dx = 0.82 to dx = 0.69 fm. At dx = 1.0 fm the
error is of the order of a few hundred keV, with a rather
large oscillation. For a mesh discretization of 0.82 fm, the
error becomes lower than 100 keV (except in the vicinity
of the spherical configuration, where it reaches 150 keV, but
this configuration is very excited) and is quite acceptable for
the calculation of energy curves. Decreasing the discretization
further, to 0.69 fm, reduces the error to values of a few tens of
keV at most.

Some published results allow for a comparison between the
accuracy of mesh calculations and that of calculations using
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FIG. 8. (Color online) Absolute difference in neutron rms radius

for different Skyrme parametrizations for 3*Ne at dx = 0.8 fm. The
reference calculation was performed in a box with N = 20.
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an expansion on an HO basis. Pei et al. [8] have performed
calculations on an axial mesh using B splines and on HO bases,
either spherical or deformed, with 20 oscillator shells in both
cases. The accuracy obtained in [8] on a mesh of dx = 0.65 fm
seems very similar to the one we obtain. The use of a spherical
HO basis is rather unreliable, with an error larger than 1 MeV
already for the excitation energy of the fission isomer and that
quickly increases to several MeV at larger deformations. For
an axial oscillator basis, the results are similar to those we
obtain with a mesh size of 0.82 fm up to the first barrier but the
accuracy deteriorates rapidly for larger deformations, being
several hundred keV at the deformation corresponding to the
fission isomer. Similar results can be found in [46] for 194Hg
and in [47] for 2°°Fm.

As a number of shells significantly larger than 20 is
numerically prohibitive, either one has to resort to a two-center
oscillator basis or one has to construct a suitable subspace
within a much larger one-center HO basis by carefully select-
ing the low-lying single-particle states. The former option is
developed in Ref. [48], whereas the latter has been used during
the construction of the unedf1 parametrization [49], where the
lowest 1771 basis states of a basis of 50 HO shells have been
kept. The accuracy obtained in this way for the excitation
energy of the fission isomer is of the order of 100 keV. As
a comparison, the experimental excitation energies of the
fission isomer found in the literature are 2.4 + 0.3 MeV
[50], approximately 2.8 MeV [51], and 2.25 £ 0.20 MeV
[52]. In the light of these error bars, a numerical accuracy
of 100 keV is sufficient for the adjustment of an EDF. However,
from the published results of Pei er al. [8], it can be estimated
that the numerical error in the fission barrier height is a few
times these 100 keV. Similar results have been obtained in the
case of the relativistic mean-field method [13,53].

C. Radial density distribution

The rms radius is intimately linked to the radial density
distribution of a nucleus. One can expect that it is particularly
sensitive to the box size for nuclei with a large excess of
neutrons. Tests have been performed for the very neutron-
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FIG. 9. (Color online) Radial density profile of **Ne in different
box sizes with dx = 0.8 fm.
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FIG. 10. (Color online) Absolute difference between the total rms radii calculated on a 3D mesh with respect to those of LENTEUR as a
function of the step size dx for the spherical nuclei °Ca (a), '*?Sn (b), and 2°*Pb (c) and those calculated with the Skyrme parametrizations as

indicated.

rich nucleus 3*Ne by varying the box size for a fixed mesh
discretization dx = 0.8 fm. To avoid any ambiguity in the
calculation, pairing has been omitted. The results are presented
in Fig. 8, where we show the difference in total rms radius as
a function of the box size for a representative set of EDF
parametrizations. For the size of the box recommended for
40Ca in Table III, the number of points is 16 for a mesh size
of 0.8 fm. It leads to an error of the order of 10~ fm for
most interactions, the results being slightly less accurate for
SV-min. For smaller boxes, the accuracy of radii is lower and
depends on the interaction.

In Fig. 9 the radial profile of the total density of **Ne is
plotted as a function of the box size. The distortion of the
density in the smallest box is large and demonstrates that half
the box size must be larger than 8.0 fm. In all other boxes, the
exponential tail of the density distribution is well described,
up to the point before the last one. For a box size of around
12 fm, the density is well described up to a decrease in the
central density by six orders of magnitude.

