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The effective-surface approximation is extended taking into account derivatives of the symmetry-energy
density per particle with respect to the mean particle density. The isoscalar and isovector particle densities in
this extended effective-surface approximation are derived. The improved expressions of the surface symmetry
energy, in particular, its surface tension coefficients in the sharp-edged proton-neutron asymmetric nuclei take
into account important gradient terms of the energy density functional. For most Skyrme forces the surface
symmetry-energy constants and the corresponding neutron skins and isovector stiffnesses are calculated as
functions of the Swiatecki derivative of the nongradient term of the symmetry-energy density per particle with
respect to the isoscalar density. Using the analytical isovector surface-energy constants in the framework of the
Fermi-liquid droplet model we find energies and sum rules of the isovector giant dipole-resonance structure in a
reasonable agreement with the experimental data, and they are compared with other theoretical approaches.
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I. INTRODUCTION

Explicit and accurate analytical expressions for the particle
density distributions within the nuclear effective-surface (ES)
approximation were obtained in Refs. [1–3]. They take
advantage of the saturation properties of nuclear matter in
the narrow diffuse-edge region in finite heavy nuclei. The ES
is defined as the location of points with a maximal density
gradient. An orthogonal coordinate system related locally to
the ES is specified by the distance ξ of a given point from the
ES and the tangent coordinate η parallel to the ES. Using
the nuclear energy-density functional theory, one can simplify
the variational condition derived from minimization of the
nuclear energy at some fixed integrals of motion in the
ξ,η coordinates within the leptodermous approximation. In
particular, in the extended Thomas-Fermi (ETF) approach
[4], this can be done in sufficiently heavy nuclei for any
fixed deformation using the expansion in a small parameter
a/R ∼ A−1/3 � 1 where a is of the order of the diffuse edge
thickness of the nucleus, R is the mean curvature radius of the
ES, and A is the number of nucleons. The accuracy of the ES
approximation in the ETF approach was checked [3] without
spin-orbit (SO) and asymmetry terms by comparing results
with those of Hartree-Fock (HF) and other ETF models for
some Skyrme forces. The ES approach [3] was also extended
by taking into account the SO and asymmetry effects [5–7].

Solutions for the isoscalar and isovector particle densities
and energies in the ES (leptodermous) approximation of the
ETF approach were applied to analytical calculations of the
surface symmetry energy, the neutron skin, and isovector
stiffness coefficient in the leading order of the parameter a/R
[7]. Our results are compared with older investigations [8–11]
within the liquid droplet model (LDM) and with more recent
works [12–27].

*magner@kinr.kiev.ua

The splitting of the isovector giant dipole resonances
into the main and satellite modes [28] was obtained as a
function of the isovector surface-energy constant within the
Fermi-liquid droplet (FLD) model [29,30] in the ES approach.
The analytical expressions for the surface symmetry-energy
constants have been tested by energies and sum rules of the
isovector dipole resonances (IVDR) within the FLD model
[31] for some Skyrme forces neglecting derivatives of the
nongradient terms in the symmetry-energy density per particle
with respect to the mean particle density. The so called
pygmy dipole resonances (PDR) below the main IVDR peak
as a different phenomenon which might not be the result
of splitting of the IVDR were intensively discussed in the
literature [12–14,22–25,32–35]. They might have a different
nature and actually are not related to each other. In the present
work, we shall extend the variational effective-surface method
accounting for the derivatives introduced by Swiatecki and
Myers within the LDM [8] and apply it to the IVDR splitting.
Some preliminary results were reported in [36].

In Sec. II, we give an outlook of the basic points of the ES
approximation within the density functional theory. The main
results for the isoscalar and isovector particle densities are
presented in Sec. III emphasizing derivatives of the symmetry-
energy density per particle. Section IV is devoted to analytical
derivations of the symmetry energy in terms of the surface
energy coefficient, the neutron skin thickness, and the isovector
stiffness including these derivatives. Sections V and VI are
devoted to the collective dynamical description of the IVDR
structure in terms of the response functions and transition
densities. Discussions of the results are given in Sec. VII and
summarized in Sec. VIII. Some details of our calculations are
presented in Appendixes A and B.

II. SYMMETRY ENERGY AND PARTICLE DENSITIES

We start with the nuclear energy E as a functional of the
isoscalar (ρ+) and isovector (ρ−) densities ρ± = ρn ± ρp in
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TABLE I. Basic parameters of some critical Skyrme forces from Refs. [37,41], including the L derivatives [20,41,44]. In addition to these
standard quantities are the isoscalar and isovector constants C± of the energy density gradient terms [Eqs. (2) and (8)]; csym is given by Eq. (12)
and the spin-orbit constant β is defined below Eq. (9).

SkM∗ SGII SLy5 SLy5∗ SLy6 SLy7 SVsym28 SVsym32 SVmas08 SVK226 SVkap02

ρ (fm−3) 0.16 0.16 0.16 0.16 0.17 0.16 0.16 0.16 0.16 0.16 0.16
bV (MeV) 15.8 15.6 16.0 16.0 17.0 15.9 15.9 15.9 15.9 15.9 15.9
K (MeV) 217 215 230 230 245 230 234 234 234 226 234
J (MeV) 30.0 26.8 32.0 32.0 32.0 32.0 28.0 32.0 30.0 30.0 30.0
L (MeV) 47.5 37.7 48.3 45.9 47.4 47.2 7.5 59.5 42.0 35.5 37.0

C+ (MeV fm5) 57.6 43.9 59.3 60.1 54.1 52.7 49.6 51.8 50.9 51.4 50.7
C− (MeV fm5) − 4.79 − 0.94 − 22.8 − 24.2 − 15.6 − 13.4 19.6 26.0 36.9 30.6 21.9

csym 3.24 6.07 1.58 1.54 1.77 1.95 1.48 1.40 1.13 1.22 1.46
β − 0.64 − 0.54 − 0.58 − 0.52 − 0.62 − 0.65 − 0.48 − 0.47 − 0.51 − 0.48 − 0.48

the local density approach [4,37–44]:

E =
∫

dr ρ+E(ρ+,ρ−), (1)

where E(ρ+,ρ−) is the energy density per particle,

E(ρ+,ρ−) = −bV + JI 2 + ε+(ρ+) + ε−(ρ+,ρ−)

+ (C+/ρ+ + D+)(∇ρ+)2

+ (C−/ρ+ + D−)(∇ρ−)2. (2)

Here, bV ≈ 16 MeV is the separation energy of a particle, J ≈
30 MeV is the main volume symmetry-energy constant of
infinite nuclear matter, and I = (N − Z)/A is the asymmetry
parameter; N = ∫

drρn(r) and Z = ∫
drρp(r) are the neutron

and proton numbers, and A = N + Z. These constants deter-
mine the first two terms of the volume energy. The last four
terms are surface terms. The first two terms are independent of
the gradients of the particle densities and the last two depend
on these gradients. For the first surface term independent of
the gradients ε+, one obtains

ε+(ρ+) = K+
18

e+[ε(w+)], (3)

where K+ ≈ 215−245 MeV (see Table I) is the isoscalar in-
compressibility modulus of symmetric nuclear matter, w+ is
the dimensionless isoscalar particle density, w+ = ρ+/ρ, and

e+[ε(w+)] = 9ε2 + I 2[Ssym(ε) − J ]/K+, (4)

with

ε = ρ − ρ+
3ρ

= 1 − w+
3

. (5)

ε is the small parameter in the expansion,

Ssym(ε) = J − Lε + K−
2

ε2 + · · · , (6)

around the particle density of infinite nuclear matter ρ =
3/4πr3

0 ≈ 0.16 fm−3, and r0 is the commonly accepted con-
stant in the A1/3 dependence of a mean radius. Several other
quantities, which were introduced by Myers and Swiatecki [8],
will be explained below. The derivative corrections of Ssym(ε)
in Eq. (6) were neglected in our previous calculations [7]. The
next isovector surface term ε−(ρ+,ρ−) can be defined through

the same function Ssym(ε) in Eq. (6):

ε−(ρ+,ρ−) = Ssym(ε)

(
ρ−
ρ+

)2

− JI 2. (7)

For the first and second derivatives of Ssym(ε) with respect to
ε one can take in Eq. (6) the values L ≈ 20 ÷ 120 MeV and,
even less known K− [19,27,45]. The constants C± and D± in
Eq. (2) are defined by the parameters of the Skyrme forces
[4,37,39,41,43],

C+ = 1

12

(
t1 − 25

12
t2 − 5

3
t2x2

)
,

C− = − t1

48

(
1 + 5

2
x1

)
− t2

36

(
1 + 19

8
x2

)
. (8)

The isoscalar SO gradient terms in (2) are defined with a con-
stant:D+ = −9mW 2

0 /16�
2, where W0 ≈ 100 − 130 MeV fm5

and m is the nucleon mass. The constant D− is usually
relatively small and will be neglected below for simplicity.
Equation (2) can be applied in a semiclassical approximation
for a realistic Skyrme force [37,39–42], in particular by
neglecting higher � corrections in the ETF kinetic energy [2–4]
and also Coulomb terms. All of them easily were taken into
account [1,5] neglecting relatively small Coulomb exchange
terms. Such exchange terms can be calculated numerically in
extended Slater approximations [46].

