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Effective field theory for nuclear vibrations with quantified uncertainties

E. A. Coello Pérez1 and T. Papenbrock1,2

1Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
2Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 9 October 2015; published 14 December 2015)

We develop an effective field theory (EFT) for nuclear vibrations. The key ingredients—quadrupole degrees
of freedom, rotational invariance, and a breakdown scale around the three-phonon level—are taken from
data. The EFT is developed for spectra and electromagnetic moments and transitions. We employ tools from
Bayesian statistics for the quantification of theoretical uncertainties. The EFT consistently describes spectra
and electromagnetic transitions for 62Ni , 98,100Ru , 106,108Pd , 110,112,114Cd, and 118,120,122Te within the theoretical
uncertainties. This suggests that these nuclei can be viewed as anharmonic vibrators.
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I. INTRODUCTION

The quest for quadrupole vibrations in atomic nuclei is a
long and confusing one. Based on the groundbreaking work by
Bohr and Mottelson [1–3], low-energy excitations of atomic
nuclei are viewed as quadrupole oscillations of the liquid-
drop surface. This approach suggests that some spherical
nuclei can be viewed as harmonic quadrupole oscillators;
i.e., the five-dimensional U(5) symmetric harmonic oscillator
determines their spectra and low-lying transitions. Cadmium
isotopes, for instance, have been employed as textbook cases
of vibrational motion [3–5]. While corresponding harmonic
spectra (including one-, two-, and possibly three-phonon
states) were early identified in several nuclei, B(E2) transition
strengths exhibit considerable deviations from the predictions
of the harmonic quadrupole oscillator; see, e.g., Refs. [6–17]
for recent references to a long-standing problem [3,18].
Proposed anharmonicities were deemed insufficient to account
for the considerable differences between data and the harmonic
model [3,19]. Particularly concerning were the considerable
variance between B(E2) strengths for decays from two-
phonon states (predicted to be equal) and the relatively large
diagonal quadrupole matrix elements of low-lying 2+ and
4+ states (predicted to vanish); see, e.g., Refs. [20–22]. The
observed deviations from the harmonic quadrupole oscillator
are sometimes attributed to deformation of these thought-to-
be-spherical nuclei.

Based on the data it is clear that harmonic quadrupole
vibrations have not (yet) been observed in atomic nuclei.
It is not clear, however, how to understand the vibrational
spectra that are evident in many nuclei. In this paper, we
reexamine nuclear vibrations within an effective field theory
(EFT). The key ingredients of the EFT—quadrupole degrees of
freedom, spherical symmetry, the separation of scales between
low-lying collective excitations and a breakdown scale at about
the three-phonon level—are consistent with data for spins and
parities of low-lying states in the nuclei we wish to describe.
The low-energy scale is approximately ω ≈ 0.6 MeV in nuclei
of mass number 100, while the breakdown scale � ≈ 3ω is
attributable to pairing effects and other excluded physics. At
leading order (LO), the EFT yields the harmonic quadrupole
oscillator. The breakdown scale is based on the observed
proliferation of states at about the three-phonon level, which

is clearly incompatible with the expectations from the LO
Hamiltonian. In an EFT, corrections to the LO Hamiltonian
are attributable to the excluded physics beyond the breakdown
scale. A power counting can be used to estimate their size
and to systematically improve the Hamiltonian—order by
order—as well as transition operators. This is the program
we follow in this paper.

We note that EFTs now have a decades-old history in the
physics of nuclei. Most effort has been dedicated to an EFT of
the interactions between nucleons itself; see Refs. [23–26] for
reviews. Paired with ab initio calculations [27–29], such in-
teractions now provide us with a model-independent approach
to atomic nuclei. Halo EFT exploits the separation of scales
between weakly bound halo nucleons and core excitations at
much higher energy [30–33]. The EFT for heavy deformed
nuclei [34,35] exploits the separation of scales between low-
lying rotational modes and higher-energetic vibrations that
result from the quantization of Nambu-Goldstone modes in
finite systems [36,37].

In this paper we also spend a considerable effort on
the quantification of theoretical uncertainties. If a theoreti-
cal result is within the experimental uncertainties, theorists
usually claim success. However, for meaningful predictions,
theoretical uncertainties are crucial. Likewise, disagreement
between theoretical results and data can only be claimed
based on the absence of overlap between theoretical and
experimental uncertainties. Thus, the claim that traditional
vibrational models do not describe the existing data is hard to
quantify in the absence of theoretical uncertainties. This makes
uncertainty quantification particularly relevant for this work.

When it comes to theoretical uncertainties, EFTs have a
key advantage over models. The power counting immediately
provides the EFT practitioner with uncertainty estimates. Very
recently, progress has also been made toward the quantification
of uncertainties [38–42] using Bayesian statistics. In an
EFT, uncertainties can be quantified because the (testable)
expectation of “naturalness” can be encoded into priors. Here
one assumes that natural-sized coefficients govern the EFT
expansion for observables. In this work, we build on these
advances and also present analytical formulas for uncertainty
quantification based on log-normal priors that are so relevant
for EFTs.
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This paper is organized as follows. In Sec. II, we develop
the EFT for nuclear vibrations and construct the Hamiltonian
and electromagnetic operators. In Sec. III we employ Bayesian
tools for uncertainty quantification based on the assumption of
natural sized coefficients in the EFT expansion for observables.
We compare theoretical results with data for spectra and for
electromagnetic moments and transitions in Secs. IV and V,
respectively. Finally, we present our summary in Sec. VI. More
detailed derivations are relegated to the Appendix.

II. EFFECTIVE THEORY FOR QUADRUPOLE
VIBRATORS

In this section, we develop the EFT for nuclear vibrations.
As our intended audience is wide, we aim at a self-contained
description. In the following sections we introduce the LO
Hamiltonian, discuss the power counting and higher-order
corrections, and develop electromagnetic couplings and ob-
servables.

A. Leading-order Hamiltonian and spectrum

The spins and parities of low-energy spectra of even-even
nuclei near shell closures suggest these can be described in
terms of quadrupole degrees of freedom. In several cases,
the spectrum resembles—at least at low energies—that of a
quadrupole harmonic oscillator. In nuclei with mass number
about 100, the oscillator spacing is ω ≈ 0.6 MeV. The
fermionic nature of the nucleus manifests itself through
pair-breaking effects, which enter at about 2–3 MeV of
excitation [43]. Thus, the breakdown scale is � ≈ 3ω, and
for definiteness we set � = 3ω in this work.

The boson creation and annihilation operators d†
μ and

dμ with μ = −2, − 1, . . . ,2, respectively, fulfill the usual
commutation relations

[d†
μ,dν] = −δν

μ. (1)

We note that d†
μ are the components of the rank 2 spherical

tensor d†. For the general construction of spherical tensors we
also introduce the spherical rank 2 tensor d̃ with components

d̃μ = (−1)μd−μ. (2)

For the construction of spherical tensors we follow Ref. [44]
and introduce tensor products and scalar products. The
spherical tensor I (I ) of rank I ,

I (I ) = (M(I1) ⊗ N (I2))(I ), (3)

results from coupling the spherical tensors M(I1) and N (I2) of
ranks I1 and I2, respectively. Its components,

I (I )
M =

∑
M1M2

CIM
I1M1I2M2

M(I1)
M1

N (I2)
M2

, (4)

are given in terms of the Clebsch-Gordan coefficients CIM
I1M1I2M2

that couple spins I1 and I2 to spin I . Similarly, the scalar
product of two spherical tensors M(I ) and N (I ) of the same

rank I is

M(I ) · N (I ) =
∑

μ

(−1)μM(I )
μ N (I )

−μ (5)

= √
2I + 1(M(I ) ⊗ N (I ))(0). (6)

There are two simple operators we need to consider. The
number operator

N̂ ≡ d† · d̃ (7)

is a scalar that counts the total number of phonons N . The
angular momentum operator is the vector

Î =
√

10(d† ⊗ d̃)(1). (8)

Both operators conserve the number of phonons. We note that
the commutation relations

[Îμ,d†
ν ] =

√
6C

2ν+μ
2ν1μ d

†
ν+μ, (9)

[Îμ,d̃ν] =
√

6C
2ν+μ
2ν1μ d̃ν+μ, (10)

clearly identify d† and d̃ as spherical tensors of rank 2. In
contrast, dμ are not components of a spherical tensor.

The Hamiltonian must be a scalar under rotation. The
simplest (i.e., quadratic in the fields d† and d̃) Hamiltonian is

ĤLO = ωN̂

= ω
∑

μ

(−1)μd†
μd̃−μ

= ω
∑

μ

d†
μdμ. (11)

Here ω is a low-energy constant (LEC) that has to be adjusted
to data. We note that one could also consider an operator
proportional to

d† · d† + d̃ · d̃ (12)

as part of the LO Hamiltonian. However, a Bogoliubov
transformation that introduces (quasi-)boson creation and
annihilation operators

D†
μ = u∗

μd†
μ + v∗

μd̃μ, Dμ = uμdμ + vμd̃†
μ, (13)

with |uμ|2 − |vμ|2 = 1, would transform such a Hamiltonian
into the diagonal form

ĤLO = ω̃(D† · D̃). (14)

Here D̃ is defined in terms of D similar to Eq. (2). This
Hamiltonian conserves the number of (quasi-)bosons and
cannot be distinguished from the LO Hamiltonian (11).

Clearly, the LO Hamiltonian of the EFT for nuclear
vibrations is equivalent to the quadrupole vibrator submodel
of the Bohr Hamiltonian [1–3,5,45]. We note that the five-
dimensional quadrupole oscillator exhibits an U(5) symmetry.
Within the EFT approach, this symmetry is a (trivial) conse-
quence of the choice of degrees of freedom and the quadratic
LO Hamiltonian. While this symmetry might be useful in
labeling basis states, it does not reflect symmetry properties of
the interaction between nucleons.

The energies of the LO Hamiltonian

ĤLO|ψ〉 = ELO|ψ〉 (15)
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are

ELO = ωN. (16)

For the construction of the eigenstates we follow Rowe and
Wood and also refer the reader to Ref. [46]. The eigenstates of
the LO Hamiltonian can be labeled by the quantum numbers
of the symmetry subgroups in the chain

U(5) ⊃ SO(5) ⊃ U(3) ⊃ SO(3) ⊃ SO(2)
N v ν I M

.

