
PHYSICAL REVIEW C 92, 064306 (2015)

Quasiparticle-random-phase approximation treatment of the transverse
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The quasiparticle-random-phase approximation is used to study the properties of the wobbling bands in 163Lu.
Assuming that the wobbling mode represents pure isoscalar orientation oscillations results in too low wobbling
frequencies and transition probabilities between the one- and zero-phonon wobbling bands that are strongly
collective but yet too weak for B(E2)out and too strong for B(M1)out. The inclusion of an LL interaction, which
couples the wobbling mode to the scissors mode, generates the right upshift of the wobbling frequencies and the
right suppression of the B(M1)out values toward the experimental values, but does not change the B(E2)out values.
In analogy to the quenching of low-energy E1 transition by coupling to the isovector giant dipole resonance, a
general reduction of the M1 transitions between quasiparticle configurations caused by coupling to the scissors
mode is suggested. The small B(E2)out values are related to small triaxiality of the density distribution, which is
found by all mean field calculations for the triaxial strongly deformed nuclei in the mass 160 region.
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I. INTRODUCTION

Rotating nuclei that have a triaxially deformed shape are
expected to exhibit a characteristic excitation mode called
“wobbling” by Bohr and Mottelson [1], which is an orientation
vibration of the triaxial body about the rotational axis. It
is the nuclear analog to the motion of the classical top
with three different moments of inertia, which is well known
from the rotational spectra of molecules. Experimental evi-
dence for the wobbling mode was established by the discovery
[2–4] of rotational bands in the 71Lu isotopes when they attain
a triaxial strongly deformed (TSD) shape at high spin. The
simple dynamics of a rotor with three different moments of
inertia results in an increase of the wobbling frequency with
angular momentum, which is seen in molecules. However,
for the Lu isotopes a decrease is observed, which makes the
identification of the wobbling possible, because it prevents
the mode being fragmented among competing quasiparticle
excitations. In the framework of the quasiparticle+triaxial-
rotor (QTR) model, Frauendorf and Dönau [5] demonstrated
that the decrease results from the presence of the odd i13/2

quasiproton, which aligns its angular momentum along the
short body axis, transverse to the medium axis with the
largest moment of inertia. To notify the modification of
the dynamics by the odd quasiparticle, they introduced the
name “transverse wobbling.” They predicted the appearance
of transverse wobbling for the mass 130 region, where the
h11/2 quasiparticle couples transverse to the triaxial rotor.
The prediction was recently confirmed for 135Pr [6]. The
QTR calculations well account for the wobbling energies
and the B(E2)out values of the �I = 1 electric quadrupole
transitions, which connect the one-phonon wobbling band with
the zero-phonon band. However, the B(M1)con values of the
connecting magnetic dipole transitions are overestimated by
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about a factor of 3–10 (see Refs. [6] and [5]). The discrepancy
turns out to be robust, and it can be traced back to the transverse
geometry: For a quasiproton that is rigidly coupled to the
triaxial charge density distribution (HFA approximation of
Ref. [5]) the amplitude of the wobbling vibrations of the charge
density, which generate the B(E2)out values of the interband
transitions, determines the amplitude of the vibrations of the
magnetic moment of the odd quasiproton, which generate the
B(M1) values of the interband transitions. Realistically, the odd
quasiproton is not rigidly coupled to the rotor, which reduces
the amplitude of the oscillations of the magnetic moment and
thus the B(M1)out values. However, the reduction is too weak
to bring down the B(M1)out to the experimental values (see Fig.
19 of Ref. [5]). The present paper addresses this problem of
the too strong magnetic dipole transitions from a microscopic
perspective.

Following the discovery of the first wobbling structure
in 163Lu [2], Ødegård et al., Hamamoto, and Hamamoto
and Hagemann [2,7,8] used the QTR model to describe
the wobbling mode. These calculations made the ad hoc
assumption that the short axis has the largest moment of inertia,
by exchanging the hydrodynamic moments of inertia of the
short and medium axes. The large ratios B(E2)out/B(E2)in

of interband to intraband E2 transitions could be well
reproduced. The B(M1)out were only overestimated by a
factor of 2–3. However, the calculated wobbling frequencies
of the QTR model with the “inverted moments of inertia”
assumption distinctly disagree with experiment. Instead of the
experimentally observed decrease, the wobbling frequency
increases with the spin I , which is expected because the
inverted moment of inertia arrangement corresponds to the
longitudinal wobbling geometry in the terminology of Ref. [5].
Reference [9] suggested remedying the problem by assuming
a decrease of the scale of the rotational energy, which may
reflect the increase of the moments of inertia from a reduction
of the pair correlations. In our view, the “inverted moments
of inertia” assumption is unrealistic because any microscopic
calculation of the three moments of inertia in the frame of
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the cranking model give the maximal moment of inertia
for the medium axis. This result is in accordance with the
hydrodynamic ratios between the moments of inertia. It can be
qualitatively understood by the fact that the moment of inertia
of a certain axis increases with the deviation from cylindric
symmetry, which is maximal for the medium axis. Hence, the
problem with the too strong magnetic transition remains.