The energy density per particle in Eq. (2) contains the first
two volume terms and surface components including the new
L and K− derivative corrections ε− (in contrast to Ref. [7])
and also the isoscalar and isovector density gradients. Both
are important for finite nuclear systems. These gradient terms
together with the other surface components in the energy
density within the ES approximation are responsible for the
surface tension in finite nuclei.

As usual, we minimize the energy E under the constraints of
fixed particle number A = ∫

dr ρ+(r) and neutron excess N −
Z = ∫

dr ρ−(r) using the Lagrange multipliers λ+ and λ−, the
isoscalar and isovector chemical-potential surface corrections
(see Appendix A). Taking also into account additional defor-
mation constraints (like the quadrupole moment), our approach
can be applied for any deformation parameter of the nuclear
surface, if its diffuseness a is small with respect to the curvature
radius R. Approximate analytical expressions of the binding
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energy will be obtained at least up to order A2/3. To satisfy the
condition of particle number conservation with the required
accuracy we account for relatively small surface corrections
(∝ a/R ∼ A−1/3 in first order) to the leading terms in the
Lagrange multipliers [2,3,5,7] (see Appendix B). We take
into account explicitly the diffuseness of the particle density
distributions. Solutions of the variational Lagrange equations
can be derived analytically for the isoscalar and isovector
surface tension coefficients (energy constants), instead of the
phenomenological constants of the standard LDM [8] (the
neutron and proton particle densities were considered earlier
to be distributions with a strictly sharp edge).

III. EXTENDED ISOSCALAR AND
ISOVECTOR DENSITIES

For the isoscalar particle density, w = ρ+/ρ, one has up to
the leading terms in the leptodermous parameter a/R the usual
first-order differential Lagrange equation [3,5,7]. Integrating
this equation, one finds the solution:

x = −
∫ w

wr

dy

√
1 + βy

y e+[ε(y)]
, x = ξ

a
, (9)

for x < x(w = 0) and w = 0 for x � x(w = 0), where x(w =
0) is the turning point. β = D+ρ/C+ is the dimensionless SO
parameter; see Eq. (4) for e+[ε(y)] (for convenience we often
omit the lower index “+” in w+). For wr = w(x = 0), one has
the boundary condition, d2w(x)/dx2 = 0 at the ES (x = 0):

e+[ε(wr )] + wr (1 + βwr )

[
de+[ε(w)]

dw

]
w=wr

= 0. (10)

In Eq. (9), a ≈ 0.5 − 0.6 fm is the diffuseness parameter
[7],

a =
√
C+ρ̄K+

30b2
V

, (11)

found from the asymptotic behavior of the particle density,
w ∼ exp(−ξ/a) for large ξ (ξ � a).

As shown in Refs. [3,5], the influence of the semiclassical
� corrections (related to the ETF kinetic energy) to w(x)
is negligibly small everywhere, except for the quantum tail
outside the nucleus (x∼> 1). Therefore, all these corrections
were neglected in Eq. (2). With a good convergence of the
expansion of the e+[ε(y)] in powers of 1 − y up to the leading
quadratic term [3,5] and small I 2 corrections in Eq. (4),
e = (1 − y)2, one finds analytical solutions of Eq. (9) in terms
of the algebraic, trigonometric, and logarithmic functions [7].
For β = 0 (i.e., without SO terms), it simplifies to the solution
w(x) = tanh2 [(x − x0)/2] for x � x0 = 2arctanh(1/

√
3) and

zero for x outside the nucleus (x > x0).
After simple transformations of the isovector Lagrange

equation (A1) one similarly finds up to the leading term in a/R
in the ES approximation for the isovector density, w−(x) =
ρ−/(ρI ), the equation, and the boundary condition (A3). The
analytical solution w− = wcos[ψ(w)] can be obtained through
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FIG. 1. (Color online) Isovector w− (13) (with the relevant value
of L Refs. [20,41,44]) and without the (L = 0) derivative L constant,
and isoscalar w = w+ (see [7]) particle densities are shown vs x =
ξ/a for the Skyrme force SLy5∗ [x ≈ (r − R)/a for small nuclear
deformations [31,36,43]].

the expansion (A5) of ψ in powers of

γ (w) = 3ε

csym
, csym = a

√
J

ρ |C−| . (12)

Expanding up to the second order in γ one obtains (see
Appendix A)

w− = w cos[ψ(w)] ≈ w

(
1 − ψ2(w)

2
+ · · ·

)
, (13)

with

ψ(w) = γ (w)√
1 + β

[1 + c̃γ (w) + · · · ], (14)

c̃ = βc2
sym + 2 + c2

symL(1 + β)/(3J )

2csym(1 + β)
, (15)

[see also the constant c3 (Appendix A) at higher (third)
order corrections]. The constant c̃ [Eq. (15)] for the isovector
solutions w−, Eq. (13), is modified with respect to Ref. [7] in
two aspects. In addition to the L dependence there are also
higher order terms from a nonlinear equation (A4) for ψ(w)
(Appendix A). Notice also that w− depends on L in second or-
der in γ but it is independent of K− at this order (Appendix A).

In Fig. 1, the L dependence of the function w−(x) is shown
within the total interval from L = 0 to L = 100 MeV [20]
and it is compared to that of the density w(x) for the SLy5*
force as a typical example. As shown in Fig. 2 in a larger
(logarithmic) scale, one observes notable differences in the
isovector densities w− derived from different Skyrme forces
[37,41] within the edge diffuseness. All these calculations have
been done with the finite proper value of the slope parameter
L. For SLy forces this value is taken from Ref. [44], for SGII
from Ref. [20] and for others from Ref. [41] (Table I). As
shown below, this is in particular important for calculations of
the neutron skin of nuclei. Notice that, with the precision of line
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FIG. 2. (Color online) Isovector density w−(x) (13) (in the loga-
rithmic scale) as a function of x within the quadratic approximation
to e+[ε(w)] for several Skyrme forces [20,37,41,43,44].

thickness, our results are almost the same taking approximately
L = 50 MeV for SLy5* and L = 60 MeV for SVsym32. Note
also that, up to second order in the small parameter γ , the
isovector particle density w− in Eq. (13) does not depend on
the symmetry-energy in-compressibility K−. The K− de-
pendence appears only at higher (third) order terms in the
expansion in γ (Appendix A). Therefore, as a first step of the
iteration procedure, it is possible to study first the main slope
effects of L neglecting small I 2 corrections to the isoscalar
particle density w+ (9) through e+ (4). Then, we may study
more precisely the effect of the second derivatives K− taking
into account higher order terms.

We emphasize that the dimensionless densities, w(x) [see
Eq. (9) and Ref. [7] ] and w−(x) (13), shown in Figs. 1 and
2, were obtained in leading ES approximation (a/R � 1)
as functions of specific combinations of Skyrme force pa-
rameters like β and csym [Eq. (12)] accounting for the L
dependence [Eq. (15)]. These densities are at the leading order
in the leptodermous parameter a/R approximately universal
functions, independent of the properties of the specific nucleus.
It yields largely the local density distributions in the normal-
to-ES direction ξ with the correct asymptotic behavior outside
of the deformed ES layer at a/R � 1, as is the case for
semi-infinite nuclear matter. Therefore, at the dominating
order, the particle densities w± are universal distributions
independent of the specific properties of nuclei while higher
order corrections to the densities w± depend on the specific
macroscopic properties of nuclei.