Here ν is a radial quantum number, I and M are the usual SO(3)
angular momentum and its projection onto the z axis, while
the seniority v is the SO(5) analog of the angular momentum.
From now on, we refer to the SO(3) angular momentum as
spin.

The ground state of the system is the phonon vacuum,
denoted by |0〉. A state with N excited quanta is created from
the vacuum by the application of N creation operators, coupled
to appropriate spin. Given the quantum numbers v and ν, the
highest-weight state is defined by

|N = v + 2ν,v,ν,I = 2v,M = 2v〉 ∝ (d† · d†)ν(d†
2)v|0〉.

(17)
Here the proportionality sign expresses the absence of proper
normalization on the right-hand side. The remaining states
with N = v + 2ν phonons can be reached from the highest-
weight states by the application of suitably defined lowering
operators. This construction is similar to the construction
of SO(3) irreducible eigenstates where one starts from the
state |I,M = I 〉 and obtains the remaining states of the
spin-I multiplet by successive application of the spin-lowering
operator. For the LO Hamiltonian, one finds a singlet with
spin I = 2 at the one-phonon level, a triplet with spins
I = 0,2,4 at the two-phonon level, and a quintuplet with
spins I = 0,2,3,4,6 at the three-phonon level. It is convenient
to determine the LEC ω from the excitation energy of the
one-phonon state.

B. Power counting and next-to-leading-order corrections

Quadrupole excitations are the low-lying collective degrees
of freedom in even-even nuclei near shell closures. This picture
breaks down at higher energies � where the microscopic
structure of the nucleus in terms of underlying fermionic
nucleons is resolved.

In an EFT, subleading corrections to the Hamiltonian arise
owing to the omitted degrees of freedom. As one can write an
unlimited number of rotational scalars in the fields d† and d̃,
we need a power counting (in powers of the small parameter
ω/�) for the systematic construction of the EFT. As the fields
d† and d̃ do not carry any dimension, we introduce quadrupole
coordinates α̃ and momenta π as

α̃μ ≡
√

1

2
	(d†

μ + d̃μ), (18)

πμ = i

√
1

2
	−1(d†

μ − d̃μ). (19)

Here 	 ≡ (Bω)−1/2 is the oscillator length, and B is a mass
parameter. These degrees of freedom fulfill the canonical

commutation relations

[πμ,αν] = −iδν
μ, α̃μ = (−1)μα−μ. (20)

We note that both α̃ and π are spherical tensors of rank 2. In
terms of them, the LO Hamiltonian can be written as

ĤLO = 1

2B
(π · π + B2ω2α̃ · α̃) − 5

2
ω. (21)

Thus, the sizes of coordinates and momenta at the N -phonon
level are

α̃ ∼
√

N	 and π ∼
√

N	−1. (22)

At the breakdown scale, we have, by definition,

Bω2α̃2 ∼ � and
π2

B
∼ �. (23)

Thus,

α̃ ∼
√

�

ω
	 and π ∼

√
�

ω
	−1 (24)

at the breakdown scale.
Let us write the subleading corrections to the Hamiltonian

(11) as rotationally invariant terms of the form gmnπ
mα̃n, with

m + n > 2. At the breakdown scale �, the energy shift owing
to these corrections must be so large that N -phonon states
cannot be distinguished from states with N ± 1 phonons. Thus,

gmnπ
mα̃n ∼ ω, (25)

and this implies

gmn ∼ 	m−n

(
ω

�

) m+n
2

ω (26)

for the natural size of these coefficients. When the term
gmnπ

mα̃n is evaluated for coordinates and momenta of size
(22), it scales as

gmnπ
mα̃n ∼ ε

m+n
2 ω. (27)

Here

ε ≡ (Nω/�) (28)

is the relevant dimensionless expansion parameter of our EFT
at the N -phonon level. We note that LO energies scale as ε0ω.

This simple analysis suggests that terms cubic in the
quadrupole fields are the dominant subleading corrections.
However, such terms change boson number and thus enter only
in second-order perturbation theory, yielding a contribution of
size ε3ω. Thus, the next-to-leading-order (NLO) contributions
come from those terms quartic in the quadrupole fields that
preserve the boson number. They contribute corrections of the
size ε2ω. We note that some collective models differ from the
EFT’s power counting by employing cubic terms as dominant
subleading corrections; see, e.g., Refs. [19,47–50]. We also
note that the proliferation of higher-order terms was addressed
in some models by only considering certain combinations of
operators that are symmetric under exchange of the operators.

We can now also consider the power counting directly for
the operators d† and d̃. When acting on states at the breakdown
scale, d† ∼ d̃ ∼ √

�/ω. Demanding that a Hamiltonian term
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of the form ωfmdm containing m boson operators is of size
ω at the breakdown scale thus yields fm ∼ (ω/�)m/2, and the
whole term ωfmdm scales as ∼ω(ω/�)m/2 at low energies.

Before we continue, it is interesting to discuss an
alternative—and less conservative—understanding of the
breakdown scale. One could also assume that the energy
corrections of the terms gmnπ

mα̃n (for m + n > 2) are of size
� (and not ω) at the breakdown scale. Then the contributions
from such terms scale as gmnπ

mα̃n ∼ (ω/�)(m+n)/2� at
low energies. This implies that the off-diagonal terms with
m + n = 3 contribute an energy ∼ω2/� in second-order
perturbation theory, and this is equal to the contribution of
the m + n = 4 terms in first-order perturbation theory. Such
an approach would again differ from the early approach [19]
because terms with four boson operators are as important
as terms with three boson operators. Compared to the more
conservative approach we are taking, this would add two
additional terms [namely, (π × π )(2) · α̃ and (α̃ × α̃)(2) · α̃] at
NLO, increasing the number of unknown LECs considerably.
Such an approach would also probably increase the breakdown
scale beyond the three-phonon level, making it difficult to
identify states at higher energies. Therefore, we did choose a
more conservative—and physically better motivated—power
counting.

To identify the linearly independent NLO terms that
conserve phonon number, we turned to Chap. 3 of Ref. [44]
and determined the following three terms:

N̂2 = (d† · d̃)2, (29)

�̂2 = −(d† · d†)(d̃ · d̃) + N̂2 − 3N̂, (30)

Î 2 = 10(d† ⊗ d̃)(1) · (d† ⊗ d̃)(1). (31)

Here the operator �̂ is the SO(5) analog of the spin Î (see,
e.g., Ref. [5]). The action of these operators on the LO states
is

N̂2|NvνIM〉 = N2|NvνIM〉, (32)

�̂2|NvνIM〉 = v(v + 3)|NvνIM〉, (33)

Î 2|NvνIM〉 = I (I + 1)|NvνIM〉. (34)

Thus, at NLO the Hamiltonian takes the form ĤNLO =
ĤLO + ĥNLO, with

ĥNLO = gNN̂2 + gv�̂
2 + gI Î

2. (35)

Here the LECs gN, gv , and gI have to be adjusted to data. The
action of the NLO correction (35) on the eigenstates of the LO
Hamiltonian yields

ĥNLO|NvνIM〉 = eNLO|NvνIM〉, (36)

with

eNLO = gNN2 + gvv(v + 3) + gI I (I + 1). (37)

The total energy at NLO is thus

ENLO = ELO + eNLO. (38)

The four LECs ω, gN, gv , and gI can be determined from
the energies of the one-phonon state and the two-phonon
states. Higher excited states would then be predictions. It
is clear that the quest for higher precision of the EFT, e.g.,

by including next-to-next-to-leading-order terms introduces
further LECs and requires even more data to determine the
Hamiltonian. This loss of predictive power is unsatisfactory,
but it is also clear that an approach solely based on symmetry
arguments—as proposed in this work—naturally leads to this
state of affairs. We note that the previous approaches [47–50]
avoid the proliferation of new coupling constants by only
considering certain combinations of higher-order terms. From
the EFT’s perspective, however, such a selection does not
constitute a systematic approach.

The breakdown scale � ≈ 3ω is not sufficiently large
to study contributions beyond NLO. To improve predictive
capabilities, we quantify (rather than estimate) theoretical
uncertainties. This is done in Sec. III.

C. Electromagnetic couplings

Our EFT deals with quadrupole degrees of freedom. As
the gauge potential A(r) is a vector field, the electromagnetic
coupling of the EFT is not obvious. We can view the
quadrupole degrees of freedom as components of a scalar field
that depends on the position coordinate r. This view suggests
to employ r = rer (θ,φ) (with er being the usual radial unit
vector [44]) and to expand the vector potential as [51]

A(r,) =
∑
JM

∑
l

AJM,ljl(kr)
∑
mn

CJM
lm1nYlm()en.

Here we employed spherical basis vectors en with n = −1,0,1,
and jl denotes the spherical Bessel function. The spherical
wave has a momentum k. We note that AJM,l are components
of a tensor of rank J for fixed l.

The quadrupole degrees of freedom of the EFT must
couple to the components A2M,l , and only l = 1,2,3 contribute
owing to triangular relations on spins. In the long wavelength
approximation kr � 1, and jl(kr) ∝ (kr)l . Thus, A2M,1 is the
dominant contribution, and we gauge

πμ → πμ − qA2μ,1. (39)

Here the charge q is a LEC that needs to be adjusted to data. We
are interested in single-photon transitions and only consider
terms linear in A. The effective electric quadrupole operator,
resulting from gauging the LO Hamiltonian (11), is thus

Q̂LO = − q

B

∑
μ

(−1)μA2 −μ,1πμ

= − iq√
2B	

∑
μ

(−1)μA2 −μ,1(d†
μ − d̃μ). (40)

Let us also consider higher-order corrections. Hamiltonian
terms involving two momentum operators πμ and one coor-
dinate operator α̃μ contribute to the energy at next-to-next-to-
leading order and were beyond the NLO corrections discussed
in this section. When considering single-photon transitions,
gauging essentially replaces one of the two momentum
operators by the gauge field and couples the latter to an operator
of the structure

(π × α̃)(2) ∝ −i(d† × d† − d̃ × d̃)(2). (41)

064309-4



EFFECTIVE FIELD THEORY FOR NUCLEAR VIBRATIONS . . . PHYSICAL REVIEW C 92, 064309 (2015)

The EFT expectation is that this operator yields a correction of
relative size ε1/2 to the LO operator (40). It induces transitions
between states that differ by two phonon numbers, and we
come back to this point after discussing nonminimal couplings.