The observation of the wobbling mode stimulated theo-
retical efforts to understand how the nuclear shell structure
and the residual interaction generate such a type of collec-
tive excitations. Matsuyanagi, Matsuzaki, Ohtsubo, Shimizu,
and Shoji demonstrated that the quasiparticle-random-phase
approximation (QRPA) is an adequate microscopic approach
[10–14]. QRPA describes wobbling bands in terms of cor-
related two-quasiparticle excitations in a rotating triaxial
potential. Relevant results of these studies can be summarized
as follows.

(1) The QRPA calculations agree with the transverse
wobbling geometry as discussed in Ref. [5]. The authors refers
to it as “positive γ shape,” which uses the common terminology
of principle axis cranking that assigns the sector 0 � γ � 60◦
to rotation about the short axis. The angular momentum of the
odd i13/2 quasiparticle aligns with this axis. The decrease of
the wobbling frequency is interpreted as the approach of the
instability of the cranking solution to a tilt of the rotational
axis into the short-medium plane, which is signaled by the
frequency of the lowest QRPA solution becoming zero [12].

(2) The collective enhancement of the connecting E2
transitions is born out. QRPA calculations underestimate the
ratios B(E2)out/B(E2)in by about a factor of two [10–13].

(3) The B(M1)out values of the interband transitions are
overestimated by a factor of 10 as for the QTR results for
transverse wobbling.

The QRPA calculations [10–13] used a residual interaction
of the isoscalar quadrupole-quadrupole (QQ) type. Because
such interaction generates the same coupling between the
odd quasiparticle and the triaxial rotor core as in the QTR
calculations, it comes as no surprise that both approaches
overestimate B(M1)out values by the same factor. The reason to
revisit the QRPA in this paper is to investigate how modifying
the residual interaction influences the resulting excitation
energies and electromagnetic transition rates. In particular we
are interested whether the suppression of the interband M1
transitions can be obtained for transverse wobbling. We study
the i13/2 TSD bands in 163Lu which offer the most complete
set of data.

Our QRPA calculations are carried out in the uniformly
rotating (UR) frame of reference. They are equivalent with
the QRPA in the system of body fixed axes (PA), which was
used in Refs. [10–12]. The QRPA equations in the PA system
become very similar to the equations for the wobbling mode
of the triaxial rotor (TR) model when the phenomenological
moment of inertia are replaced by the appropriate microscopic
expressions. This lends an intuitive interpretation of the QRPA
results and makes contact with the triaxial rotor phenomenol-
ogy. In particular, the geometry of transverse wobbling appears
as a decrease with spin of the moment of inertia of the short
axis [cf. Eq. (15) of Ref. [5]]. The transformation between the
two versions of QRPA is discussed in Ref. [13], which carries

out the QRPA in the uniformly rotating frame and interprets the
results in the body-fixed frame. An alternative way of connect-
ing the QRPA with the triaxial rotor was taken by Ref. [15],
which uses the equivalence of QRPA and small amplitude
TDHF theory to separate the motion of the quadrupole tensor
with respect to the UR frame into oscillations of its orientation,
the wobbling mode, and oscillations of the shape. (The more
general case of chiral vibrations is considered, which includes
wobbling as a special case.)

The paper is organized as follows. In Sec. II A a self-
consistent treatment of the QRPA is performed by deriving the
shape parameters (ε,γ ) from the QQ interaction. In Sec. II B
the shape parameters (ε,γ ) are adopted from a Nilsson-
Strutinsky minimization and the strength of residual QQ inter-
action is determined by restoring the rotational invariance of
the Hamiltonian. Section III studies the consequences of addi-
tional interactions. Coupling to the low-energy orbital M1 reso-
nance (“scissors mode”) is suggested as a mechanism that sup-
presses the strength of the M1 interband transitions. Section IV
summarizes the results and puts them into perspective.

II. QUASIPARTICLE-RANDOM-PHASE APPROXIMATION
(QRPA) FOR ISOSCALAR QQ INTERACTION

A. Self-consistent QRPA (sc QRPA) with standard QQ
interaction

The theoretical framework of our QRPA calculations is
similar to the one used in our recent study of chiral vibrations
[15]. The Hamiltonian Ĥ ′ is defined with respect to a reference
system uniformly rotating about the 1-axis,

Ĥ ′ = Ĥ − ωĴ1, (1)

where ω is the cranking frequency and Ĵ1 denotes the 1-
component of the angular momentum operator. The cranking
term −ω Ĵ1 ensures that the states have an average angular
momentum 〈J1〉 = I . The corresponding laboratory Hamilto-
nian Ĥ in Eq. (1) is

Ĥ =
∑

τ=π,ν

[
ĥ◦

τ − �τ (P̂ †
τ + P̂τ ) − λτ N̂τ

]

−κ0

2

∑
m=−2,2

(−1)mQ̂mQ̂−m. (2)

The operator ĥ◦
τ is the spherical part of the Nilsson Hamiltonian

where the isospin index τ = π,ν distinguishes the neutron
and proton contributions, respectively. The term �τ (P̂ †