IV. ISOVECTOR ENERGY AND STIFFNESS

The nuclear energy E [Eq. (1)] in the improved ES
approximation (Appendix B) is split into volume and surface
terms [7],

E ≈ −bV A + J (N − Z)2/A + ES. (16)

For the surface energy ES one obtains

ES = E
(+)
S + E

(−)
S , (17)

with the isoscalar (+) and isovector (−) surface components:

E
(±)
S = b

(±)
S

S
4πr2

0

, (18)

where S is the surface area of the ES, b
(±)
S are the isoscalar

(+) and isovector (−) surface-energy constants,

b
(±)
S ≈ 8πr2

0C±
∫ ∞

−∞
dξ

(
1 + D±

C±
ρ+

)(
∂ρ±
∂ξ

)2

. (19)

These constants are proportional to the corresponding surface
tension coefficients σ± = b

(±)
S /(4πr2

0 ) through the solutions
(9) and (13) for ρ±(ξ ) which can be taken into account in
leading order of a/R (Appendix B). These coefficients σ±
are the same as found in the expressions for the capillary
pressures of the macroscopic boundary conditions [see Ref. [7]
with new values ε± modified by L and K− derivative
corrections of Eqs. (4) and (7)]. Within the improved ES
approximation where also higher order corrections in the
small parameter a/R are taken into account, we derived in
Ref. [7] equations for the nuclear surface itself (see also
Refs. [2,3,5]). For more exact isoscalar and isovector particle
densities we account for the main terms in the next order of
the parameter a/R in the Lagrange equations [see Eq. (A1)
for the isovector and Refs. [2,3,5] for the isoscalar case].
Multiplying these equations by ∂ρ−/∂ξ and integrating them
over the ES in the normal-to-surface direction ξ and using
the solutions for w±(x) up to the leading orders [Eqs. (9)
and (13)], one arrives at the ES equations in the form of the
macroscopic boundary conditions [2,3,5,7,30,47–49]. They
ensure equilibrium through the equivalence of the volume and
surface (capillary) pressure variations. As shown in Ref. [7],
the latter ones are proportional to the corresponding surface
tension coefficients σ±.

For the energy surface coefficients b
(±)
S (19), one obtains

b
(+)
S = 6C+ρJ+/(r0a),

J+ =
∫ 1

0
dw

√
w(1 + βw) e+[ε(w)], (20)

b
(−)
S = kS I 2, kS = 6ρ C− J−/(r0a), (21)

J− =
∫ 1

0
dw

√
w e+[ε(w)]

1 + βw

×
{

cos(ψ) + wsin(ψ)

csym
√

1 + β
[1 + 2̃cγ (w)]

}2

≈
∫ 1

0
(1 − w)dw

√
w

1 + βw

{
1 + 2γ (w)

csym(1 + β)

+
(

γ

1 + β

)2
[

1

c2
sym

+ 6(1 + β)

(
c̃

csym
− 1

2

)]}
.

(22)
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For γ and c̃, see Eqs. (12) and (15), respectively. Simple
expressions for the constants b

(±)
S in Eqs. (20) and (21) can

be easily derived in terms of algebraic and trigonometric
functions by calculating explicitly integrals over w for the
quadratic form of e+[ε(w)] [Eqs. (B3) and (B5)]. Note that in
these derivations, we neglected curvature terms and, being of
the same order, shell corrections, which have been discarded
from the very beginning. The isovector energy terms were
obtained within the ES approximation with high accuracy up
to the product of two small quantities, I 2 and (a/R)2.

According to the macroscopic theory [7–10], one may
define the isovector stiffness Q with respect to the difference
Rn − Rp between the neutron and proton radii as a dimension-
less collective variable τ ,

E(−)
s = −ρr0

3

∮
dS Qτ 2 ≈ −Qτ 2S

4πr2
0

,

τ = (Rn − Rp)/r0, (23)

where τ is the relative neutron skin. Comparing this expression
to Eq. (18) for the isovector surface energy written through the
isovector surface-energy constant b

(−)
S [Eq. (21)], one obtains

Q = −kS

I 2

τ 2
. (24)

Defining the neutron and proton radii Rn,p as positions
of maxima of the neutron and proton density gradients,
respectively, one obtains the neutron skin τ (Ref. [7]),

τ = 8aI

r0c2
sym

g(wr ), (25)

where

g(w) = w3/2(1 + βw)5/2

(1 + β)(3w + 1 + 4βw)
{w(1 + 2̃cγ )2

+ 2γ (1 + c̃γ )[̃cw − csym(1 + 2̃cγ )]} (26)

is taken at the ES value wr [Eq. (10)]. Finally taking into
account Eqs. (24) and (21), one arrives at

Q = −ν
J 2

kS

, ν = k2
SI

2

τ 2J 2
= 9J 2

−
16g2(wr )

, (27)

where J− and g(w) are given by Eqs. (22) and (26), respec-
tively. Note that Q = −9J 2/4kS was predicted in Refs. [8,9]
and therefore for ν = 9/4 the first part of (27) which relates
Q with the volume symmetry energy J and the isovector
surface energy constant kS , is identical to that used in Refs. [8–
11,19,20]. However, in our derivations ν deviates from 9/4
and it is proportional to the function J 2

−/g2(wr ). This function
depends significantly on the SO interaction parameter β but not
too much on the specific Skyrme force (see Ref. [7] for details).

Notice that the approximate universal functions w(x)
[Eq. (9) and Ref. [7]] and w−(x) [Eq. (13)] can be used in
the leading order of the ES approximation for calculations
of the surface energy coefficients b

(±)
S [Eq. (19)] and the

neutron skin τ ∝ I [Eq. (25)]. As shown in Ref. [7] and
in Appendix B, here only the particle density distributions
w(x) and w−(x) are needed within the surface layer through
their derivatives [the lower limit of the integration over ξ

in Eq. (19) can be approximately extended to −∞ because
there are no contributions from the internal volume region in
the evaluation of the main surface terms of the pressure and
energy]. Therefore, the surface symmetry-energy coefficient
kS in Eqs. (21) and (B5), the neutron skin τ [Eq. (25)],
and the isovector stiffness Q [Eq. (27)] can be approxi-
mated analytically in terms of functions of definite critical
combinations of the Skyrme parameters like β, csym, a, C−,
and parameters of infinite nuclear matter (bV, ρ, K+), also
the symmetry-energy constants J , L, and K−. Thus, in the
considered ES approximation, they do not depend on the
specific properties of the nucleus (for instance, the neutron
and proton numbers), the curvature, and the deformation of
the nuclear surface.

V. THE FERMI-LIQUID DROPLET MODEL

For IVDR calculations, the FLD model based on the lin-
earized Landau-Vlasov equations for the isoscalar [δf+(r,p,t)]
and isovector [δf−(r,p,t)] distribution functions can be used
in phase space [30,50,51],

∂δf±
∂t

+ p
m∗±

∇r [δf± + δ(e − eF )(δV± + V ±
ext)] = δSt±.

(28)

Here e = p2/(2m∗
±) is the equilibrium quasiparticle energy

(p = |p|) and e
F

= (p±
F )2/(2m∗

±) is the Fermi energy. The
isotopic dependence of the Fermi momenta p±

F = pF (1 ∓ �)
is given by a small parameter � = 2(1 + F ′

0) I/3. The reason
for having � is the difference between the neutron and proton
potential depths from the Coulomb interaction. The isotropic
isoscalar F0 and isovector F ′

0 Landau interaction constants
are related to the isoscalar in-compressibility K = 6e

F
(1 +

F0) and the volume symmetry energy J = 2e
F
(1 + F ′

0)/3
constants of nuclear matter, respectively. The effective masses
m∗

+ = m(1 + F1/3) and m∗
− = m(1 + F ′

1/3) are determined in
terms of the nucleon mass m by anisotropic Landau constants
F1 and F ′

1. Equations (28) are coupled by the dynamical
variation of the quasiparticles’ self-consistent interaction δV±
with respect to the equilibrium value p2/(2m∗

±). The time-
dependent external field V ±

ext ∝ exp(−iωt) is periodic with
a frequency ω. For simplicity, the collision term δSt± is
calculated within the relaxation time T (ω) approximation
accounting for the retardation effects from the energy-
dependent self-energy beyond the mean-field approach T =
4π2T0/(�ω)2 with the parameter T0 ∝ A−1/3 [see Eq. (80) of
Ref. [51] at zero temperature and also Ref. [30]].