Let us also consider nonminimal couplings and work in
the Coulomb gauge. Then, the electric field is E = −∂tA =
−ikA. Here we assumed an exponential time dependence
and set the speed of light to c = 1. We note that k ≈ ω for
transitions between states that differ by one phonon number.
The electric field has an expansion similar to Eq. (39), and the
expansion coefficients fulfill EJM,l = −ikAJM,l . The electric
field couples to the quadrupole operator

Q̂μ =
√

2

	
Q0α̃μ + 2

	2
Q1(α̃ × α̃)(2)

μ

+ 2
√

2

	3

∑
L=0,2,4

Q2L[α̃ × (α̃ × α̃)(L)](2)
μ + . . . . (42)

Here factors of the oscillator length 	 have been inserted
such that the LECs Q0, Q1, and Q2L have the dimension
of a quadruple moment. The factors of

√
2 are inserted for

convenience. The expansion of the quadrupole moment should
not be a surprise: What is not forbidden by symmetries
is allowed in an EFT. We recall that truly “elementary”
degrees of freedom couple to electromagnetic gauge fields
solely via minimal coupling. The EFT, however, does not
deal with elementary degrees of freedom. The quadrupole
coordinates of the EFT are effective degrees of freedom at low
energies. They are composite and describe collective effects
of more microscopic “high-energy” degrees of freedom that
are not resolved at the low-energy scale we are interested
in. The nonminimal couplings allow us to incorporate the
subleading electromagnetic effects of any microscopic degrees
of freedom. Based on the EFT power counting, the natural sizes
of the LECs Q1 and Q2L are

Q1 ∼
(

ω

�

)1/2

Q0,

Q2L ∼ ω

�
Q0. (43)

It is useful to rewrite the expansion (42) in terms of creation
and annihilation operators. This yields

Q̂μ = Q0(d†
μ + d̃μ) + Q1(d† × d† + d̃ × d̃ + 2d† × d̃)(2)

μ

+
∑

L=0,2,4

Q2L[d† × (d† × d†)(L) + d̃ × (d̃ × d̃)(L)

+ d† × (d† × d̃)(L) + d† × (d̃ × d̃)(L) + · · · ](2)
μ

+ . . . . (44)

Let us consider the right-hand side of Eq. (44). The first line
is the LO term for transitions between states that differ by one
phonon number. It is equivalent to the term (40) obtained from
gauging. This allows us to identify

q =
√

2Bk	Q0. (45)

The second line of Eq. (44) is the LO term for transitions
between states that differ by none or two phonon numbers

and also determines diagonal quadrupole matrix elements.
Thus, diagonal quadrupole matrix elements are expected
to be a factor

√
ω/� smaller than transition quadrupole

moments between states that differ by one phonon number.
The expected finite value for diagonal quadrupole matrix
elements is a significant departure from vanishing diago-
nal quadrupole matrix elements obtained for the harmonic
quadrupole vibrator. The third line has NLO corrections (LO
terms) for quadrupole transitions between states that differ by
one (three) phonon numbers. Thus, the expectations from the
harmonic quadrupole vibrator that B(E2) transitions from the
two-phonon states to the one-phonon state are independent of
the initial spin are expected to suffer corrections of relative
size ω/�. We note that all anharmonic corrections vanish in
the harmonic limit, i.e., for ω/� → 0.

The reduced matrix elements of a tensor operator Ô of rank
λ between two states |i〉 and |f 〉 are defined as

〈f ||Ô||i〉 =
√

2If + 1

C
If Mf

IiMiλμ

〈βIf Mf |Ôμ|αIiMi〉. (46)

Here β and α denote quantum numbers irrelevant for the re-
duced matrix elements. For transitions between states differing
by one phonon number we find the well-known LO reduced
matrix elements

〈0+
1 ||Q̂||2+

1 〉LO = Q0〈0+
1 ||d||2+

1 〉 =
√

5Q0,

〈2+
1 ||Q̂||0+

2 〉LO = Q0〈2+
1 ||d||0+

2 〉 =
√

2Q0,
(47)

〈2+
1 ||Q̂||2+

2 〉LO = Q0〈2+
1 ||d||2+

2 〉 =
√

10Q0,

〈2+
1 ||Q̂||4+

1 〉LO = Q0〈2+
1 ||d||4+

1 〉 =
√

18Q0,

and uncertainty estimates are of order Q0ω/�.
For transitions between two-phonon states we find

〈2+
2 ||Q̂||0+

2 〉LO = 2Q1〈2+
2 ||(d† × d̃)(2)||0+

2 〉
= 4Q1,

〈2+
2 ||Q̂||4+

1 〉LO = 2Q1〈2+
2 ||(d† × d̃)(2)||4+

1 〉

= 24

7
Q1, (48)

and uncertainty estimates are of order Q1ω/�.
For the diagonal quadrupole matrix elements we find the

LO reduced matrix elements

〈2+
1 ||Q̂||2+

1 〉LO = 2Q1〈2+
1 ||(d† × d̃)(2)||2+

1 〉
= 2

√
5Q1,

〈2+
2 ||Q̂||2+

2 〉LO = 2Q1〈2+
2 ||(d† × d̃)(2)||2+

2 〉

= −6
√

5

7
Q1,

〈4+
1 ||Q̂||4+

1 〉LO = 2Q1〈4+
1 ||(d† × d̃)(2)||4+

1 〉

= 6
√

110

7
Q1, (49)

and uncertainty estimates are of order Q1ω/�. Thus, the LEC
Q1 relates the three diagonal matrix elements (49) and the two
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transition matrix elements (48) to each other. This prediction
of the EFT is tested in Sec. V.

For the transition involving a change by two phonons we
find

〈0+
1 ||Q̂||2+

2 〉LO = Q1〈0+
1 ||(d̃ × d̃)(2)||2+

2 〉
=

√
10Q1, (50)

and uncertainty estimates are of order Q1ω/�. This nonmin-
imal correction is of the same size as the NLO correction
(41) from gauging. The combination of both terms involves
the LEC of the term from gauging and the LEC Q1. As
there is only one E2 transition in vibrational nuclei below
the breakdown energy (i.e., the three-phonon energy), the EFT
has no predictive power for this transition beyond an estimate
of its natural size. Therefore, we do not consider it here.

The B(E2) transition strengths are given in terms of the
reduced matrix elements as

B(E2,Ii → If ) = |〈If ||Q||Ii〉|2
2Ii + 1

. (51)

We finally also turn to magnetic moments. In the EFT at
LO, magnetic moments are attributable to the vector operator

μ̂ = gÎ , (52)

and g is a LEC constant. Thus, magnetic moments of states
with spin I have the reduced matrix elements

〈I ||μ̂||I 〉 = g
√

I (I + 1)(2I + 1). (53)

Corrections from omitted higher-order terms are of relative
size ε1/2 [e.g., from terms such as (α̃ × μ̂)(1)]. At LO, magnetic
moments of I = 4 states are a factor

√
6 larger than magnetic

moments of I = 2 states. This is another testable prediction of
the EFT.

It is interesting to note that anharmonic corrections to the
quadrupole operator have been considered early on [3,19].
However, Bès and Dussel related the expansion coefficients of
the quadrupole operator to those of the Hamiltonian (also using
terms cubic in the boson annihilation and creation operators as
corrections to the harmonic quadrupole vibrator). While such
an approach has fewer adjustable parameters than the EFT we
constructed, it did not yield a satisfactory description of 114Cd.
Of course, there are no symmetry arguments that would link
the expansion coefficients of nonminimal couplings and the
Hamiltonian.

Let us briefly recall the adjustable parameters. The EFT
for nuclear vibrations employs one LEC at LO [namely, ω in
Eq. (16)] and three additional LECs at NLO [namely, gN, gv ,
and gI in Eq. (37)] for the Hamiltonian. These LECs need
to be adjusted to the energies of four states below the three-
phonon level. Thus, LO has predictive power, while NLO has
predictive power only for states at the three-phonon level. As
we see in Sec. IV, NLO predictions for the energy of the 6+

1
state are more accurate than expected.

Below the three-phonon level there are four strong E2
transitions (2+

1 → 0+
1 , 0+

2 → 2+
1 , 2+

2 → 2+
1 , 4+

1 → 2+
1 ) that

change phonon number by one unit. They require the LEC
Q0 to be adjusted to data. The somewhat smaller matrix

elements that govern the two E2 transitions between the two-
phonon states (4+

1 → 2+
2 , 2+

2 → 0+
2 ), and the three diagonal

E2 matrix elements of the states 2+
1 , 2+

2 , and 4+
1 require the

LEC Q1 to be adjusted to data. Finally, one LEC [namely g
in Eq. (53)] determines the three magnetic moments of the
2+

1 , 2+
2 , and 4+

1 states. In this way, the EFT provides us with
model-independent relations between observables.

III. QUANTIFIED THEORETICAL UNCERTAINTIES

The quantification of theoretical uncertainties is of growing
interest in nuclear physics. For a wide collection of articles on
this topic we refer the reader to the 2015 focus issue and its
editorial [52].

The power counting provides the EFT practitioner with a
simple tool to estimate theoretical uncertainties as missing
contributions from higher orders. In our case, uncertainties at
LO are of the size O(ε2ω) (as they are caused by missing
NLO contributions), while uncertainties at NLO are of the
size O(ε3ω) (owing to contributions beyond NLO). In such
estimates, one implicitly assumes that the dimensionless
coefficients in front of these order-of-magnitude estimates are
of order one.