τ + P̂τ )
accounts for the pair field where P̂ †

τ and P̂τ are the familiar
monopole pair operators. Aiming at the high-spin πi13/2

band in 163Lu, the gap parameters �τ are assumed to be
reduced: Below the cranking frequency ω = 0.45 MeV we
take �π = 0.45 MeV for the proton gap and �ν = 0.35 MeV
for the neutron gap, and we use �τ=π,ν = 0 above. As usual,
the terms λτ N̂τ , containing the particle number operators N̂τ ,
are introduced to attain the average particle numbers 〈N̂π 〉 = Z
and 〈N̂ν〉 = N , respectively, by an appropriate choice of the
Fermi energy λτ . The following term in Eq. (2) is the isoscalar
quadrupole-quadrupole (ISQQ) interaction. It is constructed
from the mass quadrupole operators Q̂m = Q̂m(π ) + Q̂m(ν),
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where Q̂m(τ ) ≡ √
4π/5 (r/b◦)2Y2m(τ ), and b◦ = 1.01A1/3 is

the oscillator length. The model space is restricted to the
oscillator shells N = 4,5,6, and the matrix elements between
different N are discarded. It should be underlined that the
latter assumptions are an essential part defining our model.
They imply the use of polarization charges, for which we
adopted the values ep = (1 + Z/A)e and en = Z/A e for the
proton and neutron parts of the electric quadrupole operator.

In this section we follow the standard scheme requiring self-
consistency between the ISQQ interaction and the deformed
nuclear shape, which is defined by the parameters (ε,γ ). More
precisely, it is the deformed mean field potential v of the ISQQ
interaction which, for a predefined interaction strength κ0 , has
to obey the condition,

v = v(ε,γ ) = −κ0 [〈Q̂0〉Q̂0 + 〈Q̂2〉(Q̂2 + Q̂−2 )], (3)

where |〉 = | ε,γ 〉 is the quasiparticle reference state of the
π i13/2 TSD band as specified below. Denoting the c numbers
〈Q̂0,2〉 as q0,2 (ε,γ ) the self-consistency conditions demand
searching for deformation parameters which at a given
cranking frequency ω satisfy the relations,

κ0〈Q̂0〉 ≡ κ0q0 (ε,γ ) = 2/3 �ω0 ε cos γ,
(4)

κ0〈Q̂2〉 ≡ κ0q2 (ε,γ ) = −2/3 �ω0 ε sin γ /
√

2.

The mean field calculations are done by using the tilted axis
cranking (TAC) code described in Ref. [16]. It should be noted
that the above conditions lead to a stable equilibrium shape
only if one renders the volume conservation by taking the
scale factor �ω0 = 41A−1/3 MeV as constant. Combining the
spherical mean field part from the Hamiltonian Ĥ ′, Eq. (1),
with the self-consistency conditions (4), one obtains the mean
field Hamiltonian of the standard principle axis cranking (PAC)
model ĥ′ = ĥ − ωĴ1 [16], where ĥ is given by

ĥ = ĥ◦ − �τ (P̂ † + P̂ ) − λN̂

− �ω0

2

3
ε

(
cos γ Q̂0 − sin γ√

2
(Q̂2 + Q̂−2 )

)
. (5)

The diagonalization of the PAC Hamiltonian ĥ is done in an
oscillator basis with the quantum numbers {n,l,j,m} including
the orbits of the three main shells N = 4–6. The search for
the equilibrium needs to be performed with diabatic tracing
(c.f. [16]) of the selected (π i13/2,ν g) configuration of the
TSD band. The strength of the sc ISQQ interaction κ0 =
0.019 60 MeV is ω independent and chosen such that at ω =
0.15 MeV/� the deformation parameter comes close to the
suggested value ε = 0.4 of the experimental TSD band [17].
The self-consistent deformation parameters for the frequency
interval ω = 0.15–0.50 MeV/� are presented in Table I.
It is seen that for the ISQQ interaction the self-consistent
triaxiality parameter γ ≈ 9◦–12◦ is lower than +20◦ found in
Ref. [17] by means of Nilsson-Strutinsky minimization. The
relative change of the deformation (ε,γ ) to higher rotational
frequencies is small. Nevertheless precise self-consistency is
required in the subsequent QRPA calculation to obtain reliable
values for the excitation energies and E2/M1 properties of the
wobbling band. As already noted in the previous QRPA papers
[10–14], the absolute minimum of 〈Ĥ ′〉 corresponds to rotation

TABLE I. Equilibrium values of the deformation parameters
(ε,γ ) in the frequency region ω = 0.15–0.50 MeV/�. The strength
parameter of the ISQQ interaction is κ0 = 0.019 60 MeV.

ω(MeV/�) ε γ (deg)

0.15 0.398 839 9.248
0.20 0.397 926 9.362
0.25 0.396 632 9.486
0.30 0.394 788 9.631
0.35 0.392 064 9.798
0.40 0.387 658 9.977
0.45 0.381 236 11.575
0.50 0.377 065 11.619

about the short axis of the triaxial potential, along which the
angular momentum of the i13/2 proton is aligned (the sector
of positive γ values in standard PAC terminology). Above
the frequency ω = 0.5 MeV/� the PAC solution becomes
unstable, because the moment of inertia of the medium axis
is larger than the one of the short axis. The stable solution
corresponds to rotation about a t ilted axis in the short-medium
plane, which represents a �I = 1 band. The QRPA frequency
goes to zero when approaching the instability from below.
Thus, the QRPA solution studied in this paper is of the
“transverse wobbling” type according to the classification
scheme introduced by us in Ref. [5], where the corresponding
physics is discussed in the semiclassical framework of the HFA
approximation.