The confinement in a volume is less evident in an expansion
on a basis than in a mesh calculation, but it is also present.
While oscillator basis functions extend to infinity, they are in
practice strongly localized by their Gaussian form factor. If one
takes its classical turning point as a measure of the extension
of an HO state, one obtains, for 2°8Pb and 20 oscillator shells,
a value for the turning point that varies from 14 fm for £ = O to
16 fm for £ = 20A. To increase the value of this turning point to
20 fm would require using 28 oscillator shells for £ = 0. This
effect of confinement by an oscillator basis has been reported
in Ref. [54] for the case of 12Zr.

For comparison, the experimental uncertainty in rms charge
radii for the Ne isotopes (up to A = 28) varies from 0.002 fm
close to stability to 0.02 fm for exotic isotopes [55]. It is
interesting to note that the numerical accuracy of a mesh mean-
field calculation has a similar level (provided the box is large
enough) but that the model already introduces uncertainties in
the rms radii that are at least one order of magnitude larger [2].

In Fig. 10, we compare the total rms radii calculated with
decreasing mesh sizes to those obtained with LENTEUR for
three spherical nuclei: 40Ca, 1328n, and 298Pb. The agreement is

already very satisfactory for the large mesh size of 1.0 fm, with
one order of magnitude gained in accuracy upon decreasing
the mesh size to 0.8 fm, which is the usual value of production
calculations. An interesting feature that cannot be deduced
from Fig. 10 is that all of the parametrizations, with the
exception of unedf(, always produce an rms radius that is
smaller than the LENTEUR result.

In Fig. 11, we present the isotopic shifts §r>(N,Z) for
a range of even-even Sn nuclei, the reference being '32Sn.
All curves almost exactly coincide. This demonstrates that
the isotopic shifts are quite reliable even with coarse meshes.
Similar results are obtained for Cd, Xe, and Te isotopes.

D. Two-neutron separation energies

To put into evidence changes in nuclear structure with
nucleon number, one often uses mass filters that are computed
by taking specific differences between the binding energies
of neighboring nuclei. The simplest filter is the two-nucleon
separation energy, which is defined as the energy difference
between two isotopes (or isotones) whose nucleon numbers
differ by 2. In Fig. 12, we show the evolution of the

%-X dx=1fm
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%% dx=0.77 fm et

|[-x dx=0.69 fm JoRe

_ 2 . 4 L L n L L L L L
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Neutron Number

FIG. 11. (Color online) Isotopic shifts §r2(N,Z) with respect to
1328n for different Sn isotopes and different mesh sizes.
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FIG. 13. (Color online) Mass S, quadrupole moment as a func-

tion of neutron number for a series of Te isotopes.

two-neutron separation energies, S,, of even-even nuclei for
three neighboring isotopic chains when the mesh size dx
is decreased. For each discretization dx we have plotted
the difference in the S, values from the one obtained at
dx = 0.63 fm. Even with a mesh size as large as dx = 1.0 fm,
the accuracy of the S,, is already better than 100 keV, which
is small enough for most applications. The mesh size used in
most of our published applications, dx = 0.8 fm, leads to an
accuracy better than 10 keV. In Fig. 12(d), the two-neutron
separation energies of the three isotope chains are plotted for
four values of dx. The curves cannot be distinguished using a
scale adapted to the variation of S, as a function of the neutron
number. This result is in strong contrast with respect to some
published calculations using an expansion on an oscillator
basis [56], where special algorithms have to be devised to
smooth numerical irregularities, which can be of the order of

a few hundred ke V.

E. Multipole moments

The dimensionless ground-state quadrupole moments S,
of even-even Te isotopes are shown in Fig. 13. Differences
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FIG. 14. (Color online) Mass octupole moment f; along the

fission path for 24°Pu.
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TABLE 1V. Properties of the ground state of 2*°Pu as obtained
from nonconstrained calculations.

