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Variation after projection with a triaxially deformed nuclear mean field
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We implemented a variation after projection (VAP) algorithm based on a triaxially deformed Hartree-Fock-
Bogoliubov vacuum state. This is the first projected mean field study that includes all the quantum numbers (except
parity), i.e., spin (J ), isospin (T ), and mass number (A). Systematic VAP calculations with JTA projection have
been performed for the even-even sd-shell nuclei with the USDB Hamiltonian. All the VAP ground state energies
are within 500 keV above the exact shell model values. Our VAP calculations show that the spin projection has
two important effects: (1) the spin projection is crucial in achieving good approximation of the full shell model
calculation; (2) the intrinsic shapes of the VAP wave functions with spin projection are always triaxial, while the
Hartree-Fock-Bogoliubov methods likely provide axial intrinsic shapes. Finally, our analysis suggests that one
may not be possible to associate an intrinsic shape to an exact shell model wave function.
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I. INTRODUCTION

The Hartree-Fock-Bogoliubov (HFB) method has been
very successful in describing the global properties of the
ground states throughout the whole nuclear region. As a
mean field method, HFB breaks the symmetries of the nuclear
system, and can be used to study the intrinsic shapes. The HFB
calculations with Gogny force show that almost all the calcu-
lated 1712 nuclei have axially symmetric HFB minima [1].

Projection can be done on a HFB vacuum to recover the
symmetries that the Hamiltonian obeys. To test the quality of
the projected wave functions, one can compare them with the
exact shell model ones using a common Hamiltonian. HFB and
variation after projected HFB calculations with shell model
Hamiltonians have been reported by several authors [2–5].
For those calculations without projection, the HFB vacuum
states are often assumed to be axially symmetric [4]. Indeed,
we will see below that all the calculated HFB minima in sd-
shell nuclei, except 24Mg, are exactly axial with the USDB
Hamiltonian [6].

However, if one performs the variation of the projected
HFB vacuum, usually called variation after projection (VAP)
[7], it is likely that the intrinsic shape may change due to
the inclusion of beyond mean field correlations. One typical
example is the ground state (g.s.) of 32Mg, which is predicted
to be spherical at the mean field level [8], but it turns out to have
a quadrupole deformation when the correlations associated
with the restoration of the broken rotational symmetry are
considered [9]. Another example is 56Ni, whose ground state is
spherical at the mean field level, but is slightly deformed when
performing the projected energy surface calculation [10].

Moreover, the triaxial (γ ) degree of freedom plays impor-
tant roles on the low-lying collective dynamics in this mass
region [12]. In 24Mg the possibility of the triaxial deformation
in the ground state was discussed for decades [13–15], and it

*zcgao@ciae.ac.cn

is still being used as the testing ground for modern theories
involving angular momentum (spin) projection [16–18].

In this work, we perform VAP calculations of the even-even
sd-shell nuclei using the USDB Hamiltonian. Here, we allow
the γ degree of freedom in the HFB transformation. The
shell model Hamiltonian conserves the spin (J ), isospin
(T ), as well as the mass number (A). Hence a complete
projection should recover all J, T , and A quantum numbers.
This is generally very time-consuming because of the seven-
dimensional integration (three for J , three for T , and one for
A). Presently, we can only carry out such extensive studies
in the sd shell. For efficiency, we use the new techniques of
Refs. [19–21] to evaluate the kernels for projections.

II. THE VAP METHOD

From a randomly chosen HFB vacuum state |�0〉, one can
construct a new HFB vacuum state |�〉 using the Thouless
theorem [7]. Namely,

|�〉 = N e
1
2

∑
μν dμνa

†
μa

†
ν |�0〉, (1)

where d is a skew symmetric matrix, and N is the normal-
ization factor. The triaxiality of the HFB vacuum can be
treated similar to Ref. [22] so that the Q2±1 components of
the quadrupole moment vanish.