In Fig. 1 we show the total Routhian surface for ω =
0.45 MeV/� as obtained by diabatic tracing the TSD con-
figuration with the TAC code. The ISQQ interaction gives a
relatively shallow minimum on the deformation surface. In
Fig. 2 the experimental and calculated moments of inertia
J (1) are compared. The experimental frequencies of the TSD
bands are derived by using the standard definition ω(Ī ) =
(E(I ) − E(I − 2))/2, where transition spin Ī = I − 1/2, and
the experimental moment of inertia J (1)(Ī ) = Ī //ω(Ī ). The
calculation somewhat overestimates the experimental values.

Figure 3 presents the experimental B(E2)in values of the
I → I − 2 transitions within the TSD g band [17] and the
ones calculated with the self-consistent TAC model. Starting

FIG. 1. (Color online) Total Routhian surface for the TSD con-
figuration in 163Lu at ω = 0.45 MeV/�.
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FIG. 2. (Color online) Experimental and calculated kinematic
moments of inertia of the TSD band in 163Lu. The calculated moment
of inertia is J (1) = 〈J1〉/ω.

from results of the self-consistent TAC calculation the QRPA is
performed following the general formalism as outlined in the
textbooks (e.g., [18]). We mention only the important steps
of the QRPA and refer for more details to our recent paper
[15]. First, the Hamiltonian (1) is rewritten in quasiparticle
(qp) representation,

Ĥ ′ = ĥ′ + V̂4qp, (6)

where ĥ′ is the diagonalized TAC Hamiltonian,

ĥ′ = E◦ +
∑

i

ei α̂
†
i α̂i . (7)

The set {α̂†
i ,α̂i} denotes the qp operators, ei are the qp

energies, and V̂4qp contains the residual 4qp interaction terms
which give rise to the vibrational excitations. Then, the
quasiboson approximation α̂

†
i α̂

†
j ⇒ b̂

†
ij is applied such that the

Hamiltonian, Eq. (6), is expressed in terms of bosons, Ĥ ′ ⇒
Ĥ ′

RPA, keeping only boson terms up to second order [18]. This
Hamiltonian is diagonalized by using the QRPA equation,

[Ĥ ′
QRPA, Ô

†
λ] = Eλ

QRPA
Ô

†
λ, (8)

FIG. 3. (Color online) Experimental and calculated B(E2)in =
B(E2,I → I − 2)in values of the TSD band.

which yields the phonon excitation energies Eλ
QRPA

and the

phonon excitation operators Ô
†
λ defined by

Ô
†
λ =

∑
μ=i<j

(
Xλ

μb̂†μ − Yλ
μb̂μ

)
. (9)

The amplitudes Xλ
μ and Yλ

μ are found by solving the
standard set of linear equations following from Eq. (8). The
quasiparticle Hamiltonian ĥ′ and the full Hamiltonian Ĥ ′
commute with the signature operator R1 = exp(−iπ Î1),
which generates a 180-deg rotation about the cranking axis.
Therefore, the quasiparticle states and the phonon excitations
have good signature quantum numbers. The energetically
lowest phonon state with negative signature r = −1 embodies
the wobbling excitation which is characterized also by giving
the largest cross-over transition strength B(E2,I → I − 1) =
B(E2)out. Accordingly, only two-quasiparticle components
with the combined signature r = rirj = −1 contribute to the
wobbling operator Ô† in Eq. (9). One has to make sure that
the spurious rotational solution with the energy EQRPA = �ω
does not mix with the wobbling solution. Self-consistency of
the mean field ensures this requirement.

The E2/M1 transition amplitudes from the TSD wobbling
band to the TSD g band are obtained by evaluating the matrix
elements,

〈w|M̂m(E2/M1)|0〉 = 〈0|ÔwM̂m(E2/M1)|0〉, (10)

where |w〉 means the wobbling phonon state and |0〉 denotes
the QRPA vacuum state at the cranking frequency ω. The
transition operators are

M̂m(E2) = epr2
pY2m(p) + enr

2
nYm(n),

(11)

M̂m(M1) = 3

4π
g(l)

p l̂1m(p) + g(s)
p ŝ1m(p) + g(s)

n ŝ1m(n).

The component m is assigned to the transition I → I − m.
Furthermore, the orbital g factor for M1 is g(l)

p = 1μN for
protons and 0 for neutrons. The spin g factors g(s)

p and g(s)
n are

0.7 times the values for the free proton or neutron. The reduced
transition probabilities are

B(E2/M1,I → I ∓ 1) = |〈w|M̂±1(E2/M1)|0〉|2. (12)

In the self-consistent version of QRPA, the ISQQ term in the
Hamiltonian (1) generates both the deformed mean field and
the residual interaction. As discussed above, its strength is
fixed to the value κ◦ = 0.01960 for the whole frequency range
ω = 0.15–0.5 MeV/�. The factorized form of the ISQQ term
reduces the solution of the QRPA equation to searching the
zeros of the dispersion determinant, which are located at the
QRPA energies EQRPA .