PHYSICAL REVIEW C 92, 064318 (2015)

TABLE V. Properties of the superdeformed fission isomer ob-
tained from nonconstrained calculations.

dx (fm)  E (MeV) B2 B4 Bs Bs Bio

1.0 —1801.909 0.288 0.160 0.043 —0.002 —0.003
0.849 —1802.770 0.289 0.163 0.045 0.001 0.001
0.739 —1802.929 0.292 0.164 0.046 0.002 0.002
0.653 —1802.969 0.290 0.165 0.046 0.002 0.001

dx (fm) E (MeV) B2 Ba Bs Bs Bio

1.0 —1796.929 0.832 0494 0.344 0.279 0.255
0.849 —1797.950 0.840 0.510 0.367 0.303 0.278
0.739 —1798.099 0.847 0.528 0.388 0.319 0.268
0.653 —1798.123 0.841 0.516 0.375 0.312 0.259

between the curves corresponding to different values of dx are
tiny and not significant. Similar results were obtained for the
Cd and Sn isotopes.

We now examine how the multipole moments of >*°Pu along
the fission path are affected by the mesh size. In Figs. 14
and 15 we show the octupole and hexadecapole moments,
respectively, in the region of the fission path where parity
is broken. Similar results obtained for the axial and triaxial
cases are not shown. In Tables IV and V we list the multipole
moments of the ground state and fission isomer of *°Pu for
the different mesh discretizations as obtained by unconstrained
calculations.

From Figs. 14 and 15 we see that the overall sequence of
shapes along the fission path is robust with respect to the mesh
spacing. The fission path is already precisely defined at the
coarsest mesh (dx = 1.0 fm) we used. A single exception can
be seen at the onset of octupole deformation; in the vicinity
of this point, however, the energy surface is very flat in the 3
direction.

On a smaller scale, the multipole moments do vary as a
function of the mesh discretization. This is clearly shown in
Tables IV and V. Since our method hinges on the variation of
the total energy in Eq. (1), there is no guarantee that the values
of the multipole moments converge in a predictable way. It is,
however, reassuring to see that the typical variation of these
moments is of the order of a few percent to, at most, about 10%.
The larger variations present themselves in the higher-order
Bs, Ps, and B1p moments. These are more difficult to resolve
on coarse meshes because of the high number of nodes their
associated Legendre polynomials have.

3.0—

‘ ‘ -
%=X dx=1fm ‘
% =% dx=0.82 fm R
2.5( <2 dx=0.69 fm P4
< -3 dx=0.6 fm X
2.0r x'
h 1.5 “xx
.OF ot
x**
XX
1.0 ¥
X
X
0.5 VL ‘ ‘ ‘ ‘
0.8 1.0 1.2 1.4 16 18 2.0
B2

FIG. 15. (Color online) Mass hexadecapole moment S, for the
parity-breaking configurations along part of the fission path for >°Pu.

F. Single-particle levels

In Fig. 16 we show the evolution of the neutron single-
particle levels within 1.5 MeV of the Fermi energy in the
ground state of ?*°Pu as a function of the mesh spacing dx.
While slight shifts in the position of the levels are observed
as a function of the mesh size, the largest error at dx = 1.0
fm is of the order of 100 keV. One can also note that the level
ordering within the parity subspaces is the same for all values
of dx. A similar dependence on box parameters is found for
the proton states and the lighter nuclei studied here.

VI. CONCLUSION

The aim of this paper was to study the numerical accuracy
of the solution of self-consistent mean-field equations using a
discretization on a 3D Cartesian coordinate-space mesh. Three
elements permit control of its numerical accuracy. The first
one is the method used to calculate derivatives. Using LM
derivatives leads to much more accurate results than using
FD formulas for derivatives. In addition, a Cartesian LM
corresponds to a representation in a closed subspace of the
Hilbert space, such that it always provides an upper bound to
the binding energy that becomes tighter when adding points
outside a given box or when decreasing the distance of mesh
points in a given box. Neither is the case for FD derivatives.
However, we have shown quantitatively that the accuracy
of a calculation that uses FD formulas during the iterations
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FIG. 16. (Color online) Eigenvalues of the single-particle Hamil-
tonian for the ground state of 2*°Pu as a function of the mesh
discretization dx. Only neutron single-particle levels within 1.5 MeV
of the Fermi energy are shown.
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can be significantly improved upon by recalculating the EDF
at convergence with LM derivatives. Again, this procedure
provides us with an upper bound of the energy, thus restoring
the variational character of the calculation. Using Lagrange
derivatives during the iterations allows us to improve the
accuracy in energies further, but at the cost of at least doubling
the computing time.