Projecting |�〉 onto good quantum numbers J , T , and
A, one gets the so-called JTA projection (similarly, T A
projection for T ,A, etc.). The JTA-projected wave function
can be written as

|�JTA,MMT
〉 =

∑
KKT

fKKT
P J

MKP T
MT KT

P A|�〉, (2)

where P J
MK , P T

MT KT
, and P A are the spin, isospin, and mass

number projection operators, respectively. The isospin projec-
tion operator is similar to the spin projection operator but in
the isospin space. The corresponding JTA-projected energy is

EJTA = 〈�JTA,MMT
|Ĥ |�JTA,MMT

〉
=

∑
K ′KK ′

T KT

f ∗
K ′K ′

T
fKKT

〈�|ĤP J
K ′KP T

K ′
T KT

P A|�〉. (3)
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EJTA and the corresponding coefficients fKKT
are obtained by

solving∑
KKT

〈�|(Ĥ − EJTA)P J
K ′KP T

K ′
T KT

P A|�〉fKKT
= 0 (4)

with fKKT
satisfying∑

K ′KK ′
T KT

f ∗
K ′K ′

T
fKKT

〈�|P J
K ′KP T

K ′
T KT

P A|�〉 = 1. (5)

One can also perform the T A projection by simply
removing the spin projection from Eqs. (2)–(5),

|�TA,MT
〉 =

∑
KT

fKT
P T

MT KT
P A|�〉, (6)

ETA = 〈�TA,MT
|Ĥ |�TA,MT

〉
=

∑
K ′

T KT

f ∗
K ′

T
fKT

〈�|ĤP T
K ′

T KT
P A|�〉. (7)

For the A projection, the corresponding energy, EA, is
reduced to

EA = 〈�|ĤP A|�〉
〈�|P A|�〉 . (8)

Without any projection, we define

EHFB = 〈�|Ĥ |�〉. (9)

It is natural that one may consider the neutron (N ) and
proton (Z) projection, as has been done in Refs. [2,5].
However, this is essentially the same as the MT A projection
[MT = (N − Z)/2]. Here, we prefer to take the TA projection
to recover the total isospin symmetry. In our case, the MT

projection is no longer necessary because the total isospin and
the mass number are good quantum numbers. Thus all quantum
numbers J, T ,N , and Z (parity is automatically good in the sd
valence space) have been recovered in the present work. The
sd valence space wave functions have the center of mass in
its g.s., provided that harmonic oscillator single particle wave
functions are considered.

VAP calculations can be performed by changing the d
matrix in Eq. (1). Here, we impose the following restrictions
for the d matrix: (1) d is real, (2) keeping the time reversal
symmetry, and (3) no mixing between neutron and proton in the
HFB transformation. Therefore the total number of free VAP
parameters for the sd shell is reduced to NVAP = 42. In practice
we start with d = 0 and with Nilsson+BCS vacuum states |�0〉

obtained with randomly chosen quadrupole parameters [10].
The triaxial degree of freedom is also allowed in |�0〉.

We follow the VAP algorithm whose details were in-
troduced in Ref. [5]. Here are the main steps used in our
VAP calculations. Given a certain d matrix, one can get the
corresponding HFB transformation for the vacuum |�〉 [5].
Solving Eq. (4), one can obtain several EJTA eigenenergies
for the single |�〉. The lowest EJTA and the corresponding
coefficients fKKT

are considered. Having fixed all fKKT
, one

can evaluate the partial derivatives ∂EJTA
∂dμν

whose expression can
be obtained from Eq. (3) [5]. If EJTA reaches a minimum,
then ∂EJTA

∂dμν
≈ 0 for all selected dμν parameters and the VAP

calculation terminates. Otherwise, we continue to search for
a minimum using a gradient method [11] that updates the d
matrix and is going to the next iteration.

To extract the intrinsic shape, the quadrupole moment and
the triaxial degree of freedom, Q and γ , are defined such that

Q cos γ = 〈�|
√

16π

5

r2

b2
Y20|�〉, (10)

Q sin γ = 〈�|
√

16π

5

r2

b2

1√
2

(Y22 + Y2−2)|�〉, (11)

where b is the harmonic oscillator length. |�〉 refers to an
intrinsic state, which may have different forms. Explicitly, we
define

(1) QHFB and γHFB for |�〉 = |�〉,
(2) QA and γA for |�〉 = P A|�〉√

〈�|P A|�〉 , and

(3) QTA and γTA for |�〉 = |�TA,MT
〉.

