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E1 and M1 γ -strength functions in 144Nd
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Both E1 and M1 γ -strength functions below the neutron separation energy were analyzed based on
experimental data from 143Nd(n,γ ) 144Nd and 143Nd(n,γ α) 140Ce reactions. It is confirmed that the commonly
adopted E1 model based on the temperature dependence of the width of the giant dipole resonance works well.
The popular M1 strength function due to the spin-flip magnetic resonance located near the neutron binding
energy is not capable of reproducing experimental data. The low-energy enhancement of the M1 strength or
the energy-independent model of Weisskopf, both leading to the low-energy strength sizable to E1 one, fit
experimental data best.

DOI: 10.1103/PhysRevC.92.064308 PACS number(s): 21.10.Ma, 21.10.Pc, 24.60.Dr, 28.20.Np

I. INTRODUCTION

The experimental study of low-energy (1–3 MeV) γ
transitions between highly excited compound states in the
continuum populated in nuclear reactions has always been
a challenging problem. The nature of the strength of such
transitions is still poorly understood. This is related largely
to experimental difficulties of isolating such transitions from
the usually more-intense, same-energy transitions between
low-lying discrete nuclear levels in experimental γ spectra.

The first experimental estimation of the strength of such
transitions has been done with the 143Nd(nth,γ α)140Ce re-
action where the compound nucleus 144Nd formed with the
thermal-neutron-capture reaction decays down by the cascades
consisting of the primary low-energy γ and the secondary α
transitions. Several such experiments have been performed
with consistent results [1–3]. The γα cascades are seen as
a continuum distribution in the α spectrum between peaks
corresponding to population of the ground state and the
1.5 MeV 2+ first-excited state of 140Ce (Fig. 1). The shape
of this distribution was used to determine the γ strength for
low-energy γ transitions between excited compound states.
Specifically, it was found that the hypothesis of a zero low en-
ergy E1 strength function limit (fE1(Eγ )Eγ →0) resulted from
extrapolation of the giant dipole resonance with the Lorentz
function is not correct. The new model was developed for the
E1 strength assuming its dependence on the temperature of
final states [4]. Since then similar models have been proposed
for the E1 strength function [5]. All these models are now used
in nuclear reaction codes [6,7]. The general feature of all E1
strength function models is the nonzero limit of E1 strength
[fE1(Eγ )Eγ →0 → ∼10−8 MeV−3]. Such a limit results from
the spreading of the giant dipole resonance (GDR) width
which is due to its dependence on both the γ energy and
the temperature of final states populated by γ transitions [4].

However, the following assumptions were made when
the analysis of the (n,γ α) reaction was performed [3]. The
effect of the level density on shape of the γα spectrum was
assumed to be negligible. The strength of low-energy M1
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transitions, which were postulated to play an important role,
was approximated by the Weisskopf single-particle model [8]
which assumes an independence of the γ strength on the γ
energy, i.e., fM1(Eγ ) = const. However, as is shown later [5],
the γ spectra and total radiative widths of neutron resonances
for spherical nuclei from the same mass range are reproduced
best with the assumption of M1 strength based on the
Lorentzian function (not Weisskopf estimate). The latter model
is based on the spin-flip M1 giant resonance, which predicts
the M1 strength to be about 100 times less than either the
E1 or the Weisskopf M1 ones for low-energy γ transitions
that is not in accord with the conclusion from the (n,γ α)
analysis [9]. Now, modern reaction codes, such as EMPIRE [6]
and TALYS [7] use RIPL-3 database recommendations for
the M1 strength function which is assumed to be due to an
M1 spin-flip resonance described by the Lorentzian function
centered around the neutron separation energy [10]. On the
other hand, there are results seen from Oslo-type experiments
indicating the low-energy enhancement of the γ -strength
function in different mass regions, which was interpreted as
an enhancement of the M1 strength [11].

In order to resolve the existing ambiguities about the M1
strength function, it appears to be important to reanalyze
the data from the 143Nd(n,γ α) reaction taking into account
new developments and new experimental data that have been
obtained after the publication of Ref. [4].