In Figs. 4–6 we present the QRPA results for the wobbling
energies and the inter band Bout(E2, I → I − 1) and Bout(M1,
I → I − 1) values. The reduced transition probabilities of the
upward transitions I → I + 1 are at least one order smaller
and not displayed. The calculated wobbling energies EQRPA (ω)
follow the decreasing tendency of the measured ones, which
is characteristic for transverse wobbling. However, they are
substantially below the experiment. At ω = 0.45 MeV the
frequency becomes zero, which signalizes the change to a
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FIG. 4. (Color online) Excitation energy of the wobbling band in
163Lu as a function of the rotational frequency. Experimental values
(blue diamonds) are from [17]. QRPA calculation (solid line) with
self-consistent ISQQ interaction.

permanent tilt of the rotational axis away from the short
axis. The experimental wobbling energies decrease linearly
up to ω = 0.60 MeV. The calculated ratios between the inter-
and intraband transition probabilities B(E2)out/B(E2)in =
B(E2,I → I − 1)/B(E2,I → I − 2) reach only one-half of
the measured values, whereas the calculated B(M1,I → I −
1) = B(M1)out exceed the experimental ones by a factor 10.
Our results are similar to the ones of Ref. [11], which used the
QRPA version for ISQQ interaction in the body fixed frame.
The deviations from experiment are about the same.

B. QRPA for Nilsson-Strutinsky deformations

The wobbling mode is sensitive to the ratios between the
three moments of inertia, which strongly change with the
triaxality parameter γ . The ISQQ coupling constant κ◦ =
0.01960 used in the preceding section was adjusted to obtain
a mean field deformation of ε = 0.4.

The self-consistent values of γ ≈ 10◦ obtained with the
coupling constant fixed this way are substantially smaller
than the values γpot calculated by minimizing the Nilsson-

FIG. 5. (Color online) The ratios B(E2)out/B(E2)in of the inter-
and intraband reduced transition probabilities for the transitions
between the TSD wobbling band and the TSD ground band in 163Lu.
Notations as in Fig. 4.

FIG. 6. (Color online) The reduced transition probabilities
B(M1)out = B(M1,(I → I − 1))out for the transitions between the
TSD wobbling band to the TSD ground band in 163Lu. Notations as
in Fig. 4.

Strutinsky energy functional, which are given in Table II.
Following Refs. [13,14], we introduce the subscript “pot” to
indicate that it is the triaxiality of the nuclear potential, which
generally does not agree with the triaxiality of the density
distribution γden (see below). References [13,14] demonstrated
that larger values of γpot increase the ratio B(E2)out/B(E2)in

between the inter- and intraband transitions. Their QPPR
version in the body fixed frame does not use the self-
consistency in an explicit way, allowing them to freely choose
the deformation of the mean field potential. To investigate this
possibility in our framework we give up the self-consistency
requirement, Eq. (4), between the shape parameters of the
potential and the expectation values of quadrupole moments,
which are implied by the QQ interaction in Eq. (2) with the
common strength parameter κ0 . This means we use the same
Nilsson Hamiltonian ĥ, Eq. (5), as before but the deformation
parameters (ε,γpot) shall be at our disposal. As pointed out
by Refs. [13,14], one must distinguish between the triaxiality
parameter γpot of the potential and the triaxiality parameter
γden (see below) of the density distribution generated by the
deformed potential, because the self-consistency requirement
Eq. (4) was given up.

Self-consistency is only locally restored by constructing
the residual interaction from the requirement that the result-
ing Hamiltonian Ĥ = ĥ + V4qp becomes rotational invariant.

TABLE II. Deformation parameters (ε,γpot) of 163Lu in the
frequency region ω = 0.15–0.55 MeV/� obtained from a Nilsson-
Strutinsky (NS) minimization [17].

ω(MeV/�) ε γpot(deg)

0.15 0.3815 18.75
0.2 0.3892 19.2
0.25 0.3968 19.64
0.3 0.4044 20.12
0.35 0.408 20.41
0.4 0.3991 20.72
0.45 0.3908 21.3
0.5 0.3852 21.78
0.55 0.3812 22.34
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Such “symmetry-restoring interaction” [19,20],

V4qp = −1

2

3∑
m=1

κmF 2
m, (13)

is built from the squares of the commutators of the quasipar-
ticle Hamiltonian ĥ and the angular momentum components
Jm=1,2,3:

Fm = [ĥ,iJm]. (14)

The strength constants κm are determined by demanding
rotational invariance via the commutator,

[Ĥ ,iJm] =
[
h − 1

2

3∑
n=1

κnF
2
n ,iJm

]
= 0, (15)

which can be satisfied on average 〈[Ĥ ,iJm]〉 = 0 by fixing the
strength constants according to

κ−1
m = 〈[[ĥ,iJm],iJm]〉, (16)

where |〉 is the reference quasiparticle configuration.
This method can be applied to any mean field Hamiltonian

ĥ, as, for instance, in Ref. [13] to a deformed Woods-
Saxon potential. In our case the commutator (14) with a
quadrupole deformed field generates again quadrupole opera-
tors. We evaluate the commutators relations (14, 16) explicitly.
The results are written in terms of the combined quadrupole
operators Q1± and Q2± defined by

Q1+ = Q1 + Q−1

i
√

2
, Q1− = Q1 − Q−1√

2
,

(17)

Q2+ = Q2 + Q−2√
2

, Q2− = Q2 − Q−2

i
√

2
.