The solutions of Eq. (28) are related to the dynamic mul-
tipole particle-density variations, δρ±(r,t) ∝ Yλ0(r̂), where
Yλ0(r̂) are the spherical harmonics and r̂ = r/r . These so-
lutions can be found in terms of the superposition of plane
waves over the angle of a wave vector q,

δf±(p,r,t) =
∫

d�qYλ0(q̂) δf±(p,q,ω)

×exp[−i(ωt − qr)], (29)

where δf±(p,q,ω) is the Fourier transform of the distribu-
tion function. The time dependence (29) is periodic as the
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external field V ±
ext is also periodic with the same frequency

ω = p±
F s±q/m∗

± where s+ = s, and s− = s(NZ/A2)
1/2

. The

factor (NZ/A2)
1/2

accounts for conserving the position of
the mass center for the isovector vibrations [53]. The sound
velocity s can be found from the dispersion equations [30].
The two solutions sn with n = 1,2 are functions of the Landau
interaction constants and ωT . Because of the symmetry inter-
action coupling the “out-of-phase” particle-density vibrations
of the s1 mode involves the “in-phase” mode s2 inside of the
nucleus.

For small isovector and isoscalar multipole ES-radius
vibrations of the finite neutron and proton Fermi-liquid
drops around the spherical nuclear shape, one has δR±(t) =
Rα±

S (t)Yλ0(r̂) with a small time-dependent amplitude α±
S (t) =

α±
S exp(−iωt). The macroscopic boundary conditions (surface

continuity and force-equilibrium equations) at the ES are given
by Refs. [7,30,51]:

u±
r |r=R = Rα̇±

S Yλ0(r̂),

δ�±
rr |r=R = α±

S P
±
S Yλ0(r̂). (30)

The left-hand sides of these equations are the radial com-
ponents of the mean-velocity field u = j/ρ (j is the current
density) and the momentum flux tensor δ�νμ defined both
through the moments of δf (r,p,t) in momentum space [30,51].
The right-hand sides of Eq. (30) are the ES velocities and
capillary pressures. These pressures are proportional to the
isoscalar and isovector surface-energy constants b±

S in Eq. (19),

P
±
S = 2

3 b±
S ρ P± A∓1/3, (31)

where P+ = (λ − 1)(λ + 2)/2, P− = 1. The coefficients b±
S

are essentially determined by the constants C± [Eq. (8)] of
the energy density (2) in front of its gradient density terms.
The conservation of the center of mass is taken into account
in the derivations of the second boundary conditions (30)
[30,51]. Therefore, one has a dynamical equilibrium of the
forces acting at the ES.

VI. TRANSITION DENSITY AND NUCLEAR RESPONSE

The response function χ±(ω) is defined as a linear reaction
to the external single-particle field F̂ (r) with the frequency
ω. For convenience, we may consider this field in terms of a
similar superposition of plane waves (29) as δf± [30,51]. In
the following, we will consider the long wavelength limit with
V±

ext(r,t) = α
±,ω
ext (t)F̂ (r) and α

±,ω
ext (t) = α

±,ω
ext e−i(ω+iηo)t , where

α
±,ω
ext is the amplitude and ω is the frequency of the external

field (ηo = +0). In this limit, the one-body operator F̂ (r)
becomes the standard multipole operator, F̂ (r) = rλYλ0(r̂) for
λ � 1. The response function χ±(ω) is expressed through the
Fourier transform of the transition density ρω

±(r) as

χ±(ω) = −
∫

dr F̂ (r) ρω
±(r)/α±,ω

ext . (32)

The transition density ρω
±(r) is obtained through the dynam-

ical part of the particle density δρ±(r,t) in a macroscopic
model in terms of solutions δf±(r,p,t) of the Landau-Vlasov
equations (28) with the boundary conditions (30) as the

same superpositions of plane waves (29) [30]: δρ−(r,t) =
ρ α−

S ρω
−(x) Y10(r̂) e−iωt , where

ρω
−(x) = qR

j ′
1(qR)

[
j1(κ)w(x) + g

V

g
S

dw−
dx

]
, (33)

g
V

=
∫ w0

0
dw

√
w(1 + βw)

1 − w
κ3j1 (κ), (34)

g
S

=
∫ w0

0
dw κ3[1 + O(γ 2(w))], (35)

κ = κo

[
1 + a

R
x(w)

]
, (36)

κo = qR. The first term in (33), proportional to the dimension-
less isoscalar density w(x) (in units of ρ) accounts for volume
density vibrations [Eq. (9)]. The second term ∝ dw−/dx,
where w− is a dimensionless isovector density (in units of
ρI ) corresponds to the density variations from a shift of the ES
[Eq. (13)]. The particle number and the center-of-mass position
are conserved, and jλ(κ) and j ′

λ(κ) are the spherical Bessel
functions and their derivatives. The upper integration limit w0

in Eqs. (34) and (35) is defined as the root of a transcendent
equation x(w0) + R/a = 0. As shown in Appendix A, the
SO- and L-dependent density w−(x) is of the same order as
w(x). The dependencies of w−(x) on different Skyrme force
parameters, mostly the isovector gradient-term constant C−,
the SO parameter β, and the derivative of the volume symmetry
energy L, are the main reasons for the different values of the
neutron skin.

With the help of the boundary conditions (30), one can
derive the response function (32) [30],

χλ(ω) =
∑

n

χ
(n)
λ (ω) =

∑
n

A(n)
λ (κo)/D(n)

λ

(
ω − i

�

2

)
, (37)

with ω = pF snκo(NZ/A2)
1/2

/(m∗R) (m∗
− ≈ m∗

+ = m∗). This
response function describes two modes, the main (n = 1)
IVDR and its satellite (n = 2) as related to the out-of-phase
s1 and in-phase s2 sound velocities which are excited in the
nuclear volume, respectively. We assume here that the “main”
peak exhausts mostly the energy weighted sum rule (EWSR)
and the “satellite” corresponds to a much smaller part of the
EWSR as proportional to the asymmetry parameter, I � 1.
This two-peak structure is from the coupling of the isovector
and isoscalar density-volume vibrations because of the neutron
and proton quasiparticle interaction δV± in Eq. (28). Therefore,
one takes into account an admixture of the isoscalar mode to
the isovector IVDR excitation. The wave numbers q = κo/R
of the lowest poles (n = 1,2) in the response function (37) are
determined by the secular equation,

D(n)
λ ≡ j ′

λ(κo) − 3e
F
κoc

(n)
1

2b−
S A1/3

[jλ(κo) + c
(n)
2 j ′′

λ (κo)] = 0. (38)

The width of an IVDR peak � in (37) corresponds to an
imaginary part of the pole having its origin in the collision
term δSt± of the Landau-Vlasov equation. At this pole, for the

064311-6



SLOPE-DEPENDENT NUCLEAR-SYMMETRY ENERGY . . . PHYSICAL REVIEW C 92, 064311 (2015)

TABLE II. The isovector energy kS and the stiffness Q coefficients are shown for several Skyrme forces [37,41,44]; ν is the constant of
Eq. (27); τ/I is the neutron skin thickness calculated by Eq. (25) with the corresponding L; the functions D(A) for the FLD model in the last
three lines are calculated with the relaxation time T having the constant of its frequency dependence T0Pb = 300 MeV2 s as explained in the
text and in the figures [51]; the quantities kS,0, ν0, Q0, τ0, and D0 are calculated with L = 0.

SkM∗ SGII SLy5 SLy5∗ SLy6 SLy7 SVsym28 SVsym32 SVmas08 SVK226 SVkap02

kS,0 (MeV) −2.47 −0.53 −12.6 −13.1 −9.03 −7.09 11.4 15.6 37.1 23.7 12.7
kS (MeV) −2.48 −0.46 −14.6 −15.0 −10.1 −7.61 13.3 18.2 46.7 29.5 14.8
ν0 163 21.9 0.59 0.92 1.21 1.99 0.90 0.84 0.89 0.79 0.89
ν 2.27 1.89 0.28 0.60 0.62 0.73 0.58 0.61 0.86 0.70 0.59
Q0 (MeV) 59642 29908 73 72 137 287 −62 −55 −62 −30 −63
Q (MeV) 823 2570 42 41 63 98 −34 −34 −34 −21 −36
τ0/I 0.006 0.004 0.41 0.43 0.26 0.16 0.43 0.53 0.040 0.89 0.45
τ/I 0.055 0.014 0.59 0.60 0.40 0.28 0.62 0.73 1.68 1.18 0.64
D0 (MeV) 132Sn 89 91 101 89 104 102 78 79 81 77 84
D (MeV) 68Ni 91 92 100 88 104 95 79 80 83 78 85

132Sn 89 91 100 89 103 95 77 78 81 76 83
208Pb 90 91 109 88 102 93 77 78 81 76 82

relaxation time one has

Tn = 4π2T0/(�ωn)2, (39)

with an A-dependent constant T0 ∝ A−1/3. For the amplitudes
one has A(n)

λ ∝ �n−1. The complete expressions for the am-
plitudes A(n)

λ and the constants c
(n)
i are given in Refs. [30,51].