To quantify (rather than estimate) theoretical uncertainties
requires considerable effort [41,53]. In this section, we follow
Refs. [39,40,42] and employ Bayesian statistics for uncertainty
quantification. Within this approach, theoretical uncertainties
can be expressed as degree-of-belief (DOB) intervals and have
a statistical meaning. The construction of such DOB intervals
requires one to make detailed quantitative assumptions about
the behavior of omitted orders in the power counting. As
a result, theoretical predictions and uncertainties can be
confronted by data (and underlying assumptions can be
verified, or modified if required).

A. Analytical results for log-normal priors

In this section we follow Furnstahl et al. and present the
formalism required for uncertainty quantification. We also
present a few analytical expressions that involve log-normal
priors, which are particularly useful when “naturalness”
arguments are employed in EFTs.

We are interested in uncertainty estimates for observables
computed in an EFT. The power counting, i.e., a small ratio
ε < 1 [cf. Eq. (28)] of the low-energy scale and the breakdown
scale, allows us to expand an observable X as

X = X0

∞∑
n=0

cnε
n. (54)

Here X0 sets the general scale. In practice, the sum above can
only be computed up to and including the term involving εk .
This implies that the relative uncertainty is

�k =
∞∑

n=k+1

cnε
n. (55)
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It is our aim to quantify the uncertainty �k . We are particularly
interested in quantifying the residual,

�
(M)
k =

k+M∑
n=k+1

cnε
n, (56)

of the first M missing terms. To quantify uncertainties, one
has to make quantitative assumptions about the distribution
of the expansion coefficients cn. A key assumption is that
the expansion coefficients are independent of each other, and
assumptions about the distribution of expansion coefficients
are employed as priors.

In an EFT, the expansion coefficients are assumed to be of
order unity. The log-normal distribution

pr(c) = 1√
2πσc

e− 1
2 ( log c

σ
)2

(57)

is consistent with this assumption. Choosing, for instance,
σ = log α (with α > 1) implies that 1/α � c � α with about
68% probability.

The expansion coefficient cn is related to the prior (57) by
a second prior pr(cn|c). We consider two examples. First, we
assume that the log-normal distributed c yields a hard bound
on the size of cn. Thus,

pr(hw)(cn|c) = 1

2c
�(c − |cn|). (58)

Here �(x) denotes the unit step function. The priors (57) and
(58) are “set B” of Ref. [42]. Alternatively, we assume that the
log-normal distributed c is related to the width of the Gaussian
prior,

pr(G)(cn|c) = 1√
2πc

e
− c2

n

2c2 . (59)

Following [42] the application of Bayes’ theorem yields a
probability distribution function for the uncertainty �, which
we write as

pM (�|c0, . . . ,ck) =
∫ ∞

0 dcpr(c)pM (�|c)
∏k

m=0 pr(cm|c)∫ ∞
0 dcpr(c)

∏k
m=0 pr(cm|c)

.

(60)

Here the prior pr(c) is the known (or expected) pdf and pr(cn|c)
is the pdf for a specific expansion coefficient cn given c. The
probability of finding an uncertainty � given the prior for c is

pM (�|c) ≡
[

k+M∏
n=k+1

∫ ∞

−∞
dcnpr(cn|c)

]
δ
(
� − �

(M)
k

)
. (61)

We note that the structure of Eq. (60) is quite intuitive. The
numerator captures our understanding of how the uncertainty
depends on the expansion coefficients given the pdf pr(c),
while the denominator is a normalization.

Reference [42] presents detailed discussions of
pM (�|c0, . . . ,ck) for several combinations of priors but
does not give analytical expressions for the log-normal
distributed prior relevant for EFTs. In what follows, we derive
analytical results for the pdf (60) based on the hard-wall prior
(58) for M = 1,2. For the Gaussian prior (59), we reduce the
pdf (60) to single integrations for general M . We hope that

these formulas might be useful also for other applications of
Bayesian uncertainty quantification in EFTs.

To make progress in computing the pdf (61), we rewrite the
δ function as a Fourier integral

δ
(
� − �

(M)
k

) = 1

2π

∫ ∞

−∞
dteit�

k+M∏
n=k+1

e−itcnε
n

.

Thus, pM (�|c) is the Fourier transform of a product of Fourier
transforms,

pM (�|c) = 1

2π

∫ ∞

−∞
dtei�t

k+M∏
n=k+1

∫ ∞

−∞
dcnpr(cn|c)e−itεncn .

(62)

We evaluate the pdf (62) for the Gaussian prior (59) and find

p
(G)
M (�|c) = 1√

2πqc
e
− �2

2q2c2 . (63)

Here

q2 ≡
k+M∑

n=k+1

ε2n = ε2k+2 1 − ε2M

1 − ε2
(64)

depends on M . Putting them all together, we are left with a
single integration and can write

p
(G)
M (�|c0, . . . ,ck)

= 1√
2πq

∫ ∞
0 dxxk+1e

− 1
2σ2 [log(x)]2

e− γ 2+�2/q2

2 x2

∫ ∞
0 dxxke

− 1
2σ2 [log(x)]2

e− γ 2

2 x2
. (65)

In this formula, the information from the expansion coeffi-
cients enters via

γ 2 ≡
k∑

n=0

c2
n. (66)

The numerical evaluation of the pdf (65) poses no difficulty
for any value of M . Formula (65) is one of the main results in
this section.

Let us turn to the hard-wall prior (58). For the computation
of the Fourier transform of the prior pr(hw)(cn|c) we use∫ ∞

−∞
dcnpr(hw)(cn|c)e−itcnε

n = sin (cεnt)

cεnt
, (67)

and obtain the pdf for the uncertainty � as

p
(hw)
M (�|c) = 1

2π

∫ ∞

−∞
dt cos (t�)

k+M∏
n=k+1

sin (cεnt)

cεnt
. (68)

As we will see, the integration over dt can be performed but
becomes cumbersome for M > 1. Here we focus on M = 1
and present the result for M = 2 in the Appendix. For M > 2
it might be attractive to perform the integrations numerically.
In this case, two integrations [one over dt for pM (�|c) and
one over dc] remain for the computation of Eq. (60), and this
number is independent of M .
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We set M = 1 in Eq. (68) and obtain [54]

p
(hw)
1 (�|c) = 1

2cεk+1
�(cεk+1 − |�|). (69)

This result can also be written as p
(hw)
1 (�|c) =

pr(hw)(�|cεk+1). It could also have been obtained by direct
evaluation of the dck+1 integration in Eq. (60) exploiting the δ
function.

Let us compute p
(hw)
1 (�|c0, . . . ,ck). We insert the pdf (69)

and the priors (57) and (58) into Eq. (60) and perform the
integrations (see the Appendix for details). This yields

p
(hw)
1 (�|c0, . . . ,ck) = e

2k+3
2 σ 2

2εk+1

1 − �
(

σ√
2

(
k + 2 + log b

σ 2

))
1 − �

(
σ√

2

(
k + 1 + log a

σ 2

)) ,

(70)
Here �(x) ≡ (2/

√
π )

∫ x

0 dt exp (−t2) denotes the error func-
tion,

a ≡ max(|c0|, . . . ,|ck|), (71)

and

b ≡ max

(
a,

|�|
εk+1

)
. (72)

Let us discuss the result (70). Increasing � from zero,
p

(hw)
1 (�|c0, . . . ,ck) remains a constant for b � a, i.e., for � �

aεk+1. Past this point, p
(hw)
1 (�|c0, . . . ,ck) decays rapidly to

zero as 1 − � approaches zero for increasing values of its
argument.

For x � 1, we have

1 − �(x) ≈ e−x2

√
πx

(73)

and obtain for b � a

p
(hw)
1 (�|c0, . . . ,ck) ≈ 1

2aεk+1
. (74)

Interestingly, the same value is found if the priors (57) and
(58) are replaced by “set A” of Ref. [42]. This sheds light on
the recent observation [42] that DOB percentages depend very
mildly on the prior as k increases.

So far, we have limited our considerations to priors pr(cn|c)
that have zero mean cn = 0. If one drives an EFT to sufficiently
high order, one could actually study the distribution of the
expansion coefficients cn and thereby assess the prior. As
we see below, priors of interest to our applications have a
nonzero mean cn ≡ 〈cn〉 �= 0. Thus, we need to include this
information.

In what follows, we assume that the priors for cn with n � k
have a nonzero mean cn, but keep the priors for ck+1,ck+2, . . .,
with a zero mean (owing to lack of better knowledge). Then

pM (�|c0, . . . ,ck) → pM (�|c0 − c0, . . . ,ck − ck); (75)

i.e., one only subtracts the mean from the coefficients cn with
n � k before inserting them into the analytical formulas.

For the Gaussian prior (59) we would also consider the
modification that the log-normal distributed c is proportional
(but not equal to) the width of the Gaussian. Thus, we introduce

a scale factor s and consider the prior

pr(G)(cn|c) = 1√
2πsc

e−( cn
2sc

)2
. (76)

In this case, we need to replace q → sq in Eqs. (63) and (65).
Given an interval [a,b] in the domain of a pdf p(x), its DOB

is defined as

DOB(a,b) =
∫ b

a

dxp(x). (77)

We note that DOB(a,b) � 1, and the DOB of an interval
represents the probability for the variable x to take a value
within the interval [a,b].

Our probability distributions pM (�|c0, . . . ,ck) are symmet-
ric around � = 0. We define the corresponding DOB as

DOB(−δ,δ) =
∫ δ

−δ

dx pM (x|c0, . . . ,ck). (78)

For a fixed DOB, one can thus give the corresponding uncer-
tainty interval ±δ. In what follows, we consider DOB = 0.68.
We note that the interval ±δ would correspond to the usual
1σ uncertainty for Gaussian distributions pM (�|c0, . . . ,ck).
Our probability distributions (65) and (70) are, however, not
Gaussians.

B. Uncertainty quantification for energy levels

Uncertainty quantification is a two-step procedure. First we
adjust LECs to data. Second, we quantify uncertainties based
on assumptions about the distributions of LECs.