III. VAP CALCULATIONS FOR 24Mg

When performing the energy variation, one may find that
there might be more than one energy minima. Therefore,
the energy variation should be calculated several times with
different starting |�0〉 states which are randomly chosen. We
then identify the lowest minimum, and denote it with E∗. Here
and below, we only discuss the results corresponding to E∗.

In the present work, we adopt the USDB Hamiltonian [6].
The HFB energy for 24Mg is E∗

HFB = −80.965 MeV with
the constraints 〈�|N̂ |�〉 = N and 〈�|Ẑ|�〉 = Z. This is the
only sd-shell nucleus for which the HFB calculation gives
a nonaxial shape with Q∗

HFB = 18.659 and γ ∗
HFB = 11.96◦

(here and below the Q∗ and γ ∗ are the shape parameters
that can be associated with the absolute minimum for some
VAP choice). Let us first do the simplest VAP with only

TABLE I. Results of the VAP-A calculations for 24Mg. We perform the VAP calculations for several times. Each time we start with different
|�0〉 states. The numbers in the first column denote different |�0〉 states. The second column shows the converged energy E∗

A. Quantities in
other columns are calculated with the converged |�〉 vacua. Energies are in MeV.

|�0〉 E∗
A QA γA(◦) EHFB QHFB γHFB(◦) 〈Â〉

1 −81.358 18.284 10.05 −81.008 18.005 9.46 8.110
2 −81.358 18.284 130.05 −90.178 18.371 128.94 9.013
3 −81.358 18.284 −109.95 −82.684 18.120 −110.61 8.259
4 −81.358 18.284 10.05 −79.720 17.905 9.05 8.000
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TABLE II. Similar to Table I but for the VAP-TA calculations. 〈A〉 = 8 is imposed.

|�0〉 E∗
TA(MeV) QTA γTA(◦) EA(MeV) QA γA(◦) EHFB(MeV) QHFB γHFB(◦) 〈A〉

1 −82.831 17.295 −119.91 −75.826 16.376 −118.62 −74.921 15.755 −118.23 8.000
2 −82.831 17.295 0.09 −74.402 16.167 2.47 −73.909 15.563 3.06 8.000
3 −82.831 17.295 120.09 −76.633 16.526 120.09 −75.525 15.897 120.08 8.000

A projection (called VAP-A). Since the particle number is
already projected out, it might be unnecessary to impose a
constraint to the average particle number of the HFB vacuum.
To check this conjecture, we start from several different |�0〉
states and perform VAP-A. The results for few selected |�0〉
choices are shown in Table I. One can see that the VAP-A
energies are identical (E∗

A = −81.358 MeV). However, the
corresponding EHFB, QHFB, γHFB, and 〈Â〉 ≡ 〈�|Â|�〉 appear
randomly, but after the A projection, the QA values are the
same. Although the γA values look different, the numbers
indicate the same shape but with different orientations. All
these results imply that although the converged vacua |�〉 are
not unique, they correspond to the same A-projected state. This
can be further confirmed by calculating the overlaps between
these projected states corresponding to different |�〉. Our
calculations show that all these overlaps among the converged
HFB vacua in Table I are found to be 1 except for an arbitrary
phase, i.e.,

〈�|P A|�′〉√
〈�|P A|�〉〈�′|P A|�′〉

= eiδ, (12)

where δ is a real number. |�〉 and |�′〉 are different converged
HFB vacua, but |�′〉 is the reoriented one whose γA value
should be the same as for |�〉.

Therefore, one can adopt the values Q∗
A = 18.284 and

γ ∗
A = 10.05 to define the shape of the VAP-A minimum.

If one imposes 〈Â〉 = A = 8, we still have E∗
A = −81.358

MeV, now the converged |�〉 vacuum becomes unique, with
EHFB = −79.720, QHFB = 17.905, and γHFB = 9.05◦ (see the
last line in Table I). However, for the VAP with TA projection,
the situation becomes a little different.