We introduce the constantsQ and γden, which specify the shape
of the density distribution for given deformation parameters
(ε,γpot) of the potential,

Q =
√

〈Q0〉2 + 〈Q2+〉2,
(18)

sin γden = −〈Q2+〉
Q , cos γden = 〈Q0〉

Q .

The Hamiltonian (1) with the interaction (13) takes the form,

Ĥ = ĥ + 1

3

�ω◦ε
Q

[
sin γpot

sin γden
Q 2

2− + sin (γpot + 2π/3)

sin (γden + 2π/3)
Q 2

1+

+ sin (γpot − 2π/3)

sin (γden − 2π/3)
Q 2

1−

]
, , (19)

where the constants κm are expressed in terms of Q and
γden. Hence, the residual interaction of the Hamiltonian Ĥ ,
needed for the QRPA, is fully determined by the single-particle
Hamiltonian ĥ, in our case by the deformation parameters
(ε,γpot) of its potential.

The “symmetry-restoring interaction” includes the self-
consistent treatment of the ISQQ Hamiltonian (2) as a special
case. Using the notation (17), expression (2) becomes

Ĥ = ĥ − κ◦
2

∑
μ=0,1±,2±

Q2
μ. (20)

In comparison with Eq. (19) it contains the additional terms
Q 2

0
and Q 2

2+ which drive the β-γ vibrations. In this case one
has to search for deformations (ε,γ )sc which comply with the
self-consistent conditions [cf. Eq. (4)],

κ◦
2

= 1

3

�ω◦ε
Q , sin γpot = −〈Q2+〉

Q = sin γden. (21)

For the self-consistent deformation (ε,γ )sc the common
prefactor in the Hamiltonian (19) becomes equal to κ◦/2 and
the three ratios of the Sin terms become one. Thus, for the
self-consistent deformations the Hamiltonian Ĥ , Eq. (2), is
fully rotational invariant, and the commutator relations (15)
are exactly satisfied.

At variance with the standard QQ Hamiltonian (2), the
coupling strengths of the three interaction terms Q2

k± in
Eq. (19) are not equal for arbitrary choice of the deformation
parameters (ε,γpot). With the values of κ1,2,3 obtained from
Eq.(16) rotational symmetry is achieved locally because the
commutator relations (15) are satisfied on average. This is in
accordance with the fact that the QRPA treats the wobbling
motion as a small angle vibration. Local rotational invariance
ensures that the spurious rotational excitations can be removed
as the ones with the energies EQRPA = 0 and �ω (as in the
self-consistent case).

Below we present the results of a QRPA calculation with the
Hamiltonian Ĥ of Eq. (19) using the deformation parameters
(ε,γpot) of Table II, which were found by a Nilsson-Strutinsky
minimization [17]. The γpot values are about 10◦ larger than
the corresponding ISQQ values.

The NS deformations give nearly constant intraband re-
duced transition probabilities of B(E2)in = 3(eb)2, which
agree with the experimental values for ω = 0.3 MeV, but do
not reproduce the downward trend toward 2 (eb)2 at ω = 0.45.

Figure 7 shows the calculated wobbling frequencies to-
gether with the experimental values. Compared to the wob-
bling frequencies of the sc ISQQ model (cf. Fig. 4) the
calculation with the Nilsson-Strutinsky deformations gives
a flatter ω dependence, and the breakdown of the QRPA is

FIG. 7. (Color online) Wobbling frequencies in 163Lu as a func-
tion of the rotational frequency. Experimental values (blue diamonds)
are from [17]. The calculated values (solid line) are obtained with the
Nilsson-Strutinsky (NS) deformations in Table II. The single value
(red triangle) is found for the deformation point (ε = 0.4,γ = 30◦).
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FIG. 8. (Color online) The ratios B(E2)out/B(E2)in between the
inter- and intraband reduced transition probabilities for the transitions
between the TSD wobbling band and the TSD ground band in 163Lu.
Notations as in Fig. 7.

slightly retarded. As seen in Fig. 15 of our study [5], the QRPA
wobbling frequency curve resembles the one obtained by
applying the HFA approximation to the quasiparticle triaxial
rotor (QTR) description of transverse wobbling in 163Lu using
microscopic moments of inertia calculated by means of the
TAC model. The HFA is a small-amplitude approximation like
QRPA. The full quantal solution of the QTR shows a gradual
decrease of the wobbling frequency with frequency, which is
closer to experiment (cf. Fig. 15 of [5]).

Comparing Fig. 5 with Fig. 8. shows that the larger γpot

values lead to a 20% increase of the ratio B(E2)out/B(E2)in.
No reduction is obtained for the magnetic interband transition
strength as seen comparing Fig. 6 and Fig. 9. Hence with the
larger γpot values predicted by the Nilsson-Strutinsky calcula-
tion and the symmetry restoring QRPA we only accomplish a
marginally better description of the TSD band properties.