At LO, the energy spectrum is that of a harmonic quadrupole
oscillator [see Eq. (16)], and the LEC ω has to be adjusted
to data. For nuclear vibrations in the mass A ≈ 100 region,
ω ≈ 0.6 MeV. Thus, the distribution of this LEC is relatively
sharp. It is neither log-normal distributed nor without a scale
(i.e., log-uniform distributed). In what follows, we fix the LEC
ω for each nucleus by performing a least-square fit of the
objective function

χ2
LO =

∑
s

[Eexp(s) − ELO(s)]2

σ 2
exp + σ 2

LO

. (79)

Here the sum is over states s = 2+
1 , 0+

2 , 2+
2 , and 4+

1 . In the fit,
the theoretical uncertainty is estimated as

σLO = ω

[
ELO(s)

�

]2

, (80)

and the experimental uncertainty is neglected because σexp �
σLO.

At NLO, three new LECs (gN, gv , and gI ) enter the deter-
mination of the energies; see Eq. (38). Instead of readjusting
ω at NLO, we replace it with ω → ω + gω, keep the value of
ω at what was obtained at LO, and adjust gω. Thus, we rewrite

ENLO = ωN + gωN + gNN2 + gvv(v + 3) + gI I (I + 1).
(81)

It is clear that the parameters gN, gv, gI , and gω are expected
to scale as ω3/�2. In an EFT, one assumes that gα�2/ω3

(for α = N,v,I,ω) are of order unity and constrained by log-
normal distributions. We adjust these coefficients to data by
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minimizing the objective function

χ2
NLO =

∑
s

[Eexp(s) − ENLO(s)]2

σ 2
exp + σ 2

NLO

. (82)

Here the employed states s are as for the LO fit, but the
theoretical uncertainty is estimated as

σNLO = ω

[
ELO(s)

�

]3

. (83)

Again, the experimental uncertainty is neglected because
σexp � σNLO. As we adjust four parameters to four data points,
the fit is exact.

Let us now turn to the quantification of theoretical un-
certainties. We note that simple uncertainty estimates can be
based on the naive estimates (80) and (83) at LO and NLO,
respectively. For quantified uncertainties we adapt the methods
of the previous section to the problem at hand.

We start with uncertainty quantification at LO. As discussed
above, the distribution for ω is a Dirac δ function, and LO
uncertainties are attributed solely to assumptions about the
distribution of LECs from higher orders. Thus,

p
(hw)
1 (�) = e

σ2

2

4ε2

[
1 − �

(
σ√

2

[
1 + log(�/ε2)

σ 2

])]
(84)

for the hard-wall prior (58), and

p
(G)
M (�) = 1

2πσqs

∫ ∞

0
dxe

− log2 x

2σ2 e
− �2x2

2q2s2 (85)

for the Gaussian prior (59). Here q2 ≡ ∑k+M
m=k+1 ε2m, with

k = 0 for uncertainties owing to M terms above the LO
contribution. In Eq. (84) it is assumed that the uncertainty
comes fully from the term proportional to ε2.

We now turn to uncertainty quantification at NLO. Return-
ing to Eq. (81), the NLO energy correction for the state |N,v,I 〉
is ωε2c2, with

c2 ≡ c2(N,v,I )

= gωN + gNN2 + gvv(v + 3) + gI I (I + 1)

ε2ω
. (86)

Table I shows the resulting coefficients c2 for each
state of the nuclei 62Ni , 98,100Ru , 106,108Pd , 110,112,114Cd, and
118,120,122Te considered in this work. These nuclei exhibit
low-energy spectra that resemble a harmonic quadrupole
oscillator. All coefficients c2 are of order one. Thus, the
products ωεc2 are of natural size. Also shown are the values
of the vibrational scale ω for each nucleus and the LEC Q0

associated with the quadrupole moment; see Sec. III. We note
that these quadrupole moments are an order of magnitude
smaller than for rotational nuclei [3].

To determine a valid prior for the coefficients c2 we turn
to the distribution of the coefficients c2 for an ensemble
consisting of one-phonon and two-phonon states in the nuclei
we study. The cumulative distribution is shown in Fig. 1. It
is well approximated by a Gaussian prior (59) with parameter
s ≈ 0.65, or by a hard-wall prior (58), once the mean is shifted
from zero to c2 ≈ 1. We note that the cumulative distribution
is practically unchanged when c2 values from three-phonon

TABLE I. Values for the vibrational energy ω (in keV), the
coefficients c2 in states up to the two-phonon level, and the LEC
Q2

0 associated with the quadrupole moment (in Weisskopf units) for
the nuclei studied in this work.

Nucleus ω (keV) c2(2+
1 ) c2(0+

2 ) c2(2+
2 ) c2(4+

1 ) Q2
0 (W.U.)

62Ni 1147.9 0.55 − 0.29 0.19 0.26 10.6
98Ru 668.1 1.02 0.57 0.88 0.83 27.8
100Ru 573.9 2.35 1.39 2.36 1.79 23.6
106Pd 541.8 1.80 1.38 1.36 1.80 30.4
108Pd 464.5 1.14 1.53 0.90 1.51 36.9
110Cd 696.7 1.57 1.32 1.33 1.56 21.1
112Cd 635.2 1.72 0.82 1.14 1.52 23.2
114Cd 578.3 1.72 0.93 1.23 1.53 21.8
118Te 582.9 0.83 − 0.52 0.19 0.40 –
120Te 567.8 0.79 0.32 0.71 0.56 31.0
122Te 593.5 − 0.08 0.88 0.48 0.17 40.7

states are included in the analysis. We employ σ = log (3/2)
in the log-normal prior (57).

Finally, we turn to uncertainty quantification at NLO for
individual nuclei. For the hard-wall prior we find

p
(hw)
1 (�|c2) = e

3σ2

2

2ε3

1 − �
(

σ√
2

[
2 + log(κ)

σ 2

])
1 − �

(
σ√

2

[
1 + log(|c′

2|)
σ 2

]) . (87)

Here κ ≡ max(|c′
2|,�/ε3) and c′

2 ≡ c2 − c2. For the Gaussian
prior we find

p
(G)
M (�|c2) =

∫ ∞
0 dxxe

− log2 x

2σ2 e
− (c′22 +�2/q2)x2

2s2

√
2πqs

∫ ∞
0 dxe

− log2 x

2σ2 e
− c′22 x2

2s2

. (88)

In the determination of the prior, we employed an ensemble
of nuclei. To assess the consistency of this approach and to
verify the statistical interpretation of the quantified uncertain-
ties, we compare EFT predictions for the one-phonon and

FIG. 1. (Color online) Cumulative distribution for the c2 coef-
ficients for states up to the two-phonon level in the ensemble of
all nuclei studied in this work. The cumulative distributions of the
hard-wall and Gaussian priors are also shown for comparison.
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FIG. 2. (Color online) Comparison between the normalized en-
ergies E/ω of the one- and two-phonon states as a function of spin I in
the ensemble of the nuclei studied in this work. Experimental energies
are shown as thick black lines. LO and NLO energies are shown as
red crosses and blue diamonds, respectively. Theoretical uncertainties
quantified from 68% DOB intervals are shown as shaded and hatched
areas at LO and NLO, respectively.

two-phonon states of these nuclei. To do so, we first normalize
the energies by dividing them by the nucleus-dependent ω
and then perform χ2 fits at LO and NLO. The results are
shown in Fig. 2. Experimental data, LO calculations, and NLO
calculations are shown as black lines, red crosses, and blue dia-
monds, respectively. The theoretical uncertainty at each order,
displayed as a shaded area of the corresponding color, are 68%
DOB intervals obtained with the Gaussian prior. We note that
82% of the 44 one- and two-phonon states lie within the NLO
theoretical uncertainty. This is within 1σ (1/

√
44 ≈ 15%) of

the expected 68% for the ensemble size. Thus, the statistical in-
terpretation of our DOB intervals is consistent for the energies.

C. Uncertainty quantification for quadrupole moments

We quantify uncertainties for LO transition quadrupole
moments as follows. The expansion for these matrix elements
is

〈f ||Q||i〉 = 〈f ||Q||i〉LO

(
1 +

∑
i=1

ciε
i

)
, (89)

and coefficients ci are expected to be of order one. The
expansion for the B(E2) transition strength (51) is obtained
from the expansion (89) of the corresponding matrix element.
We quantify uncertainties for these matrix elements and
transition strengths based on Eq. (85) with s = 1 and compute
68% DOB intervals.

To summarize this section, we have derived analytical
formulas for uncertainty quantification based on log-normal
priors. For uncertainty quantification of LO results for energies
and matrix elements we employ Eq. (85) with s = 0.65 and
s = 1, respectively, and compute 68% DOB intervals. For
uncertainty quantification at NLO for energies, we confirmed
that the prior for the employed expansion coefficients is based
on data from an ensemble of vibrational nuclei. Based on
this ensemble, Eqs. (87) and (88) describe the distribution of

uncertainties. These are then used for the computation of 68%
DOB intervals.

IV. ENERGY SPECTRA WITH QUANTIFIED
UNCERTAINTIES

To test the EFT, we compare the low-energy spec-
tra and reduced transition probabilities of the nu-
clei 62Ni , 98,100Ru , 106,108Pd , 110,112,114Cd, and 118,120,122Te
against LO and NLO results. We consider nuclei in which the
ratio of energies E(4+

1 )/E(2+
1 ) ≈ 2, states with the spins of

the two-phonon triplet are at about 2E(2+
1 ), and states with the

spins of the three-phonon quintuplet are around 3E(2+
1 ). First,

we discuss the description of the energy spectra by the EFT.
The LECs required for such description were obtained from
χ2 fits at LO and NLO, with a breakdown scale set to � = 3ω,
based on the appearance of states that cannot be identified with
harmonic quadrupole excitations.

The low-lying spectrum of 62Ni exhibits states with the
spins and energies of a harmonic quadrupole vibrator up to
the three-phonon level, making this nucleus a candidate for
low-energy vibrational behavior. The breakdown of vibrational
motion at the three-phonon level agrees with the results and
discussion for this nucleus presented in Ref. [15], where
shell-model calculations with a 40Ca core were required
to simultaneously describe the energies and electromagnetic
properties of some multiphonon candidates. Similar results
for this and other nickel isotopes [55,56] suggest that intruder
configurations need to be taken into account in in a microscopic
description of spectra and electromagnetic properties of the
low-lying states in these nuclei.