Assuming a small value of �, one may call the n = 2 mode
a “satellite” to the “main” n = 1 peak. On the other hand,
other factors such as a collisional relaxation time, the surface
symmetry-energy constant b−

S , and the particle number A lead
sometimes to a re-distribution of the EWSR values among
these two IVDR peaks. The slope L dependence of the
transition densities ρω

−(x) [Eq. (33)] and the strength of the
response function,

S(ω) = Imχλ(ω)/π (40)

[Eq. (37)], has its origin in the symmetry-energy coefficient
b

(−)
S [Eqs. (21), (22), (15), (4), and (6)]. Thus, one may evaluate

the EWSR sum rule contribution of the nth peak by integration
over the region around the peak energy En = �ωn,

S(1)
n = �

2
∫

dω ω Sn(ω). (41)

In accordance with the time-dependent HF approaches
based on the Skyrme forces (see, for instance, [24,25,28]),
we may expect that the energies of the satellite resonances
in the IVDR and ISDR channels can be close. Therefore, we
may calculate separately the neutron ρω

n (x) and proton ρω
p (x)

transition densities for the satellite by calculating the isovector
and isoscalar transition densities at the same energy E2 and in
the same units as ρ±,

ρω
n (x) = ρω

+(x) + ρω
−(x)

2
, ρω

p (x) = ρω
+(x) − ρω

−(x)

2
. (42)

VII. DISCUSSION OF THE RESULTS

In Table II we show the isovector surface energy coefficient
kS [Eq. (21)], the stiffness parameter Q [Eq. (27)], its constant
ν, and the neutron skin τ [Eq. (25)] for many more Skyrme

forces than discussed in [36]. They are obtained within the
ES approximation with the quadratic expansion for e+[ε(w)]
and neglecting the I 2 slope corrections, for several Skyrme
forces [37,41] whose parameters are presented in Table I. Also
shown are the quantities kS0, ν0, Q0, and τ0 neglecting the slope
corrections (L = 0,K− = 0). This is in addition to results of
Ref. [7] where another important dependence on the SO inter-
action measured by β was presented. In contrast to a fairly good
agreement for the analytical isoscalar surface-energy constant
b

(+)
S (20) as shown in Ref. [7] and references cited therein, the

isovector energy coefficient kS is more sensitive to the choice
of the Skyrme forces than the isoscalar one b

(+)
S [Eq. (20) and

Ref. [5]]. The modulus of kS is significantly larger for most of
the Skyrme forces SLy... [37] and SV... [41] than for the other
ones. However, the L dependence of kS is somewhat small in
these forces (cf. the first two rows of Table II) as it should
be for a small parameter ε of the symmetry-energy density
expansion (6). For SLy and SV forces, the stiffnesses Q are
correspondingly significantly smaller in absolute value being
closer to the well-known empirical values Q ≈ 30−35 MeV
[9–11] obtained by Swiatecki and collaborators. Note that
the isovector stiffness Q is even much more sensitive to
the parametrization of the Skyrme force and to the slope
parameter L than the constants kS . In Ref. [7], we studied
the hydrodynamical results for Q as compared to the FLD
model for the averaged properties of the giant IVDR (IVGDR)
at zero slope L = 0. The IVDR structure in terms of the two
(main and satellite) peaks was discussed earlier in Ref. [31] at
L = 0 in some magic nuclei with a large neutron excess within
the semiclassical FLD model based on the effective-surface
approach. For the comparison with experimental data and
other theoretical results we present in Table II (rows 9 and 11)
a small L dependence of the IVGDR energy parameter D =
EIVGDRA1/3, where EIVGDR = [E1S1 + E2S2]/[S1 + S2] is the
IVGDR energy for the isotope 132Sn [Sn = S(ωn); see also
Eq. (40) for the definition of the strength S(ω)]. A more precise
reproduction of the A dependence of the IVGDR energy
parameter D for finite values of L (see the last three rows for
several isotopes) might determine more consistent values of Q,
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out
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SLy5*

FIG. 3. (Color online) IVDR strength functions S(ω) vs the
excitation energy �ω are shown for vibrations of the nucleus 132Sn
for the Skyrme force SLy5∗ by dots and dashed lines at L = 50 MeV
and solid lines for L = 0; red or magenta (“out-of-phase”) and green
(“in-phase”) curves show separately the main and satellite excitation
modes, respectively (Secs. IV and V); the collision relaxation time
T = 4.3 × 10−21 s in agreement with the IVGDR widths [51].

but, at present, it seems to be beyond the accuracy of both the
hydrodynamical and the FLD models. The IVGDR energies
obtained by the semiclassical Landau-Vlasov equation (28)
with the macroscopic boundary conditions (30) of the FLD
model (Ref. [7]) are also basically insensitive to the isovector
surface energy constant kS [6,7,31,36]. They are in a good
agreement with the experimental data, and do not depend much
on the Skyrme forces even if we take into account the slope
symmetry-energy parameter L (last three rows in Table II).

More realistic self-consistent HF calculations taking into
account the Coulomb interaction, the surface curvature, and
quantum shell effects have led to larger values of Q ≈ 30 −
80 MeV [4,20]. For larger Q (see Table II) the fundamental
parameter (9J/4Q)A−1/3 of the LDM expansion in Ref. [8]
is really small for A ∼> 40, and therefore, the results obtained
using the leptodermous expansion are better justified.

An investigation within the approach presented in Sec. V
shows that the IVDR strength is split into a main peak
which exhausts an essential part of the EWSR independent
of the model and a satellite peak with a much smaller
contribution to this quantity. Focusing on a much more
sensitive kS dependence of the IVDR satellite resonances,
one may take now into account the slope L dependence of
the symmetry-energy density per particle (6) (Refs. [22–25]
and [31]). The total IVDR strength function being the sum of
the “out-of-phase” n = 1 and “in-phase” n = 2 modes for the
isovector- and isoscalarlike volume particle density vibrations,
respectively (solid lines in Figs. 3 and 4 for the zero L, and
dotted and dashed lines for the finite L) has a somewhat
remarkable shape asymmetry [31,36]. For SLy5∗ (Fig. 3) and
for SVsym32 (Fig. 4) one has the “in-phase” satellite to the
right of the main “out-of-phase” peak, cf. with the traditional
PDR to the left of the main one. An enhancement to the left of
the main peak for SLy5* is from increasing the “out-of-phase”

12 14 16 18 20 22 24
0

0.02

0.04

0.06

0.08

0.1

Sn132

S(
ω

)

hω   (MeV)

L=60L=0
tot

out

in

SVsym32

FIG. 4. (Color online) The same total and different modes (main
and satellite) strengths as in Fig. 3 are shown for different L = 0 and
60 MeV for the Skyrme force SVsym32.

strength (red solid and magenta rare dotted curves, Fig. 3)
at small energies because of the appearance of a peak at the
energy about a few MeV, in contrast to the SVsym32 case. The
semiclassical FLD model calculations at the lowest � order
should be improved here, for instance, by taking into account
the quantum effects like shell corrections within more general
periodic-orbit theory [51,52]. In the nucleus 132Sn the IVDR
energies of the two peaks do not change much with L in both
cases: E1 = 17 MeV, E2 = 20 MeV for SLy5∗ (Fig. 3) and
E1 = 15 MeV, E2 = 18 MeV for SVsym32 (Fig. 4). We find
only an essential re-distribution of the EWSR contributions
(normalized to 100% for the EWSR sum of the main and
satellite peaks) [Eq. (41) for S(1)

n ]. This is from a significant
enhancement of the main “out-of-phase” peak with increasing
L, S