VAP calculations with TA projection (called VAP-TA)
are listed in Table II. Unlike VAP-A, even if one imposes
〈Â〉 = A = 8 for 24Mg, the converged |�〉 is still not unique
as the EHFB energy appears randomly. Moreover, the EA

energy is not unique either. Interestingly, after TA projection,
those different |�〉 vacuum states have exactly the same
projected energy E∗

TA = −82.831(MeV) and the same Q∗
TA =

17.295. Similarly, we found (after rotation) γ ∗
TA = 0.09◦,

which describes an almost axial shape. Again, our calculations

show that the overlaps of the TA-projected states satisfy

〈�TA,MT
|� ′

TA,MT
〉

=
∑

KT K ′
T

f ∗
KT

f ′
K ′

T
〈�|P T

KT K ′
T
P A|�′〉 = eiδ, (13)

where |�′〉 generating |� ′
TA,MT

〉 should be treated similar to
that in Eq. (12). One can conclude that those VAP-TA projected
states in Table II are essentially identical and the associated
shape can only be described by QTA and γTA.

A complete symmetry restoration is the JTA projection.
VAP results with JTA projection (called VAP-JTA) are shown
in Table III. All the converged E∗

JTA energies are −86.919 MeV,
significantly closer to the shell model result ESM = −87.105
MeV. Overlap calculations clearly confirm that those JTA-
projected states are identical, i.e.,

〈�JTA,MMT
|� ′

JTA,MMT
〉

=
∑

KKT K ′K ′
T

f ∗
KKT

f ′
K ′K ′

T
〈�|P J

KK ′P
T
KT K ′

T
P A|�′〉

= eiδ. (14)

Here, |�′〉 does not need to be reoriented due to the inclusion
of the spin projection.

Again, both EA and EHFB in Table III cannot be uniquely
determined, even if one enforces the 〈Â〉 = A constraint.
Fortunately, with the additional spin projection, all ETA values
are found to be −79.879 MeV, and similarly the corresponding
shape is described by QTA = 19.057 and γTA = 16.96◦.
Therefore, the quantities that can be associated with the shape
of the VAP-JTA wave function should be Q∗

TA = 19.057 and
γ ∗

TA = 16.96◦.
One can study the shape evolution of 24Mg from HFB

to VAP-JTA. In VAP-TA, Q∗
TA looks smaller than Q∗

HFB in
HFB, and γ ∗

TA tends to be close to zero (axial shape). However
in VAP-JTA, Q∗

TA is larger than the Q∗
HFB in HFB, and γ ∗

TA
tends to describe a triaxial shape. This triaxiality in VAP-
JTA, in comparison with VAP-TA, is likely caused by the spin
projection. Nuclear triaxiality caused by the spin projection
has been previously discussed by several authors [16–18,23–
25]. To determine if this phenomenon is more general, we

TABLE III. Similar to Table. I but for the VAP-JTA calculations. 〈A〉 = 8 is imposed.

|�0〉 E∗
JTA(MeV) ETA(MeV) QTA γTA(◦) EA(MeV) QA γA(◦) EHFB(MeV) QHFB γHFB(◦) 〈A〉

1 −86.919 −79.879 19.057 −16.964 −75.600 17.482 −20.225 −73.781 16.230 −23.772 8.000
2 −86.919 −79.879 19.057 −16.963 −75.641 17.510 −20.119 −73.830 16.264 −23.604 8.000
3 −86.919 −79.879 19.057 −16.963 −75.644 17.520 −20.068 −73.845 16.281 −23.506 8.000
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FIG. 1. (Color online) (a) Calculated ground state energies rela-
tive to the shell model results, ESM. (b) Relative VAP-JTA energy,
E∗

JTA − ESM, versus the shell model dimension, NJT, in JT subspace.

performed systematic VAP calculations for a larger number of
even-even sd-shell nuclei.

IV. VAP CALCULATIONS FOR EVEN-EVEN
sd-SHELL NUCLEI

VAP calculations have been performed for the ground states
of even-even sd-shell nuclei. The calculated energies relative
to the shell model ones are shown in Fig. 1(a). The numerical
results are given in Table IV. Here, we did not include
the oxygen isotopes and the N = 20 isotones because their
VAP-JTA energies are exactly the same as the shell model
results (ESM). This special case is discussed below. The
VAP-JTA energies are much lower than those of HFB and
VAP-TA. Moreover, The VAP-JTA energies for 20Ne, 28Ne,