II. METHOD OF ANALYSIS

In the statistical reaction model the cross section of the
(n,γ α) reaction proceeding through the initial i, intermediate
j , and final f states can be expressed in the following manner:

dσ

dEα

(Eα) = σ i

∑
XLL′ �

XL

ij (Eγ )�
L′

jf (Eα)

�i(Bn)�j (Bn − Eγ )
ρj (Bn − Eγ ), (1)

where σ i is the capture-cross-section average over resonances
with the same spin and parity, �ij (Eγ ) is the average width
of the primary γ transition, �i(Bn) is the total average γ
width of the initial i compound state, �j (Bn − Eγ ) is the total
average width of the intermediate j level populated by the
primary γ transition Eγ , �jf (Eα) is the average α width of the
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FIG. 1. α spectrum from thermal neutron capture reaction on
143Nd. The figure is taken from Ref. [2] (Fig. 1), with permission
from Springer.

intermediate level j decaying to the final level f . ρj (Bn − Eγ )
is the density of intermediate levels j . Here we assume that
a compound nucleus is formed with the excitation energy
equal to the neutron separation energy Bn. The summation is
performed over all possible multipolarities XL of γ transitions
and orbital momenta L′ of α particles. The γ and α widths are
expressed in terms of the γ -strength function fXL(Eγ ) and
α-transmission coefficients T L′

(Eα), respectively, as

�
XL

ij (Eγ ) = DiE
2l+1fXl(Eγ ), (2)

�
L′

jf (Eα) = T L′
(Eα)

2π
Dj , (3)

where Di and Dj are average spacings of i and j levels,
respectively. The α-transmission coefficients are calculated
from optical model potentials. One can see that, in order
to estimate the γ -strength function from Eqs. (1)–(3), the

�
L′

jf (Eα) functions must be known. However, the α-optical
potentials for α energies 7–9 MeV, which is way below the
Coulomb barrier, are highly uncertain. Potentials collected in
the RIPL-3 database [10] produce transmission coefficients
which differ up to 20 times from each other in this energy
range. Therefore, first, we tested α-optical potentials against
experimental data on the 143Nd(n,α) reaction. Cross sections
for 2 to 500 keV neutrons have been measured recently
in Ref. [12]. At these energies Porter–Thomas fluctuations
of individual resonances can be neglected so the measured
cross sections are the ones averaged over resonances. The
143Nd(n,γ ) cross sections were measured in Ref. [13] for
the same neutron energies. Taking into account that the ratio
of total (integrated over energies of an outgoing particle or

γ ) cross sections is proportional to the ratio of total widths,
σn,α/σ n,γ ∝ �α/�γ , and the experimental �

expt
γ = 73 meV

[14], the �
expt
α is estimated to be 6 μeV. We also estimated

the average α width from α widths of individual neutron
resonances measured in Ref. [15]. From nine 3− and 4−
resonances with energies up to 705 eV, the estimated average
α width turned out to be 5.3 μeV which is in 12% agreement
with the value of 6 μeV obtained from the cross-section ratio.
The total α width is mainly due to 9.45 MeV α particles
populating the ground 0+ state of the 140Ce nucleus. However,

it is important to use the correct energy dependence of �
L′

(Eα),
especially in the energy range Eα from 8 to 9.5 MeV where
the (n,γ α) cross section is concentrated. For this, we used the
experimental cross section of the broad peak located at 7 MeV
in the experimental α spectrum (see Fig. 1). This peak includes
10 levels of 140Ce with excitation energies from 2 to 2.6 MeV
populated by α particles with energies from 6.8 to 7.2 MeV. Ten
levels reduce the Porter–Thomas fluctuations compared to a
single-level population. The remaining estimated uncertainty
due to these statistical fluctuations is estimated to be about
50%. Transmission coefficients obtained from optical model
parameters of Ref. [10] have been scaled to reproduce the
average �

expt
α of 6 μeV which is mainly due to 9.45 MeV

ground-state transitions. This allows the α-transmission co-
efficients to be tested for the α energy around Eα = 7 MeV
to be able to get the correct energy dependence between 7
and 9.45 MeV. Table I presents the experimental α width for
the α group 6.8–7.2 MeV as well as widths calculated with
different optical potentials from Ref. [10] along with their
scaling factors. The best potential has been chosen to be the
one from Ref. [16]. In calculations of thermal neutron capture
by 143Nd, the value of σi = 325 barns was used as a capture
cross section by a 3− resonance [14] and only (n,γ ) and (n,α)
outgoing channels were considered.