Figure 3 shows the comparison between experimental data
taken from Ref. [57], LO and NLO calculations for energies
up to the three-phonon level for this nucleus. States up to the
two-phonon level are shown as thick black lines, while states
above them are shown as thin lines only if their spins have been

FIG. 3. (Color online) Partial energy spectrum of 62Ni up to the
three-phonon level. Experimental data [57], shown as black lines, are
compared to LO and NLO calculations, shown as red crosses and
blue diamonds, respectively. States up to the two-phonon level are
shown as thick black lines. Theoretical uncertainties quantified from
68% DOB intervals are shown as shaded and hatched areas at LO and
NLO, respectively.
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assigned (consequently, some of the nuclei studied in this work
exhibit a higher density of states above the two-phonon level
than displayed in the figures). The uncertainty at each order is
shown as 68% DOB areas. The increased level density above
the two-phonon states is consistent with our identification of
the breakdown scale at about the three-phonon level. Below
the breakdown level, the description of the experimental data
is improved order by order. We note that the LO and NLO
predictions for three-phonon energies are relatively close.

Let us make three more comments that apply to 62Ni and
the other nuclei studied in what follows. First, LO predictions
are consistent with data within the quantified theoretical
uncertainties. Second, we note that the energies up to the
two-phonon states are accurately described at NLO, because
the EFT Hamiltonian exhibits four adjustable LECs. Thus,
EFT predictions are accurate (they agree with data) yet not
very precise (theoretical uncertainties are considerable). The
comparison of LO and NLO results shows the convergence
properties of the EFT. Third, we also note that the prediction
for the I = 6 three-phonon state is quite accurate. It thus seems
that the breakdown scale for yrast states could be higher than
for the other states. This is presumably attributable to the lower
level density of high-spin states.

Figure 4 compares the energy spectrum of 98Ru and
100Ru and our calculations. Again, the breakdown scale seems
properly identified. We note that the differences between LO
and NLO predictions for three-phonon levels are considerable.

The ruthenium isotopes near the N = 50 shell closure
appear to undergo a transition from spherical to triaxial shapes,
based on the behavior of the ratio R4/2 ≡ E(4+

1 )/E(2+
1 ) with

increasing neutron number [60]. From this chain, 98Ru is the
first isotope expected to exhibit collective behavior based on
its ratio of energies R4/2 ≈ 2. Its low-energy spectrum exhibits
vibrational-like excitations, with several nonvibrational states
above the two-phonon level. Experimental energies were taken
from Ref [58]. For 100Ru, experimental data were taken from
Ref. [59]. Shell-model calculations with neutrons promoted
across the N = 50 shell gap reveal the importance of single-
particle motion in these isotopic chain [61,62]. As mentioned
before, ruthenium isotopes transit from spherical to triaxial
shapes as the neutron number increases. Larger deviations
from the harmonic behavior in 100Ru suggest that its shape is
farther away from sphericity than that of 98Ru.

The energy spectra of 106Pd and 108Pd are compared
against LO and NLO calculations in Fig. 5. In 108Pd there are
fewer levels around the three-phonon states. The considerable
deviations of the I = 0,2 three-phonon energies from NLO
predictions—consistent with the theoretical uncertainties—
nevertheless suggests that the breakdown scale has been
identified correctly.

The energy spectra and enhanced transitions probabilities
for decays from the low-lying states in palladium isotopes, as-
sumed to be spherical, suggest vibrational motion in these sys-
tems. For 106Pd and 108Pd, experimental data were taken from
Ref. [63] and Ref. [64], respectively. Single-particle states have
been suggested for 108Pd [65]. The palladium isotopes exhibit
ratios R4/2 ≈ 2.4 and B(E2; 4+

1 ↓)/B(E2; 2+
1 ↓) ≈ 1.6. These

quantities, in addition to the large diagonal quadrupole matrix
elements for states up to the two-phonon level in palladium

(a)

(b)

FIG. 4. (Color online) Partial energy spectrum of 98Ru (a) and
100Ru (b) up to the three-phonon level. Experimental data [58,59],
shown as black lines, are compared to LO and NLO calculations,
shown as red crosses and blue diamonds, respectively. States up to
the two-phonon level are shown as thick black lines. Theoretical
uncertainties quantified from 68% DOB intervals are shown as shaded
and hatched areas at LO and NLO, respectively.

isotopes [66], strongly suggest that the deviation from the
harmonic oscillator behavior in these systems is considerable.

Figure 6 compares experimental spectra of cadmium
isotopes with LO and NLO results from the EFT. We note that
the deviations from expectations for the harmonic quadrupole
vibrator are pronounced in these isotopes, with additional
energy levels just above the two-phonon states. We also
note that the energies of the three-phonon 6+

1 states deviate
more strongly from EFT predictions than the other nuclei
we consider in this work. In these nuclei, the breakdown
scale for vibrations is clearly low. From the EFT’s perspective
anharmonic corrections are expected to be most significant.

The cadmium isotopes have once been considered textbook
candidates of low-energy vibrational behavior based only
on their energy spectra [3–5], despite exhibiting intruder
states owing to protons promoted across the Z = 50 shell
gap around the two-phonon level [70,71]. Other studies on
cadmium isotopes [7,8,11,13,20,22] in which mixing between
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(a)

(b)

FIG. 5. (Color online) Partial energy spectrum of 106Pd (a) and
108Pd (b) up to the three-phonon level. Experimental data [63,64],
shown as black lines, are compared to LO and NLO calculations,
shown as red crosses and blue diamonds, respectively. States up to
the two-phonon level are shown as thick black lines. Theoretical
uncertainties quantified from 68% DOB intervals are shown as shaded
and hatched areas at LO and NLO, respectively.

vibrational and nonvibrational states is taken into account,
cannot accurately describe the electromagnetic properties of
multiphonon candidates. They set the breakdown of vibrational
behavior at the two- or three-phonon level depending on
the isotope, and suggest a quasirotational character for the
low-lying excitations, based on the large quadrupole moments
of some yrast states [20,72]. For the three isotopes studied
in this work, A = 110,112,114, experimental data were taken
from Refs. [67–69], respectively. The 0+

2 and 2+
2 states were

employed as the two-phonon states for the χ2 fits. The states
identified as members of two-phonon triplet in this work might
be in disagreement with previous studies [11,13,20], where, for
example, the 0+

2 in 112Cd have been identified as an intruder
state [70,73]. Here the identification is made based on the
assumption that nonvibrational modes require more energy to
be excited. As we discuss in Sec. V, B(E2) values for decays

(a)

(b)

(c)

FIG. 6. (Color online) Partial energy spectrum of 110Cd (a),
112Cd (b), and 114Cd (c) up to the three-phonon level. Experimental
data [67–69], shown as black lines, are compared to LO and NLO
calculations, shown as red crosses and blue diamonds, respectively.
States up to the two-phonon level are shown as thick black lines.
Theoretical uncertainties quantified from 68% DOB intervals are
shown as shaded and hatched areas at LO and NLO, respectively.

from the identified states seems to be in better agreement with
the EFT expectations than those from other states.
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(a)

(b)

(c)

FIG. 7. (Color online) Partial energy spectrum of 118Te (a),
120Te (b), and 122Te (c) up to the three-phonon level. Experimental
data [74–76], shown as black lines, are compared to LO and NLO
calculations, shown as red crosses and blue diamonds, respectively.
States up to the two-phonon level are shown as thick black lines.
Theoretical uncertainties quantified from 68% DOB intervals are
shown as shaded and hatched areas at LO and NLO, respectively.

Figure 7 shows the comparison between experimental
data taken from Refs. [74–76] for 118Te , 120Te, and 122Te,

respectively, LO and NLO results from EFT. The tellurium
isotopic chain provides us with candidates of low-energy
vibrational behavior. The isotopes with A = 118,120,122 all
exhibit very similar spectra with states that can be identified
with those of a quadrupole vibrator up to the three-phonon
level. From these isotopes, the best candidate is 120Te with a
nonvibrational state slightly above the three-phonon quintu-
plet. 118Te and 122Te exhibit a nonvibrational state already at
the three-phonon level. The breakdown of the collective be-
havior is a consequence of competing single-particle motion,
known to exist in tellurium isotopes [77–82], and signaled
in 122Te by the unusual energy ratios E(4+

1 )/E(2+
1 ) < 2 and

E(6+
1 )/E(4+

1 ) < 1.5 [83]. The alignment of both valence
nucleons and protons promoted across the Z = 50 shell gap
breaks the spherical symmetry and gives rise to noncollective
deformed states. These states compete energetically with the
collective states. In particular, the 6+

1 state has been interpreted
both as a vibrational state or in terms of valence protons
coupled to a tin core.

Let us summarize our uncertainties as 68% DOB intervals
±δ for the hard-wall (hw) prior and the Gaussian (G) prior.
The uncertainty is ωδ for the energy levels. At LO, the pdfs
in Eqs. (84) and (85) agree with each other and yield values
of δ = 0.07 and δ = 0.29 for the one- and two-phonon levels,
respectively. Table II summarizes the values of δ for states up to
the two-phonon level at NLO. The columns labeled by hw and
G show the values of δ obtained from the pdfs in Eqs. (87) and
(88), respectively. With the exception of a few relatively large
uncertainties, both priors yield very similar results. For large
uncertainties δ, one samples the tails of the respective priors,
and these are notably different (and not well constrained by
data; cf. Fig. 1).

V. ELECTROMAGNETIC MOMENTS:
COMPARISON WITH DATA

In this section, we compare our results for transition
quadrupole moments, diagonal quadrupole matrix elements,

TABLE II. Values of the uncertainties at NLO, with ±δ giving the
size of 68% DOB intervals in states up to the two-phonon level. The
uncertainty arising from the hard-wall (hw) and Gaussian (G) priors
are calculated as 68% DOB intervals of the distribution functions (87)
and (88), respectively.