γ γ

γγ

FIG. 2. (Color online) Associated intrinsic quadrupole moments
Q and γ for (a) HFB vacuum states, (b) VAP-TA states, (c) VAP-JTA
states, and (d) VAP-HF states which is based on a slater determinant.

and 36Ar nuclei are exactly the same as the shell model results
[see also Fig. 1(b)]. This can be understood by comparing
the number of VAP parameters, NVAP, with the shell model
dimension, NJT (the total number of the independent basis
states with good JT). Here, NVAP = 42. The NJT values with
J = 0 and T = 0 for both 20Ne and 36Ar are only 21. For
28Ne, NJT for J = 0 and T = 4 is 43. It looks that when NJT

is less than, or close to NVAP, then the VAP-JTA energy is likely
to be the same as the shell model one. Indeed, for all even-even
oxygen isotopes and for the N = 20 isotones, for which
NJT � NVAP, we have obtained E∗

JTA = ESM. In Fig. 1(b), one
can also see that the energy difference E∗

JTA − ESM increases

TABLE IV. Converged energies and associated shape parameters for even-even sd-shell nuclei calculated with the USDB Hamiltonian.

Nucleus VAP-JTA VAP-TA HFB VAP-HF

NJT ESM E∗
JTA Q∗

TA γ ∗
TA E∗

TA Q∗
TA γ ∗

TA E∗
HFB Q∗

HFB γ ∗
HFB E∗

PHF Q∗
PHF γ ∗

PHF

20Ne 21 −40.472 −40.472 – – −37.069 14.7 0.0 −36.404 15.3 0.0 −40.265 13.861 3.551
22Ne 148 −57.578 −57.501 12.1 13.8 −54.572 15.8 0.0 −53.474 16.5 0.0 −56.958 15.675 8.632
24Ne 287 −71.725 −71.570 11.0 30.1 −68.084 10.1 60.0 −66.402 12.0 0.0 −71.037 13.449 32.786
26Ne 191 −81.564 −81.465 9.2 28.4 −78.949 8.6 0.0 −77.518 8.3 0.0 −80.988 9.760 17.265
28Ne 43 −86.543 −86.543 – – −84.920 7.0 60.0 −83.949 7.1 0.0 −86.294 9.848 23.934
24Mg 325 −87.105 −86.919 19.1 17.0 −82.831 17.3 0.0 −80.965 18.7 12.0 −86.636 19.165 16.427
26Mg 1132 −105.521 −105.075 15.8 28.7 −100.648 13.8 25.7 −98.992 15.9 60.0 −104.264 16.238 32.331
28Mg 874 −120.500 −120.205 14.5 20.2 −117.091 14.4 0.0 −115.625 15.1 0.0 −119.354 16.306 19.835
30Mg 191 −130.474 −130.400 10.4 20.0 −128.035 10.3 0.0 −126.735 10.9 0.0 −129.926 11.864 27.322
28Si 839 −135.860 −135.539 16.1 58.6 −131.501 17.8 60.0 −130.021 19.8 60.0 −134.617 17.116 58.038
30Si 1132 −154.754 −154.402 14.3 47.0 −150.380 10.6 60.0 −148.475 14.5 60.0 −153.777 14.633 46.167
32Si 287 −170.519 −170.373 12.5 58.2 −167.721 10.6 60.0 −166.344 12.4 60.0 −169.996 12.175 52.023
32S 325 −182.452 −182.234 15.1 33.3 −179.925 0.6 60.0 −176.393 0.0 0.0 −181.856 14.681 33.188
34S 148 −202.504 −202.380 10.6 53.0 −200.331 0.0 0.0 −198.493 0.0 0.0 −202.039 11.496 50.992
36Ar 21 −230.277 −230.277 – – −228.355 0.0 0.0 −226.611 13.2 60.0 −230.112 12.068 52.293
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TABLE V. VAP results with JTA projection for 20Ne.

|�0〉 E∗
JTA(MeV) ETA(MeV) QTA γTA(◦)