We tested the following γ -strength-function models. For
the E1-strength function this is the model developed by
Kadmensky–Markushev–Furman (KMF) [4]:

f KMF
E1 (Eγ ) = 1

3π2�2c2

0.7σE1�
2
E1

(
E2

γ + 4πT 2
)

EE1
(
E2

γ − E2
E1

)2 , (4)

where σE1, �E1, and EE1 are the giant electric dipole resonance
parameters derived from photoabsorption cross sections [21].
The temperature T is usually defined in terms of excitation

TABLE I. Summed α width for transitions with energies
6.8–7.2 MeV populating 10 levels of 140Ce in the excitation energy
interval 2 to 2.6 MeV. Widths are calculated with different optical
potentials indicated by references. Uncertainties in brackets are
expected to be due to Porter–Thomas statistical fluctuations estimated
for 10 populated levels.

Expt. Calculations

Reference [17] [18] [19] [20] [7] [16]
Scale factor 0.35 0.08 0.11 4.44 1.7 2.53

�5
α, 10−5 2.9 7.0 (35) 13 (7) 14 (7) 1.1 (6) 1.4 (7) 2 (1)
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FIG. 2. (Color online) Points are from the experiments for 143Nd(n,γ ) 144Nd [25] and 143Nd(n,α) 140Ce [2] reactions with 15–90 keV and
thermal neutrons, respectively. Lines are calculations with the constant-temperature level density model, the KMF E1 strength (4) and the
SLO (5) for the M1-strength function (left panel) and with the constant-temperature level density model, the KMF E1 strength (4) and the
Weisskopf M1 constant strength (right panel).

energy U and the level density parameter a as
√

U/a. Later,
the so-called enhanced Lorentzian model was developed and
became more popular in interpreting experimental data [5].
However, it does not differ much from the KMF model of
Eq. (4). Therefore, since the KMF model was originally used
to interpret the 143Nd(n,γ α) reaction [3], we use it here as well.

Two M1 models have been tested. The first one is the
Weisskopf estimate [8] based on the single-particle model
which results in the constant strength function fM1(Eγ ) =
const. The value of the constant is estimated from fM1/fE1

systematics as prescribed in Refs. [5,10] which recommend
this ratio to be 17.2A−0.87. The second model is based on the
assumption of the spin-flip magnetic resonance described by
the standard Lorentz (SLO) function as

f SLO
M1 (Eγ ) = 1

3π2�2c2

σM1�
2
M1Eγ(

E2
γ − E2

M1

)2 + E2
γ �2

M1

, (5)

where parameters σM1, �M1, and EM1 are taken from Ref. [10].
In calculations of γ cascades in 144Nd, discrete lev-

els were used up to 2.36 MeV. The level density above
that energy was modeled with a Fermi gas [22] and the
constant-temperature [23] functions. Model parameters were
determined from fitting these two functions to the density of
discrete levels [24] and to the density of neutron resonances
(to the neutron resonance spacing) taken from Ref. [14]. In
both cases, the spin cutoff parameter was calculated according
to the rigid body model [10] with parameters obtained for the
Fermi-gas function. The number of negative and positive levels
was assumed to be equal.

Model calculations were tested against both the experimen-
tal α spectrum from 143Nd(n,γ α) [2] and the experimental
γ spectrum from 143Nd(n,γ ) reactions [25] measured with
thermal and 15–90 keV neutrons, respectively. The comparison
is presented in Fig. 2. The best agreement was found with
the combination of the constant-temperature model for the
level density, the KMF model for the E1-strength function
and the Weisskopf energy-independent approximation for

the M1-strength function. However, even in the case of
best agreement, there is still a noticeable underestimation of
experimental (n,γ ) data points by calculations in the region
of the high-energy (Eγ > 3.8 MeV) γ transitions. Since this
underestimation also applies to the high-energy peaks related
to individual γ transitions, it may be concluded that it is caused
by the underestimation of the γ -strength function (rather than
by level density) in the high-energy region.

In order to estimate the correct E1- and M1-strength
functions as well as their possible uncertainties which are
due to restricted experimental information and uncertainties
of experimental data points, the artificial analytical highly
parametrized formulas were constructed in the following way:
For the E1-strength function it is expressed as

fE1(Eγ ) = f KMF
E1 (Eγ )

{
σ1

[
erf

(
Eγ − Ecut

�1

)
+ 1

]
+ 1

}
. (6)

The erf() function allows for the step-like increase of the KMF
γ -strength function for Eγ > Ecut with a magnitude deter-
mined by the parameter σ1. Here, we made the temperature
T constant but it is allowed to vary freely as an adjustable
parameter. Zero T makes Eq. (4) approach zero similar to the
SLO model (5) such that f KMF

E1 (Eγ )Eγ →0 → 0. The positive T
increases the low-energy E1 strength such that it approaches
the constant limit f KMF

E1 (Eγ )Eγ →0 → const. where the constant
value is determined by the parameter T .