We tried the case of maximal triaxiality γpot = 30◦ and ε =
0.4 for �ω = 0.3 MeV. The results are included in Figs. 7–9.
The wobbling frequency is enlarged, somewhat exceeding the
experimental value. The ratio B(E2)out/B(E2)in is about right,

FIG. 9. (Color online) The reduced transition probabilities
B(M1)out for the transitions between the TSD wobbling band to the
TSD ground band in 163Lu. Notations as in Fig. 7.

such that it could be reproduced by choosing an appropriate
γpot value between 25◦ and 30◦. However, the small B(M1)out

values remain unexplained.
The result is consistent with the detailed analysis in

Refs. [13,14] in the framework of QRPA based on the Nilsson
and Woods-Saxon potentials and the pertinent symmetry
restoring interaction. Using a triaxiality parameter of γpot ≈
20◦ of the potential, which corresponds to the minimum of the
deformation energy calculated by means of the shell correction
method, gives B(E2)out/B(E2)in ratios that underestimate the
experimental ones by factors of 0.8 at ω = 0.2 MeV and 0.5
at ω = 0.4 MeV. The B(M1)out values are a factor of 10 too
large. Increasing by hand γpot from 20◦ at ω = 0.3 MeV to 30◦
at ω = 0.5 MeV reproduces the experimental values of both
B(E2)out and B(E2)in.

The authors trace back the small values of the ratio
B(E2)out/B(E2)in to a small value of γden calculated by means
of Eqs. (18). It is important to note that the quadrupole
moments derived from the microscopic density distribution
appear in the transition probabilities. For the equilibrium
deformations γpot = 20◦,18◦ (Nilsson, Woods-Saxon, respec-
tively), they find γden = 12◦. We obtain a similar small value
of γden = 14◦ from the expectation values of the quadrupole
operator (11) with the quasiparticle reference state |ε =
0.4,γpot = 20◦〉. The small increase of γden compared to the
self-consistent ISQQ value of γ = 10◦ explains the only
marginal increase of the B(E2)out/B(E2)in ratios. The study
of transverse wobbling in the framework of the QTR model
demonstrated that a value of γden ≈ 20◦ is needed to reproduce
the experimental B(E2)out/B(E2)in ratios [5]. Such value is
achieved by choosing γpot ≈ 30◦.

The self-consistency Eq. (4) ensures that γpot = γden in the
case of ISQQ. Therefore, the difference between γpot and
γden reflects to a certain extent the missing self-consistency
for arbitrarily adjusted values of γpot. Self-consistency is
incomplete for the shell correction method, which is used to
calculate the equilibrium shapes of the Nilsson or Woods-
Saxon potential. The difference γpot between γden may be
smaller for a mean field basis that is derived from an effective
interaction or density functional. This question has not been
addressed so far. Calculations for 158Er in the framework
of the cranked relativistic mean field (CRMF) and cranked
Skyrme-Hartree-Fock (CSHF) approaches gave small values
of |γden| = 10◦–13◦ for various configurations in 158Er [21,22]
and 160Yb [23]. For the yrast configuration in 158Er in the
relevant spin range, CSHF gave γden = 12◦ and the cranked
Nilsson-Strutinsky approach γpot = 22◦, which corresponds
to γden ≈ 12◦ in good agreement with the CSHF value [21]. It
seems that all cranked mean field approaches provide a shape
with γden ≈ 12◦ in the TSD region.

The small triaxiality causes the too small B(E2)out/B(E2)in

ratios in the present QRPA calculations and the ones of
Refs. [10–14]. The problem may be rooted either in the
QRPA or in the mean field approaches, which would have
farther-reaching consequences. To clarify the issue, QRPA
calculations based on the CRMF or CSHF mean fields and
a consistent residual interaction would be needed. Based
on our QTR study in Ref. [5] we note the following. The
small-amplitude approximation of QRPA is unlikely to be
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responsible for the underestimation of the B(E2)out/B(E2)in

ratios, because the full large-amplitude solution gives a
smaller ratio than the small-amplitude approximation (HFA)
(see Fig. 17 there). The B(E2)out/B(E2)in ratios depend
on the wobbling amplitudes, which are determined by the
ratios between the three moments of inertia. We carried out
QTR calculation using the ratios between the moments of
inertia calculated by means of the cranking model at the
Nilsson-Strutinsky equilibrium deformation. The wobbling
frequency is about 0.25 MeV (see Fig. 15 there) close to
the value in Fig. 7 in the same frequency range, which may
indicate that the wobbling amplitudes are similar. The QTR
calculations, which used a ratio of Q2/Q0 = tan (γden = 20◦),
give B(E2)out/B(E2)in ratios close to the experimental ones
(see Fig. 17 there). In view of this, we consider the small ratio
of B(E2)out/B(E2)in obtained in our and the previous QRPA
calculations as an open problem, possibly rooted in the mean
field basis, and refrain from adjusting γpot.

III. ADDITIONAL RESIDUAL INTERACTION TERMS

The experimental fact that the interband M1 transitions of
the wobbling mode are strongly suppressed in comparison
to the interband E2 transitions is a major motivation to
study further interaction terms aside from the QQ interaction
considered so far. The question is what makes the magnetic
de-excitation so small. It is known that the scissors mode
collects the low-lying M1 strength which is concentrated
higher up in the energy region of 3–4 MeV [24,25]. A possible
mechanism for suppressing the M1 strength of low-energy
states is shifting it to the scissors mode, like the electric dipole
strength of low-energy states is shifted to the giant dipole
resonance.