The second element on which mesh calculations depend
is the size of the box in which the nucleus is confined.
The examples of doubly magic nuclei and neutron-rich 3*Ne
illustrate that results for energies and densities are already
stable at small box sizes.

The third element is that the quality of the results depends
on the mesh size, with errors in energies that are almost
independent of the number of neutrons and protons and of
the shape of the nucleus. A mesh size dx = 0.8 fm guarantees
an accuracy that is, in general, better than 100 keV, which
corresponds to a relative accuracy of less than 0.1%, even for
lighter nuclei. Decreasing the mesh size to 0.7 fm permits one
to gain nearly an order of magnitude and to reach an accuracy
that is well below all the uncertainties of the mean-field model.

One can summarize these results by concluding that a
mesh technique as implemented in our codes is flexible (it
can accommodate any kind of symmetry breaking), is robust
(the accuracy can be controlled by an adequate choice of the
three elements mentioned above), and can be very accurate
if necessary. The positive aspect of our numerical scheme is
that using a mesh size of 0.8 fm, as used in most of our past
applications, ensures an accuracy of better than 100 keV in
energies and reliable shape properties for nuclei of any mass.

Our study has focused on the solution of mean-field
equations and we have not touched on the description of
pairing correlations. There has already been a study of this
problem by Terasaki er al. [57]. It should be revisited to take
into account new developments. However, the problem is not
related exclusively to the way the mean-field equations are
solved. The description of single-particle states well above
the Fermi energy is probably very different when using a
discretization on a mesh or an expansion on an oscillator basis.
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APPENDIX A: PARAMETRIZATIONS USED

We make some remarks here on the interactions used
throughout the text.

PHYSICAL REVIEW C 92, 064318 (2015)

TABLE VI. Value of the isoscalar effective mass in units of the
nucleon mass m*/m of the interactions used throughout this paper.

Parametrization Ref. No. m*/m
SLy4 & SLy5 [58] 0.68
T22 & T65 [59] 0.7
SkI3 [60] 0.577
SV-min [61] 0.95
unedf0 [62] 0.9

(1) SLy4 and SLy5 [58]: These parametrizations were
used as intended.

(i1) T22 and T65 [59]: These parametrizations were used
as intended.

(iii) unedfO [62]: While this parametrization was adjusted
with a nonzero pairing interaction, we used it without
any pairing.

(iv) SV-min [61]: This parametrization was adjusted with
unequal nucleon masses m,, # m,. LENTEUR does not
handle this option, so we used instead the average
value 222 45 the nucleon mass.

(v) SKI3 [60]: This parameteriation was adjusted with the
inclusion of a perturbative two-body c.m. correction,
an option not included in LENTEUR.

The values of their isoscalar effective masses are listed in
Table VI.
APPENDIX B: PAIRING INTERACTION

The density-dependent pairing interaction we used for the
isotope chains and the fission path of 2*°Pu is defined by [45]

Po(R)

)

ﬁpair(r’r/) — _%(1 _ ﬁo) |:] — o :|(S(I‘ — r/)y (BD)

where po(R) is the isoscalar density at R = %(r +1’'). The
parameters take the values o = 1, p; = 0.16 fm~3, and Vo =
1250 MeV fm ™. In addition, this interaction was supple-
mented by two cutoffs, one above and the other below the
Fermi energy, in order to eliminate the basis-size dependence
of the total energy. They are defined by two Fermi functions,

fe=[1+ e(ék—)»q—AGq)/Mq]—l/Z[l + e(ék—/\q+A€1,)/Mq]—1/2
(B2)
where 1, is the Fermi energy, € is the single-particle energy
of the single-particle state k, and we chose , = 0.5 MeV and
A€, = 5.0 MeV for protons and neutrons.