(1)
1 = 89% and S

(1)
2 = 11% for SLy5∗ (Fig. 3), and more

10 15 20 25 30
0

0.1

0.2

10 15 20 25 30
0

0.1

0.2

10 15 20 25 30
0

0.1

0.2

S(
ω

)

hω (MeV) (MeV)hω (MeV)hω 

Pb208 Sn132 Ni68

L=0
SLy5* SLy5*

50
L=0 L=0

SLy5*

50 50

SVsym32
L=0

60

SVsym32
L=0

60

SVsym32
L=0

60

FIG. 5. (Color online) The total IVDR strength functions S(ω) vs
the excitation energy �ω (in MeV) for different double magic nuclei
for SLy5* and SVsym32 forces; a slight dependence on the slope
parameter L (in MeV) as compared to the L = 0 case at the main
peaks is shown.
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FIG. 6. (Color online) The IVDR splitting vs the asymmetry
parameter I = (N − Z)/A. (Top) The energies En of the main peak
(n = 1) and satellite (n = 2); black (n = 1) and red (n = 2) open
squares are obtained from the experimental data for the integral cross
sections of Refs. [54–58] for several Sn isotopes, as explained in the
text [30]; the solid and dotted black lines with opened circles are the
main L = 50 MeV and 0 peaks for SLy5*, respectively; the same red
curves show the satellites; the solid and dashed blue lines with open
diamonds denote the main L = 60 MeV and 0 peaks for SVsym32*,
respectively; the same magenta curves show the satellites; the green
dots stands for the averaged (IVGDR) experimental data (three last
from Adrich et al. [32]) and arrows show the particle number of the Sn
isotopes. (Middle) The ratio of the strengths at the satellite to those at
the main peak, Sn = S(ωn) (black solids and red dots for SLy5*; blue
solids and magenta dashed curves for SVsym32). (Bottom) The S(1)

n

normalized to 100% as explained in the text with the same notations
as in the top plot.

pronounced EWSR distribution S
(1)
1 = 76% and S

(1)
2 = 24%

for SVsym32 (Fig. 4) [cf. with the corresponding L = 0
results: S(1)

1 = 88% and S
(1)
2 = 12% for SLy5* and S

(1)
1 = 73%

and S
(1)
2 = 27% for SVsym32].

Figures 5 and 6 show more systematic study for several
isotopes and for the chain of the Sn isotopes, respectively.
In Fig. 6, we compare the results of our calculations with
the experimental data. The latter were obtained by fitting the
experimental strength curve for a given almost spherical Sn
isotope by the two Lorenzian oscillator strength functions as
described in Refs. [30,51]. It is always possible in the case
of the asymmetric shapes of the strength curves with usual
enhancement on the right of the main peak, even in the case
where the satellite cannot be distinguished transparently well
from the main peak in almost spherical nuclei (unlike the
clear shoulders for the IVDRs in deformed ones). Each of
these functions has three fitting parameters such as the inertia,
stiffness, and width of the peak. We found somewhat good
agreement of our ETF ES results with these experimental data
for the energies, ratio of the strengths at the satellite to the
main modes, and the EWSR contributions.

More precise L-dependent calculations change essentially
the IVDR strength distribution for the SV forces because of the

smaller csym value as compared to other Skyrme interactions
(see Table I). For 208Pb one obtains E1 = 15 MeV, S(1)

1 = 91%
for the main peak and E2 = 17 MeV, S(1)

2 = 9% the satellite for
SLy5∗; and E1 = 13 MeV, S

(1)
1 = 83% for the main peak and

E2 = 16 MeV, S
(1)
2 = 17% the satellite for SVsym32 forces.

These calculations are qualitatively in agreement with the
experimental results: E1 = 13 MeV, S

(1)
1 = 98% for the main

peak and E2 = 17 MeV, S(1)
2 = 2% the satellite. Discrepancies

might be related to the strong shell effects in this stable double
magic nucleus which are neglected in the ETF ES approach.

Decreasing the relaxation time T by a factor of about 1.5
almost does not change the IVDR strength structure. However,
we found a strong dependence on the relaxation time T in a
wider region of T values. The “in-phase” strength component
with a wide maximum does not depend much on the Skyrme
force [37,41,43], the slope parameter L, and the relaxation
time T . We found also a regular change of the IVDR strength
for different double magic isotopes (Fig. 5). In addition to a big
change for the energy (mainly because of E1) and the strength
[S1(ω)], one also obtains more asymmetry for 68Ni than for
the other isotopes. Calculations for nuclei with different mass
A were performed with the relaxation time T [Eq. (39)] where
T0 = T0Pb(208/A)1/3 with the parameter T0Pb = 300 MeV2 s
derived from the IVGDR width of 208Pb, in agreement with
experimental data for the averaged A dependence of the
IVGDR widths (∝ A−2/3). In this way the IVDR relaxation
time Tn becomes larger with increasing A as A1/3, and at the
same time, the height of peaks decreases. The L corrections
are also changing much in the same scale of all three nuclei.

The essential parameter of the Skyrme HF approach leading
to the significant differences in the kS and Q values is
the constant C− [Eq. (2) and Table I]. Indeed, C− is the
key quantity in the expression for Q [Eq. (27)] and the
isovector surface-energy constant kS [or b

(−)
S , Eq. (21)],

because Q ∝ 1/kS ∝ 1/C− and kS ∝ C− [7]. Concerning kS

and the IVDR strength structure, this is even more important
than the L dependence although the latter changes significantly
the isovector stiffness Q and the neutron skin τ . As seen in
Table I, the constant C− is very different in absolute value
and in sign for different Skyrme forces whereas C+ is almost
constant (Table I). The isoscalar energy density constant b

(+)
S

is proportional to C+ [Eq. (20)], in contrast to the isovector
one. All Skyrme parameters are fitted to the well-known
experimental value b

(+)
S = 17−19 MeV while there are so far

no clear experiments which would determine kS well enough
because the mean energies of the IVGDR (main peaks) do
not depend very much on kS for different Skyrme forces (the
last three rows of Table II). Perhaps, the low-lying isovector
collective states are more sensitive but at the present time there
is no careful systematic study of their kS dependence. Another
reason for so different kS and Q values might be because of
difficulties in deducing kS directly from the HF calculations
because of the curvature and quantum effects. In this respect,
the semi-infinite Fermi system with a hard plane wall might
be more adequate for the comparison of the HF theory and
the ETF effective-surface approach. We have also to go far
away from the nuclear stability line to subtract uniquely the
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coefficient kS in the dependence of b
(−)
S ∝ I 2 = (N − Z)2/A2,

according to Eq. (21). For exotic nuclei one has more problems
to derive kS from the experimental data with enough precision.
Note that, for studying the IVDR structure, the quantity kS

is more fundamental than the isovector stiffness Q because
of the direct relation to the tension coefficient σ− of the
isovector capillary pressure. Therefore, it is simpler to analyze
the experimental data for the IVGDR within the macroscopic
HD or FLD models in terms of the constant kS . The quantity
Q involves also the ES approximation for the description
of the nuclear edge through the neutron skin τ in Eq. (24).
The L dependence of the neutron skin τ is essential but not
so dramatic in the case of SLy and SV forces (Table II),
except for SVmas08 forces with the effective mass 0.8. The
precision of such a description depends more on the specific
nuclear models [19,20,27]. On the other hand, the neutron skin
thickness τ , like the stiffness Q, is interesting in many aspects
for an investigation of exotic nuclei, in particular, in nuclear
astrophysics.

We emphasize that for specific Skyrme forces there exists
an abnormal behavior of the isovector surface constants kS

and Q. It is related to the fundamental constant C− of the
energy density (2) but not to the derivative symmetry-energy
density corrections. For the parameter set T6 (C− = 0) one
finds kS = 0 (Ref. [7]). Therefore, according to Eq. (27),
the value of Q diverges (ν is almost independent from C−
for SLy and SV forces; Table II and Refs. [7,31,36]). The
isovector gradient terms which are important for the consistent
derivations within the ES approach are also not included (C− =
0) into the symmetry-energy density in Refs. [15,17,18].
In relativistic investigations [12,13] of the structure of the
IVGR distributions, the dependence of these quantities on the
derivative terms has not been investigated so far. It therefore
remains an interesting task for the future to apply similar
semiclassical methods such as the ES approximation used here
also in relativistic models. Moreover, for RATP [37] and SV
[41] (like for SkI) Skyrme forces, the isovector stiffness Q is
even negative as C− > 0 (kS > 0) in contrast to other Skyrme
forces. This would lead to an instability of the vibration of the
neutron skin.