The M1 γ -strength function was modeled by the equation

fM1(Eγ ) = f SLO
M1 + fpole(Eγ ), (7)

where fpole(Eγ ) = σp exp(−�pEγ ) models the low-energy
increase of the M1 γ -strength function with parameters
σp and �p. The E2 strength function was approximated
by the SLO function with parameters from Ref. [10]. The
parameters of both Eqs. (6) and (7) were varied randomly
in the following ranges: T = 0.1 to 3 MeV, σ1 = 0 to 1 mb,
Ecut = 4 to 5 MeV, �1 = 0.6 MeV, σp = 0.01 to 1 mb, �p =
0 to 2 MeV, resulting in random E1 and M1 γ -strength
functions. For each set of parameters both the (n,γ ) and (n,γ α)
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FIG. 3. (Color online) Experimental data as in Fig. 2 (left panel). Scattered points are the result of simulations (see text for explanations).
Simulated points corresponding to the population of the ground state in the 143Nd(n,α) 140Ce reaction are up off the scale and not visible in the
lower-left plot. Open circles in the lower-right plot are from the photoabsorbtion experiments of Ref. [21].

spectra were calculated and compared with experimental data
points. Only those were selected which deviate from experi-
mental points by no more than 15%. It resulted in squeezing
the range of the following parameters: σ1 = 0.2 to 1 mb, σp =
0.1 to 0.5 mb, and �p = 0.2 to 1 MeV. Other parameters were
allowed within initially assumed ranges.

Both the constant-temperature and the Fermi-gas level
density models were tested. It was found that the constant-
temperature model allowed reproducing both sets of exper-
imental data within 15% uncertainties, while the Fermi-gas
model failed to do that.

Figure 3 presents experimental against simulated spectra
along with corresponding E1- and M1-strength functions. The
E1 one exhibits a nonzero limit at Eγ → 0 which is consistent
with the KMF prediction of Eq. (4). The high-energy part is
little enhanced to be able to describe the high-energy region
of the (n,γ ) spectrum. The M1 functions are enhanced in the
low-energy region compared to the prediction based on the
Lorentz function (5). This is in contradiction with conclusions
derived from analysis of γ spectra from neutron capture
reactions in this mass region [5]. However, it supports results
of the analysis of experimental two-step cascade spectra [26]
from the 143Nd(n,2γ ) reaction on thermal neutrons where
the best agreement was obtained with the energy-independent
Weisskopf model [8] for the M1-strength function. This model
was also found best to describe the shape of the 143Nd(n,γ α)
spectrum in the original work of Ref. [3].

Figure 3 shows the sum of (E1 + M1)-strength functions
in comparison with the strength function obtained from cross-
section data of the 143Nd(γ,n) reaction [21] in the region of
the giant dipole resonance (Eγ > ∼8 MeV). Despite the fact

that these two data sets have been obtained with different
techniques from different experiments, they show a good
agreement at the matching point of about 8 MeV. This supports
reliability of both sets of data.

III. SUMMARY

Analysis of both E1 and M1 γ -strength functions in 144Nd
has been performed using available experimental data from
143Nd(n,γ ) 144Nd and 143Nd(n,γ α) 140Ce reactions. The E1
strength was confirmed to have a nonzero limit at γ energy
approaching zero fE1(Eγ )Eγ →0 = const. This is consistent
with the KMF model of Ref. [4] and with conclusions of the
original works of Refs. [3,9]. However, for γ energies greater
than 3.5 MeV the step-like enhancement is needed to reproduce
the high-energy portion of the (n,γ ) spectrum from Ref. [25].
The M1 strength was found to be comparable with E1
strength in the region of low-energy γ transitions (<3 MeV)
which implies either low-energy enhancement of the SLO
model (5) or the validity of the energy-independent Weisskopf
single-particle model [8]. This finding is not consistent with
the commonly adopted SLO model for M1 strength [10] but it
is in accord with the original work of Ref. [3] and with the M1
hypothesis of the low-energy enhancement seen in Oslo-type
experiments [11].
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