APPENDIX C: ROLE OF THE PHYSICAL CONSTANT
WHEN USING SKYRME EDFS

By default, the physical constants used in our calculations
are the following [38]:

e? = 1.43996446 MeV fm, (C1)
m= w — 9389187125 MeV 2,  (C2)
12 /(2m) = 20.735519104 MeV fm?.  (C3)

064318-13



W. RYSSENS, P.-H. HEENEN, AND M. BENDER

3.0 -
%=X 100 o
2.57 X=X ll}QSn ’,f
--o 208p} p/.
—~ ’“’
E 2.0 r
- 1.5h /,' ><‘><><
Q Kl >
3 1.0 ’o' X.-'X'
= 1.0r -
3] -2 ‘_><"’><
o s
0.5¢ IR X_X_X_%_X.-x-x
oI _X_X_;(--)<">é—
0.0 wa%-x—*“*
"70.000 0.005 0.010 0.015

(£~ 20.73553) ( MeV fm?)
FIG. 17. (Color online) Energy difference for the spherical nuclei
40Ca, 28n, and 2°*Pb for calculations with LENTEUR using SLy4
with a modified value of h?/(2m). The reference calculation is that
obtained using the value used during the adjustment of SLy4.

Whenever possible, we have used the value of h%/(2m) that
was used during the adjustment of the parametrization. It might
seem superfluous to completely specify the physical constant
used, but the results of our calculations depend on the precise
values of these constants. In particular, the level of agreement
between Ev8 and LENTEUR described in Sec. V A is only
attainable when these codes use exactly the same numerical
values for the physical constants.

In fact, significant errors can be introduced when the values
of the physical constants are changed slightly. The seemingly
innocuous value of A?/(2m) in fact plays a very important
role. Figure 17 shows LENTEUR calculations for the spherical
nuclei “°Ca, '32Sn, and 2%®Pb with SLy4. Every point was
calculated by slightly changing the value of h%/(2m) from
20.73553 MeV fm?, the SLy4 value. We see that using a value
for h?/(2m) that is not consistent with the value used during
the fit of the EDF can lead to an error of several MeV in the
total energy. h?/(2m) is, after all, the proportionality constant
of the kinetic energy in Eq. (1). Typical values that have
been used over the years vary at least between 20.73 and
20.7363 MeV fm?. If the exact values of the physical constants
used during the adjustment of a given parametrization are not
available, then one cannot reliably compare the results with
experimental data. In this case, one cannot judge the predictive
power of this parametrization.
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‘E-ESLy4‘(MeV)

FIG. 18. Difference in the total energy obtained with LENTEUR
for “°Ca using a rounded value for the density dependence parameter
a in Eq. (2) vs using the full double-precision value o = 1/6 of the
SLy4 parametrization.

Similar concerns arise for the parameters of the Skyrme
interactions. The energy obtained in our calculations is more
sensitive to some Skyrme parameters than to others, but the
close agreement observed in Sec. V A is not obtainable without
carefully checking that the Skyrme parameters are completely
consistent across codes. That this is not trivial can be concluded
from examination of Fig. 18. There we plot the relative
difference in energy found by LENTEUR between modified
versions of the SLy4 functional and the correct SLy4. The
interaction parameters are the same for every point, save for
the density dependence parameter « in Eq. (2). There are very
few parametrizations for which the value of o corresponds
to a terminating decimal, for example, SV-min, for which
a = 0.255368. For the large majority of parametrizations the
value of « is either 1/3 or, as in the case of SLy4, 1/6. Both
of these correspond to a repeating decimal number, whose
numerical representation might differ from code to code.
Using o = 0.1667 in a calculation with SLy4 corresponds to
arounding error of ¢« — 1/6 ~ 3.33 x 1073, which introduces
an error in the total binding energy of “°Ca of a few tens of ke V.

It is clearly shown that a limited representation of « implies
a roundoff error that has a visible effect on the energy. This
kind of error shows up when comparing LENTEUR and Ev§
results, and for this reason we conclude that relative errors of
less than 10~ become meaningless. Similar analyses can be
made for the other interaction parameters, including the values
of physical constants used to fit the interaction.
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