Table II shows also the coefficients ν of Eq. (27) for the
isovector stiffness Q. They are almost constant for all SLy and
SV Skyrme forces, in contrast to other forces [7]. However,
these constants ν, being sensitive to the SO (β) dependence
through Eqs. (26), (25), and (22), change also with L (Table II).
As compared to 9/4 suggested in Ref. [8], they are significantly
smaller in magnitude for most of the Skyrme forces.

In Fig. 7 we show, in the case of the Skyrme forces SLy5*
and SVsym32, the transition densities ρω

∓(x) of Eq. (33)
for the “out”-of-phase (−) and the “in”-phase (+) modes
of the volume vibrations at the excitation energy E2 of the
satellite. The transition densities were not presented in our
preliminary publication [36]. These are the key quantities for
the calculation of the IVDR strengths, according to Eq. (32).
The L dependence is somewhat small, slightly notable mostly
near the ES (|x|∼< 1). From Fig. 8, one finds a remarkable
neutron vs proton excess near the nuclear edge for the same
forces, which is, however, very slightly depending on the slope
parameter L. A small dependence of the transition densities
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FIG. 7. (Color online) The IVDR main out-of-phase (δρ−, “out”)
and in-phase (δρ+,“in”) transition densities ρω

−(x) [Eq. (33)] multi-
plied by (r/R)2, vs x = ξ/a ≈ (r − R)/a (spherical nuclei) for the
satellite in 132Sn with the Skyrme forces SLy5∗ [43] (upper panel)
and SVsym32 [41] (lower panel); the two characteristic values L = 0
and L = 50 (or 60) MeV are shown; the relaxation time T is the same
as in Fig. 3.

on L comes through the symmetry-energy constant kS which
is almost the same in modulus for these forces. We did not
find a dramatic change of the transition densities with the sign
of kS . Therefore, there is a weak sensitivity of the transition
densities on L through the energy E2. We would have expected
a stronger influence of the sign of kS on the vibrations of the
neutron skin rather than on the IVDR. This different sign leads
to the opposite, stable and unstable, neutron skin vibrations.
One observes also other differences between the upper (SLy5*)
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FIG. 8. (Color online) The same but for the IVDR neutron (n)
and proton (p) transition densities ρω(x) [Eq. (33)] multiplied by
(r/R)2, vs x = ξ/a ≈ (r − R)/a for the satellite at the energy E2

in 132Sn with the Skyrme forces SLy5∗ [43,44] (upper panel) and
SVsym32 [41] (lower panel); the two characteristic values L = 0 and
L = 50 (or 60) MeV are shown, too; the relaxation time T is the
same as in Fig. 3.
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FIG. 9. (Color online) The IVDR n-p transition densities ρω(x)
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x = ξ/a ≈ (r − R)/a for the same double magic nuclei slightly
depending on the slope parameter L (in MeV) for a given example
SLy5* of the Skyrme forces as compared to the L = 0 case near the
ES edge as in Fig. 8.

and the lower (SVsym32) panels in both figures: We find a
redistribution of the surface-to-volume contributions of the
transition densities for these two modes. Again, as in Figs. 9
and 10, one finds a considerable change of the neutron-proton
transition densities for the different isotopes for SLy5* and
SVsym32.

The last figure shows theoretical (Fig. 11) evaluations
of the neutron skin. Figure 11 shows the absolute values
of the skin obtained from τ/I multiplying the mean-square
evaluations of the nuclear radii by the factor

√
3/5 for an easy

comparison with experimental data given in [27]. For 208Pb,
one finds that the experimental values �r

exp
np = 0.12 − 0.14 fm

in Ref. [27] (0.156+0.025
−0.021 fm [59]) are in good agreement with

our calculations �r theor
np ≈ 0.10 − 0.13 fm within the ES ap-

proximation (the limits show values from SLy5* to SVsym32).
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FIG. 10. (Color online) The same as in Fig. 9 but for the Skyrme
force SVsym32.
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FIG. 11. (Color online) Neutron skin thickness �rnp =√
3/5 (Rn − Rp) = √

3/5 r0τ (r0 = 1.14 fm) as a function of the
derivative constant L for the same isotopes as in Table II and Figs. 5,
9, and 10 for the SLy5* and SVsym32 forces; full symbols show
SLy5* and open ones correspond to SVsym32 calculations; arrows
show approximately the values of L for different Skyrme forces
taken from Refs. [41,44].

For the isotope 124Sn one obtains �r theor
np ≈ 0.09 − 0.12 fm,

also in good agreement with experimental results. For the
isotope 132Sn, we predict the value �r theor

np ≈ 0.11 − 0.15 fm.
Similarly, for 60Ni and 68Ni, one finds �r theor

np ≈ 0.03 − 0.04
(like in Ref. [27]) and 0.08 − 0.11 fm, respectively.

VIII. CONCLUSIONS

The slope parameter L was taken into account in the leading
ES approximation to derive simple analytical expressions for
the isovector particle densities and energies. These expressions
were used for calculations of the surface symmetry energy, the
neutron skin thickness, and the isovector stiffness coefficients
as functions of L. For the derivation of the surface symmetry
energy and its dependence on the particle density we have to
include main higher order terms in the parameter a/R. These
terms depend on the well-known parameters of the Skyrme
forces. Results for the isovector surface energy constant kS ,
the neutron skin thickness τ , and the stiffness Q depend in
a sensitive way on the parameters of the Skyrme functional
(especially on the parameter C−) in the gradient terms of the
density in the surface symmetry energy [see Eq. (2)]. The
isovector constants kS , τ , and Q depend also essentially on
the slope parameter L, in addition to the SO interaction
constant β. For all Skyrme forces, the isovector stiffness
constants Q are significantly larger than those obtained in
earlier investigations. However, taking into account their
L dependence they come closer to the empirical data. It
influences more on the isovector stiffness Q and on the neutron
skin τ , than on the surface symmetry-energy constant kS .
The mean IVGDR energies and sum rules calculated in the
macroscopic models like the FLD model [6,30] in Table II
are in fairly good agreement with the experimental data for
most of the kS values. As compared with the experimental
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data and other recent theoretical works, we found a somewhat
reasonable two-peak structure of the IVDR strength within the
FLD model. According to our results for the neutron and proton
transition densities [Figs. 8–10], we may interpret semiclassi-
cally the IVDR satellites as some kind of pygmy resonances,
in addition to the traditional studies [12–14,22–25,32–35].
Their energies, sum rules, and n-p transition densities obtained
analytically within the semiclassical FLD approximation are
sensitive to the surface symmetry-energy constant k

S
and

the slope parameter L. Therefore, their comparison with the
experimental data can be used for the evaluation of k

S
and L.

It seems helpful to describe them in terms of only few critical
parameters, like kS and L.

For further perspectives, it would be worthwhile to apply
our results to calculations of the IVDR strength structure
within the FLD model [30] in a more systematic way. In
this respect it is also interesting that the low-lying collective
isovector states are expected to be even more sensitive to
the values of kS within the periodic orbit theory [52,60,61].
More general problems of classical and quantum chaos in
terms of the level statistics and Poincare and Lyapunov
exponents (Ref. [62] and references therein) might lead to
progress in studying the fundamental properties of collective
dynamics like nuclear fission within the Swiatecki-Strutinsky
macroscopic-microscopic model. Our approach is helpful also
for further study of the effects in the surface symmetry
energy because it gives analytical universal expressions for
the constants kS , τ , and Q as functions of the slope parameter
L which do not depend on specific properties of nuclei as they
are directly connected with a few critical parameters of the
Skyrme interaction without any fitting.
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APPENDIX A: SOLUTIONS OF THE ISOVECTOR
LAGRANGE EQUATION

The Lagrange equation for the variations of the isovector
particle density ρ− is given in the local coordinates ξ,η by
[5,7]

2C−
∂2ρ−
∂ξ 2

+2C−H
∂ρ−
∂ξ

− d

dρ−
[ρ+ε−(ρ+,ρ−)]+λ− = 0, (A1)

where H is the mean curvature of the ES, and λ− is the ES
correction to the isovector chemical potential. Up to the leading

terms in a small parameter a/R one gets from Eq. (A1)

2C−
∂2ρ−
∂ξ 2

− d

dρ−
[ρ+ε−(ρ+,ρ−)] = 0. (A2)

We neglected here the higher order terms proportional to
the first derivatives of the particle density ρ− with respect
to ξ and the surface correction to the isovector chemical
potential in Eq. (A1) (Refs. [2,3] for the isoscalar case). For
the dimensionless isovector density w− = ρ−/(ρI ) one finds
after simple transformations the following equation and the
boundary condition in the form,

dw−
dw

= csym

√
Ssym(ε)(1+βw)

e[ε(w)]

√∣∣∣1−w2−
w2

∣∣∣,
w−(w = 1) = 1, (A3)

where β is the SO parameter defined below Eq. (9), Ssym =
Ssym/J , csym is defined in Eq. (12), and Ssym(ε) in Eq. (6).
The above equation determines the isovector density w− as a
function of the isoscalar one w(x) [Eq. (9)]. In the quadratic
approximation for e[ε(w)] [up to a small asymmetry correction
proportional to I 2 in Eq. (4)], one finds an explicit analytical
expression in terms of elementary functions [7]. Substituting
w− = w cosψ into Eq. (A3), and taking the approximation
e = (1 − w)2, one has the following first-order differential
equation for a new function ψ(w):

− w(1 − w)

csym
sinψ

dψ

dw
=

√
Ssym(ε)(1 + βw) sinψ

− 1 − w

csym
cosψ, ψ(w = 1) = 0.