1 −40.472 −28.284 6.314 −45.134
2 −40.472 −30.468 11.873 −124.746
3 −40.472 −27.932 9.876 2.592

with NJT. The largest E∗
JTA − ESM = 0.446 MeV is obtained

for 26Mg, corresponding to the largest NJT = 1132.
The quadrupole moment and the γ degree of freedom can

be extracted using Eqs. (10) and (11). In Fig. 2(a), the γ ∗
HFB

values in HFB are either 0◦ or 60◦, except γ ∗
HFB = 12◦ for

24Mg, thus supporting the conclusion that HFB likely presents
axially deformed shapes. In Fig. 2(b), the shapes in VAP-TA
calculations still remain axially symmetric, except for 26Mg,
which has γ ∗

TA = 25.7◦. Quite differently, the γ ∗
TA values in the

VAP-JTA calculations [Fig. 2(c)] show that all these nuclei
are nonaxial without exception. Comparing these results with
those of Fig. 2(a), one can conclude that the triaxiality in
VAP-JTA is definitely a beyond mean-field effect, which is
likely to be a universal phenomenon. Figure 2(b), however,
excludes the possibility that the isospin projection and the mass
projection lead to triaxiality. Thus, the only possible cause of
the triaxiality is the beyond mean-field spin projection.

To study directly the effect of spin projection, one can
start from a Hartree-Fock (HF) Slater determinant (SD)
and perform VAP calculations with only spin projection
(called VAP-HF). The converged energies, E∗

PHF, relative to
ESM, are shown in Fig. 1(a). The results show that VAP-HF
is better than VAP-TA, and quite close to the VAP-JTA.
The quadrupole moment Q∗

PHF and γ ∗
PHF corresponding to

E∗
PHF can be calculated using Eqs. (10) and (11) with |�〉

replaced by the converged SD. These quantities are uniquely
determined, and are shown in Fig. 2(d). Again, all the γ ∗

PHF
values are distributed in the interval (0◦,60◦), which is very
similar to Fig. 2(c). Therefore, we could conclude that VAP
results that include spin projection can always be associated
with intrinsic states having triaxial deformation.

One more interesting phenomenon, however, is related to
the VAP-JTA calculations for 20Ne, 28Ne, and 36Ar. We
have shown above that the E∗

JTA energies of these nuclei are
the same as the exact shell model results. Surprisingly, the
corresponding QTA and γTA values are not unique, which
is quite different from other nuclei with E∗

JTA > ESM. For
example, the results for 20Ne are shown in Table V. With the
same converged E∗

JTA = −40.472 MeV, one can clearly see
that starting with different initial states |�0〉, the results for
QTA and γTA could be different. These results indicate that it

may not be possible to associate a unique intrinsic deformation
with an exact eigenstate of the Hamiltonian.

V. SUMMARY

We implemented an algorithm that performs variation after
projection (VAP) on spin, isospin, and mass number of a
triaxially deformed Hartree-Fock-Bogoliubov vacuum state.
This is the first projected mean field study that includes all
these quantum numbers.

We start from a randomly chosen HFB vacuum state
and carry out VAP calculations for 24Mg in the sd shell
with various projections. In the VAP-A case the converged
solution is independent of the Fermi level (chemical potential).
Although the associated HFB vacuum does not have definite
quadrupole moment QHFB and triaxial deformation parameter
γHFB, one can use the unique QA and γA to describe the intrinsic
deformation of the VAP-A state. Similarly, in the VAP-TA
calculations, QA and γA cannot be uniquely determined, but
QTA and γTA are unique and can be associated with the intrinsic
deformation of the VAP-TA state. It is not possible to directly
define deformation parameters Q and γ for the VAP-JTA wave
function, which has the symmetries fully restored, but the QTA

and γTA calculated with the VAP-JTA vacuum state |�〉 are also
unique, and can be associated with the intrinsic deformation
of the VAP-JTA state.

Systematical VAP calculations of even-even sd-shell nuclei
have been performed using the USDB Hamiltonian. The VAP-
JTA energies, E∗

JTA, are very close to the shell model results,
ESM. Moreover, the relative energy, E∗

JTA − ESM, increases
with the shell model dimension NJT. The shapes described
by the HFB minima are always axial. However, with spin
projection VAP calculations always produce triaxial shapes.
We believe that such triaxiality is an universal phenomenon
caused by the beyond mean-field dynamic correlations. Fi-
nally, we show that those VAP-JTA states reaching the exact
shell model results do not have clearly defined intrinsic shapes.
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