Nucleus 2+
1 0+

2 2+
2 4+

1

hw G hw G hw G hw G

62Ni 0.02 0.02 0.29 0.22 0.21 0.20 0.20 0.20
98Ru 0.02 0.02 0.18 0.19 0.18 0.18 0.18 0.18
100Ru 0.04 0.03 0.18 0.18 0.30 0.22 0.21 0.20
106Pd 0.03 0.02 0.18 0.18 0.18 0.18 0.21 0.20
108Pd 0.02 0.02 0.18 0.19 0.18 0.18 0.18 0.19
110Cd 0.02 0.02 0.18 0.18 0.18 0.18 0.19 0.19
112Cd 0.02 0.02 0.18 0.18 0.18 0.18 0.18 0.19
114Cd 0.02 0.02 0.18 0.18 0.18 0.18 0.18 0.19
118Te 0.02 0.02 0.34 0.23 0.21 0.20 0.19 0.19
120Te 0.02 0.02 0.19 0.19 0.18 0.18 0.18 0.19
122Te 0.03 0.03 0.18 0.18 0.18 0.19 0.21 0.20
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and magnetic moments with data. Theoretical uncertainties are
quantified for all quadrupole observables we consider. As we
will see, the EFT correctly captures and consistently describes
the main experimental features of vibrational nuclei.

To determine the LEC Q0, we perform χ2 fits to data at LO
with

χ2
LO =

∑
t

[
B(E2)(t)

exp − B(E2)(t)
LO

]2

σ 2
exp + σ 2

LO

. (90)

Here t labels the transitions from the one-phonon state to the
ground state and from the two-phonon states to the one-phonon
state, i.e., 2+

1 → 0+
1 , 0+

2 → 2+
1 , 2+

2 → 2+
1 , and 4+

1 → 2+
1 . In

these fits we estimate the theoretical uncertainty for decays
from the N -phonon state as

σLO = B(E2)(t)
LOε. (91)

Experimental data were taken mostly from the Nuclear
Data Sheets for the studied nuclei. For 62Ni, these data were
complemented with those from Ref. [15], while for 98Ru
we took the data from Ref. [16], which establish a ratio
B(E2,4+

1 → 2+
1 )/B(E2,2+

1 → 0+
1 ) = 1.86(16) in agreement

with the expectations for vibrators instead of taking data for
which this ratio has anomalous values [10,60,61]. The lack of
experimental data for 118Te makes it impossible to perform
a χ2 fit. For 120Te, we fixed Q2

0 to the only experimental
value and make predictions for decays from the two-phonon
states.

Table III compares experimental and theoretical B(E2)
values (in Weisskopf units) for each nucleus considered in
this work. The theoretical uncertainty is shown as 68% DOB
intervals from the pdf (85) with s = 1. Within the often
considerable theoretical uncertainties, the EFT consistently
describes the available experimental data. These results, taken
together with the results for energy level in Table II, show
that vibrational nuclei can be described as such within an EFT
with a breakdown scale around the three-phonon level. They
are examples for anharmonic quadrupole oscillators.

How reasonable and consistent are the 68% DOB intervals
for the B(E2) transitions? To address this question, we turn

TABLE III. B(E2) values (in Weisskopf units) for decays from
states below the three-phonon level in the ensemble of all studied
nuclei. Experimental data are in agreement with LO calculations
within theoretical uncertainty, given by the 68% DOB interval for the
normalized residual for B(E2) values.

Nucleus 2+
1 → 0+

1 EFT 0+
2 → 2+

1 2+
2 → 2+

1 4+
1 → 2+

1 EFT

62Ni 12.1(4) 11(4) 42(23) 14.9(42) 21(6) 21(7)
98Ru 31(1) 28(9) 47(5) 57.6(40) 56(19)
100Ru 35.6(4) 24(8) 35(5) 30.9(4) 51(4) 47(16)
106Pd 44.3(15) 30(10) 35(8) 44(4) 76(11) 61(20)
108Pd 49.5(13) 37(12) 52(5) 71(5) 73(8) 74(25)
110Cd 27.0(8) 21(7) 30(5) 42(9) 42(14)
112Cd 30.2(3) 23(8) 51(14) 15(3) 61(6) 46(15)
114Cd 31.1(19) 22(7) 27.4(17) 22(6) 62(4) 43(15)
120Te 31 (6) 31(10) 62(21)
122Te 36.9(3) 41(14) 100(30) 81(27)

FIG. 8. (Color online) Comparison between the normalized
B(E2) values for decays from the one- and two-phonon states
in the ensemble of the nuclei studied in this work. Experimental
B(E2) values are shown as black lines with error bars. Theoretical
uncertainties quantified from 68% DOB intervals are shown as shaded
areas.

again to the ensemble of vibrational nuclei considered in this
work. Excluding the isotopes 118,120Te, the EFT prediction
B(E2)/Q2

0 = N for decays from the N -phonon state can be
compared to the data from all nuclei in the ensemble. This
comparison is shown in Fig. 8, where the experimental data
and the LO calculations are shown as black error bars and
red lines with shaded uncertainty bands, respectively. About
81% of the data are within the 68% DOB intervals. This is a
consistent agreement for an ensemble of 32 data points.

The eigenstates of a harmonic quadrupole oscillator have
vanishing diagonal quadrupole matrix elements. Compared
to this ideal case, diagonal quadrupole matrix elements for
isotopes of Cd and Pd exhibit sizes that are only somewhat
smaller than transition quadrupole moments. From the EFT’s
perspective, sizable diagonal quadrupole matrix elements are
expected. Comparing the expansion of the spectrum (38) with
that of the quadrupole operator (44) shows that anharmonic
corrections have relative size ε for energies and relative size
ε1/2 for the quadrupole operator.

Let us consider diagonal quadrupole matrix elements (49).
We employ experimental data for the diagonal quadrupole
matrix elements of the 2+

1 , 2+
2 , and 4+

1 in 106Pd and 108Pd
from Svensson et al. and determine the LEC Q1 by a χ2

fit to these data. In these fits, the theoretical uncertainty was
estimated as Q0ε

3/2 as discussed in Sec. II C.
The fits yield Q1 = −0.14 eb for both palladium isotopes.

(We recall that for a nucleus with A nucleons 1 W.U. =
5.94 × 10−6 A4/3 e2 b2.) Comparing the size of Q1 against Q0

yields Q1/Q0 = 0.47 and Q1/Q0 = 0.41 in 106Pd and 108Pd,
respectively. These ratios are consistent with the EFT estimate
Q1/Q0 ∼ ε1/2 = √

1/3 ≈ 0.58. In other words, sizeable di-
agonal quadrupole matrix elements are not a surprise for these
anharmonic vibrators but rather expected and attributable to
the marginal separation of scales, i.e., the breakdown of the
EFT around the three-phonon level.
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(a)

(b)

FIG. 9. (Color online) Reduced electric quadrupole matrix ele-
ments in 106Pd (a) and 108Pd (b). Experimental data, shown as
black lines with error bars, are compared LO calculations, shown
as red crosses. Theoretical uncertainties from 68% DOB intervals are
shown as shaded areas. The left side shows diagonal matrix elements
employed in the fit of the LEC constant Q1. The right side shows
predictions for the absolute values of the reduced matrix elements
governing E2 transitions between two-phonon states.

The left part of both panels in Fig. 9 compares EFT results
to data [66] for the diagonal quadrupole matrix elements of
the 2+

1 , 2+
2 , and 4+

1 states in 106Pd and 108Pd. Theoretical
uncertainties are shown as 68% DOB bands. They are based
on the Gaussian prior (59) and M = 1 in Eq. (65). Within the
theoretical uncertainties, the EFT is consistent with the data.

We turn to transition quadrupole moments (48) between
two-phonon states because these are also determined by the
LEC Q1 and are thus predictions of the EFT. The right
part of Fig. 9 shows the magnitude of the transition matrix
elements and compares them to data [66]. We note that the
EFT yields different signs of these (nonobservable) matrix
elements and that only the magnitude of these matrix elements
is an observable quantity; see the definition of the observable
B(E2) transition strength in Eq. (51).

Theoretical results for quadrupole matrix elements in
114Cd are shown in Fig. 10 and compared to data [84]. The
uncertainties are quantified as for the palladium isotopes. With
the exception of the diagonal matrix element of the 2+

2 state,

FIG. 10. (Color online) Comparison between data and EFT re-
sults for some reduced quadrupole matrix elements in 114Cd.
Experimental data, shown as black lines with error bars, are compared
LO calculations, shown as red crosses. Theoretical uncertainties from
68% DOB intervals are shown as shaded areas. The left side shows
diagonal matrix elements employed in the fit of the LEC constant Q1.
The right side shows predictions for the absolute values of the reduced
matrix elements governing E2 transitions between two-phonon states.

the EFT yields a consistent description of the data and has
predictive power for the off-diagonal matrix elements. Here
Q0 = 0.27 eb, and Q1 = −0.09 eb.

Thus, the EFT consistently describes matrix elements
of electromagnetic operators. In the present approach, the
anharmonicities are attributable to the operators themselves,
with states being the eigenstates of the harmonic quadrupole
oscillator. We note that Figs. 9 and 10 exhibit very similar
patterns for the different nuclei. As a last consistency check,
we turn to magnetic moments.

The EFT needs one magnetic moment to determine a LEC,
i.e., the constant g in Eq. (53). While magnetic moments are
typically known for the lowest 2+ state in many even-even
nuclei [72], the EFT can only be tested if more magnetic
moments are known below the three-phonon level. The states
2+

1 , 2+
2 , and 4+

1 have nonzero spins and thus exhibit magnetic
moments. As discussed below Eq. (53), the EFT predicts at
LO that both 2+ states have equal magnetic moments, i.e.,
μ(2+

1 ) = μ(2+
2 ) ≡ μ(2+), and that the 4+ state has a magnetic

moment μ(4+
1 ) = √

6μ(2+) ≈ 2.44μ(2+). Weighted averages
of the experimental data [72] [in units of nuclear magnetons
(nm)] for 106Pd show that μ(2+

1 ) ≈ 0.79 ± 0.02 nm, μ(2+
2 ) =

0.71 ± 0.10 nm, and μ(4+
1 ) = 1.8 ± 0.4 nm. This is consistent

with EFT expectations. It would certainly be interesting to test
these EFT predictions in other vibrational nuclei.

Overall, the EFTs results and predictions for electromag-
netic properties of states and transitions below the three-
phonon level are consistent with data. This would make
it interesting to measure such complete data sets for other
vibrational nuclei as well.