(A4)

The boundary condition for this equation is related to that of
Eq. (A3) for w−(w). This equation looks more complicated
because of the trigonometric nonlinear terms. However, it
allows one to obtain simple approximate analytical solutions
within standard perturbation theory. Indeed, according to
Eqs. (A3) and (9), where we do not have an explicit x
dependence, we note that w− is mainly a sharply decreasing
function of x through w(x) within a small diffuseness region
of the order of one in dimensionless units (Figs. 1 and 2).
Thus, we may find approximate solutions to Eq. (A4) with its
boundary condition in terms of a power expansion of a new
function ψ̃(γ ) in terms of a new small argument γ [Eq. (12)],

ψ̃(γ ) ≡ ψ(w) =
∞∑

n=0

cn γ n(w), (A5)

where the coefficients cn and γ are defined in Eq. (12).
Substituting the power series (A5) into Eq. (A4), one expands
first the trigonometric functions into a power series of γ
according to the boundary condition in Eq. (A4). As usual,
using standard perturbation theory, we obtain a system of
algebraic equations for the coefficients cn [Eq. (A5)] by
equating coefficients from both sides of Eq. (A4) with the
same powers of γ . This simple procedure leads to a system of
algebraic recurrence relations which determine the coefficients
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cn as functions of the parameters β and csym of Eq. (A4),

c0 = 0, c1 = 1√
1 + β

,

c2 = c1

2csym(1 + β)

(
βc2

sym + 2 + L

3J
c2

sym(1 + β)

)
,

c3 = −c1

{
4

3
c2

1 − 3
c1c2

csym
− c2csym

2c1

(
βc2

1 + L

3J

)

− 1

8
β2c2

symc4
1 + K−c2

sym

36J
+ c2

symL

12J

(
βc2

1 − L

6J

)}
, (A6)

and so on. In particular, up to second order in γ , we derive
analytical solutions as functions of β, csym, J , and L in an
explicitly closed form:

ψ̃(γ ) = γ (c1 + c2γ ), c1 = 1√
1 + β

, (A7)

c2 = βc2
sym + 2 + Lc2

sym(1 + β)/(3J )

2(1 + β)3/2csym
. (A8)

Thus, using the standard perturbation expansion method of
solving ψ̃(γ ) in terms of the power series of the γ up to γ 2,
one obtains the quadratic expansion of ψ(w) [Eq. (13)] with
c̃ = c2/c1. Notice that one finds a good convergence of the
power expansion of ψ̃(γ (w)) (A7) in γ (w) for w−(x) at the
second order in γ (w) because of values of csym larger one for
all Skyrme forces presented in Table I [Eq. (12) for csym].

APPENDIX B: DERIVATIONS OF THE SURFACE ENERGY
AND ITS COEFFICIENTS

For the calculation of the surface energy components E
(±)
S

of the energy E in Eq. (1) within the same improved ES
approximation as described above in Appendix A we first
separate the volume terms related to the first two terms of
Eq. (2) for the energy density E per particle. Other terms of
the energy density ρE(ρ+,ρ−) in Eq. (2) lead to the surface
components E±

S [Eq. (18)], as they are concentrated near
the ES. Integrating the energy density ρE per unit of the
volume [see Eq. (2)] over the spatial coordinates r in the local
coordinate system ξ,η (see Fig. 1) in the ES approximation,
one finds

E±
S =

∮
dS

∫ ∞

ξin

dξ [C±(∇ρ±)2 + ρ+ε±(ρ+,ρ−)] ≈ σ± S,

(B1)

where ξin ∼< − a (Refs. [2,3,5]). The local coordinates ξ,η
were used because the integral over ξ converges rapidly within
the ES layer which is effectively taken for |ξ |∼< a. Therefore
again, we may extend formally ξin to −∞ in the first (internal)
integral taken over the ES in the normal direction ξ in Eq. (B1).
Then, the second integration is performed over the closed
surface of the ES. The integrand over ξ contains terms of the
order of (ρ/a)2 ∝ (R/a)2 like the ones of the leading order
in the first equation of Ref. [7]. However, the integration is
effectively performed over the edge region of the order of a
that leads to the additional smallness proportional to a/R. At

this leading order the η dependence of the internal integrand
can be neglected. Moreover, from the Lagrange equations
[see Eq. (A2) for the isovector case] at this order one can
realize that terms without the particle density gradients in
Eq. (B1) are equivalent to the gradient terms. Therefore, for
the calculation of the internal integral we may approximately
reduce the integrand over ξ to derivatives of the universal
particle densities of the leading order ρ±(ξ ) in ξ using
C±(∇ρ±)2 + ρ+ε±(ρ+,ρ−) ≈ 2C±(∂ρ±/∂ξ )2 [see Eqs. (9) and
(13) for w±(x)]. We emphasize that the isovector gradient
terms are obviously important for these calculations. Taking
the integral over ξ within the infinite integration region (−∞ <
ξ < ∞) out of the integral over the ES (dS) we are left with the
integral over the ES itself that is the surface area S. Thus, we
arrive finally at the right-hand side of Eq. (B1) with the surface
tension coefficient σ± = b

(±)
S /(4πr2

0 ) [see Eq. (19) for b
(±)
S ].

Using now the quadratic approximation e[ε(w)] =
(1 − w)2 in Eq. (19) for b±

S (D− = 0) one obtains (for β < 0,
see Table I)

b
(±)
S = 6ρ C±

J±
r0a

, (B2)

where

J+ =
∫ 1

0
dw

√
w(1 + βw) (1 − w)

= 1

24(−β)5/2
[J (1)

+
√

−β(1 + β) + J (2)
+ arcsin

√
−β],

(B3)

with

J (1)
+ = 3 + 4β(1 + β), J (2)

+ = −3 − 6β. (B4)

For the isovector energy constant J− one finds

J− = −1

1 + β

∫ 1

0
dw

√
w(1 + βw)(1 − w)(1 + c̃γ (w))2

= c̃2

1920(1 + β)(−β)9/2

[
J (1)

−
(csym

c̃

)√
−β(1 + β)

+J (2)
−

(csym

c̃

)
arcsin

√
−β

]
, (B5)

with

J (1)
− (ζ ) = 105 − 4β{95 + 75ζ + β[119 + 10ζ (19 + 6ζ )

+ 8β2(1 + 10ζ (1 + ζ )) + 8ζ (5ζ (3 + 2ζ ) − 6)]},
J (2)

− (ζ ) = 15{7 + 2β[5(3 + 2ζ ) + 8β(1 + ζ )

× (3 + ζ + 2β(1 + ζ ))]}. (B6)

These equations determine explicitly the analytical
expressions for the isoscalar (b(+)

S ) and isovector (b(−)
S )

energy constants in terms of the Skyrme force parameters;
see Eq. (15) for c̃ and Eq. (12) for csym and γ (w). For the
limit β → 0 one has from Eqs. (B3) and (B5) J± → 4/15.
With Eqs. (25) and (26) one arrives also at the explicit
analytical expression for the isovector stiffness Q as a
function of C− and β. In the limit C− → 0 one obtains kS → 0
and Q → ∞ because of the finite limit of the argument
csym/̃c → 2(1 + β)/[β + (1 + β)L/(3J )] of the function J−
in Eq. (B5) [see also Eq. (13) for c̃ and Eq. (12) for csym].
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