VI. SUMMARY

We developed an EFT for collective nuclear vibrations
based on quadrupole degrees of freedom, rotational invariance,
and a breakdown scale at around the three-phonon level. For
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spectra, the EFT is driven to next-to-leading order, while the
computation of other matrix elements is restricted to LO. The
terms appearing in the Hamiltonian and quadrupole operator
differ from those employed in several models.

The EFT approach also allows us to quantify theoretical
uncertainties. To this purpose, we make testable assumptions
about priors regarding the distribution of LECs and employ
recently developed tools from Bayesian statistics. We give an-
alytical results for the important case of log-normal priors. The
priors employed in the uncertainty quantification of energies
are consistent for the ensemble of nuclei we considered.

The EFT is minimally coupled to electromagnetic gauge
fields in a model-independent way, with nonminimal couplings
accounting for subleading corrections. For states below the
three-phonon level we describe LO B(E2) transition strengths
with quantified uncertainties and present several results for
diagonal and off-diagonal matrix elements of the quadrupole
operator. Comparing the EFT results to an extensive data set
shows that spectra and transition strengths are consistently
described within the theoretical and experimental uncertainties
for 62Ni , 98,100Ru , 106,108Pd , 110,112,114Cd, and 118,120,122Te.
In particular, relatively large diagonal matrix elements in

106,108Pd and 114Cd are consistent with the expectations of
the EFT. The consistent description of spectra, E2 transitions
and matrix elements, and magnetic moments within the EFT
for nuclear vibration suggests that the nuclei studied in this
work can be viewed as anharmonic quadrupole vibrators. This
work also suggests that it would be interesting to measure
a combination of matrix elements for electric and magnetic
observables in nuclei such as 120Te and 122Te.

It would be interesting to extend the EFT of nuclear vibra-
tions also to odd-mass neighbors of the even-even nuclei con-
sidered in this work. Combining, for instance, halo EFT with
this work, one might explore to what extent such nuclei can
be understood by coupling the odd nucleon to the quadrupole
degrees of freedom of vibrational even-even nuclei.
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APPENDIX: ANALYTICAL RESULTS FOR LOG-NORMAL PRIORS

In this appendix we present some details for the derivation of analytical results for the combination of log-normal priors (57)
and hw priors (58).

The denominator of Eq. (60) is∫ ∞

0
dcpr(c)

k∏
m=0

pr(hw)(cm|c) = 2−(k+1)

√
2πσ

∫ ∞

a

dcc−(k+2)e
− 1

2σ2 (log c)2

. (A1)

Here

a ≡ max(|c0|, . . . ,|ck|) (A2)

is a function of the expansion coefficients. Substitutions z = log c and x = z − log(a) yield

e−(k+1) log ae
− 1

2σ2 (log a)2

2(k+1)
√

2πσ

∫ ∞

0
dxe

− x2

2σ2 −x(k+1+ log a

σ2 )
. (A3)

This integral is known [54], and we find

2−(k+2)e
σ2

2 (k+1)2

[
1 − �

(
σ√

2

(
k + 1 + log a

σ 2

))]
(A4)

as the final result for the denominator of Eq. (60). Here �(x) ≡ (2/
√

π )
∫ x

0 dt exp (−t2) denotes the error function. The numerator
of the expression (60) can be evaluated in similar fashion. Employing the shorthand

b ≡ max

(
a,

|�|
εk+1

)
(A5)

we find for the numerator of Eq. (60)

e
σ2

2 (k+2)2

2k+3εk+1

[
1 − �

(
σ√

2

(
k + 2 + log b

σ 2

))]
. (A6)

Thus, for M = 1,

p
(hw)
1 (�|c0, . . . ,ck) = e

2k+3
2 σ 2

2εk+1

1 − �
(

σ√
2

(
k + 2 + log b

σ 2

))
1 − �

(
σ√

2

(
k + 1 + log a

σ 2

)) , (A7)

and the dependence on the expansion coefficients is entirely contained in the functions a and b.
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Let us continue and compute p
(hw)
2 (�|c). The integral (68) is again known for M = 2 [54], and the final result is

p
(hw)
2 (�|c) =

⎧⎨
⎩

1
2εk+1c

, |�| � (1 − ε)εk+1c,

0 , |�| > (1 + ε)εk+1c,
(1+ε)εk+1c−|�|

4ε2k+3c2 , else.
(A8)

As we need to integrate over c for the computation of p
(hw)
2 (�|C0, . . . ,ck), we rewrite this function as

p
(hw)
2 (�|c) =

⎧⎪⎨
⎪⎩

0 for c � |�|
(1+ε)εk+1 ,

1
2εk+1c

for c > |�|
(1−ε)εk+1 ,

(1+ε)εk+1c−|�|
4ε2k+3c2 else.

(A9)

The remaining integrations are similar to the ones solved above, and one finds

p
(hw)
2 (�|c0, . . . ,ck) = (2εk+1)−1e

2k+3
2 σ 2

1 − �
(

σ√
2

(
k + 1 + log a

σ 2

)){
1 − �

(
σ√

2

(
k + 2 + log d

σ 2

))

+ 1 + ε

2ε
�(g − f )

[
�

(
σ√

2

(
k + 2 + log g

σ 2

))
− �

(
σ√

2

(
k + 2 + log f

σ 2

))]

− |�|
2εk+2

�(g − f )e
2k+5

2 σ 2

[
�

(
σ√

2

(
k + 3 + log g

σ 2

))
− �

(
σ√

2

(
k + 3 + log f

σ 2

))]}
. (A10)

Here � denotes the unit step function, and the expressions

d ≡ max

(
a,

|�|
(1 − ε)εk+1

)
, (A11)

f ≡ max

(
a,

|�|
(1 + ε)εk+1

)
, (A12)

g ≡ |�|
(1 − ε)εk+1

, (A13)

encode much of the functional dependence.
For M > 2, the evaluation of p

(hw)
M (�|c) [Eq. (68)] becomes increasingly tedious. Fortunately, p

(hw)
2 (�|c) is a good

approximation even for M > 2. The quality of this approximation can be verified by inserting the expression (68) into Eq. (60)
and performing the integrations numerically. We note that the accuracy of the M = 2 result is not surprising. As the expansion
coefficients cn are natural in size, increasingly higher orders contribute little to the residual (56). This makes Eq. (A10) the main
result of this appendix.
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Savelius, P. Jones, P. Jämsen, M. Muikku, P. A. Butler, G. Jones,
and P. Greenlees, Observation of (h11/2)2 neutron alignments in
100Mo, 104Ru, and 108Pd using deep inelastic reactions, Phys.
Rev. C 55, 2305 (1997).

[66] L. E. Svensson, C. Fahlander, L. Hasselgren, A. Bäcklin, L.
Westerberg, D. Cline, T. Czosnyka, C. Y. Wu, R. M. Diamond,
and H. Kluge, Multiphonon vibrational states in 106,108Pd, Nucl.
Phys. A 584, 547 (1995).

[67] G. Gurdal and F. Kondev, Nuclear data sheets for A = 110,
Nucl. Data Sheets 113, 1315 (2012).

[68] D. Frenne and E. Jacobs, Nuclear data sheets for A = 112, Nucl.
Data Sheets 79, 639 (1996).

[69] J. Blachot, Nuclear data sheets for A = 114, Nucl. Data Sheets
113, 515 (2012).

[70] K. Heyde, P. Van Isacker, M. Waroquier, G. Wenes, and
M. Sambataro, Description of the low-lying levels in 112,114Cd,
Phys. Rev. C 25, 3160 (1982).

[71] R. A. Meyer and L. Peker, Evidence for the coexistence of shapes
in even-mass Cd nuclei, Z. Phys. A: At. Nucl. 283, 379 (1977).

[72] N. Stone, Table of nuclear magnetic dipole and electric
quadrupole moments, At. Data Nucl. Data Tables 90, 75 (2005).

[73] J. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and
P. van Duppen, Coexistence in even-mass nuclei, Phys. Rep.
215, 101 (1992).

[74] K. Kitao, Nuclear data sheets update for A = 118, Nucl. Data
Sheets 75, 99 (1995).

[75] K. Kitao, Y. Tendow, and A. Hashizume, Nuclear data sheets
for A = 120, Nucl. Data Sheets 96, 241 (2002).

[76] T. Tamura, Nuclear data sheets for A = 122, Nucl. Data Sheets
108, 455 (2007).

[77] E. S. Paul, D. B. Fossan, J. M. Sears, and I. Thorslund, Favored
noncollective oblate states in light tellurium isotopes, Phys. Rev.
C 52, 2984 (1995).

[78] E. S. Paul, D. B. Fossan, G. J. Lane, J. M. Sears, I. Thorslund, and
P. Vaska, High-spin states in 121,122Te: Identification of favored
noncollective oblate states, Phys. Rev. C 53, 1562 (1996).

[79] J. R. Vanhoy, R. T. Coleman, K. A. Crandell, S. F. Hicks, B. A.
Sklaney, M. M. Walbran, N. V. Warr, J. Jolie, F. Corminboeuf, L.
Genilloud, J. Kern, J.-L. Schenker, and P. E. Garrett, Structure
of 120Te from the 118Sn(α,2nγ ) reaction and 120I decay, Phys.
Rev. C 68, 034315 (2003).

[80] S. F. Hicks, G. K. Alexander, C. A. Aubin, M. C. Burns, C. J.
Collard, M. M. Walbran, J. R. Vanhoy, E. Jensen, P. E. Garrett,
M. Kadi, A. Martin, N. Warr, and S. W. Yates, Intruder structures
observed in 122Te through inelastic neutron scattering, Phys. Rev.
C 71, 034307 (2005).

[81] S. F. Hicks, J. R. Vanhoy, and S. W. Yates, Fragmentation
of mixed-symmetry excitations in stable even-even tellurium
nuclei, Phys. Rev. C 78, 054320 (2008).

[82] S. Nag et al., Collective and noncollective states in 120Te, Phys.
Rev. C 85, 014310 (2012).

[83] J. A. Cizewski, Energy ratios in medium and heavy mass nuclei.
Signatures of coexisting configurations, Phys. Lett. B 219, 189
(1989).
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