Before presenting the results of our QRPA calculations
with additional interaction terms a note about the removal
of the spurious rotational modes is in order. When adding
interaction terms the strength constants of which are not
fixed by self-consistency or rotational invariance the rotational
modes shift away from their true energies EQRPA = 0, �ω and
mix with the wobbling mode, such that the results are distorted
by spurious effects. Therefore we apply the method proposed
in Ref. [27] to eliminate the spurious modes. The QRPA
Hamiltonian is complemented by the IS term κj J · J which
acts like a spring force for the unwanted angle vibrations of the
total angular momentum J in the rotating system. Choosing the
stiffness parameter large, as κj � 102, the excitation energies
for the rotational spurious states are shifted far outside the
considered energy range, which prevents them from mixing
with the physical modes.

Our first modification was motivated by the purely collec-
tive picture of the scissors mode being an angle vibration
of the proton system against the neutron system with an
IV QQ restoring force [26]. Accordingly, we added to the
ISQQ Hamiltonian (2) an IV QQ interaction term built from
the operators Q̂iv

m = Q̂m(π ) − Q̂m(ν). Knowing the self-
consistent strength κ◦ from Table I we set the isovector strength
κiv

◦ = r κ◦ where the value of the ratio r was varied in the range
−1.5 to − 3.5 [1]. This addition lead to only a minor change
of the B(E2/M1) transition probabilities. However, it increased

the wobbling frequency, such that the experimental wobbling
frequencies could be fitted by choosing an appropriate value
of r .

Second, we considered the spin-spin (SS) interaction,
because it was successfully applied in connection with the
scissors mode to explain the systematic accumulation of 1+
states between 3 and 5 MeV with considerable M1 decay
strength [20]. We included both the IS and the isovector (IV)
SS interactions defined by

V
(is,iv)
LL =

∑
m=−1,1

(−1)m Ŝ(is,iv)
m

Ŝ(is,iv)
−m

,

(22)
Ŝ(is,iv)

m
= Ŝm(τ = +1) ± Ŝm(τ = −1).

We determined the SS strength parameters by extrapolating
the A-dependent strength parameters given in the work of De
Coster and Heyde [29], used there for QRPA calculations of the
1+. The SS interactions are then added to the self-consistent
ISQQ Hamiltonian (2) described in Sec. II A. The results of
the QRPA calculation for the frequency �ω = 0.3 MeV/�

can be summarized as follows: The IS and IV SS terms
have only negligible effects on both the wobbling energy
and the B(E2/M1) transition probabilities. The lowering of
the B(M1)out value is small, i.e., there is not much shift of the
M1 strength into the scissor region.

Our third modification was motivated by the interpretation
suggested in Ref. [26] that the scissors mode represents an
angle vibration of the total orbital angular momentum vector
Lπ of the protons versus the orbital angular momentum vector
Lν of the neutrons. Accordingly, we complemented the ISQQ
Hamiltonian (2) by an interaction term that is composed of the
isovector orbital angular momenta:

V
LL

= κ
LL

(Lπ − Lν)2. (23)

Reference [30] successfully used an interaction of the type
VJJ = κ

JJ
(Jπ − Jν)2 to describe the M1 strength in the

scissors region of the Mo isotopes. We checked that such IV JJ
interaction gives nearly the same results as the LL interaction
when the coupling constant is appropriately chosen. This is
not surprising, because it differs from the LL interaction by
the spin operator. As discussed above, the inclusion of the IV
SS interaction does not induce any substantial modification of
the wobbling mode, which indicates that the spin degrees of
freedom are not important for it.

The effects of adding the LL interaction are shown in
Figs. 10–12. The calculated wobbling energy increases
because of the repulsive LL term. We find a good match to
the experimental curve when choosing the strength constant
κLL = 0.5 MeV/�

2. The interband E2 transitions stay
almost unchanged, which is expected from a current-current
interaction. The same value of κLL gives the desired
suppression of the B(M1) transition strength, which comes
close to the measured values.

Hence, the QRPA with additional LL interaction is capa-
ble of providing a satisfactory description of the wobbling
frequencies and of the magnetic properties. This raises the
question whether the adjusted coupling parameter κLL is
consistent with the experimental information about the scissors
mode built on the ground states of the even-even neighbors.
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FIG. 10. (Color online) Wobbling frequencies in 163Lu as a func-
tion of the rotational frequency. Experimental values (blue diamonds)
are from [17]. Calculated values are obtained with QRPA using
(solid line) self-consistent ISQQ interaction and (green dotted line)
additionally LL interaction [see Eq. (23)].

We calculated the distribution of B(M1, 0 → 1+) from the
ground state of 162Yb using the same QRPA approach as for
the wobbling mode in 163Lu. The deformation β = 0.225 from
was taken from Ref. [28], and the value κ

LL
= 0.5 MeV/�

2

used for the LL interaction. The resulting distribution is shown
in Fig. 13 for the interval E = 2–4 MeV, which is the suggested
region of the scissors mode. There is no experimental infor-
mation for the unstable nuclide 162Yb about the distribution
of 1+ states to compare with. However, the systematics of the
summed B(M1) strength presented in Refs. [24,25] provides
a clue concerning the coupling constant. Our value κ

LL
=

0.5 MeV/�
2 gives a summed strength �B(M1) ≈ 1.5 μ2

N for
the 1+ excitations between 0 and 4 MeV, which agrees with
the value from the systematics for the deformation β = 0.225
of 162Yb. The agreement indicates that the coupling of the
transverse wobbling to the scissors mode at high spin and the
M1 strength of the low-spin scissors mode can be accounted
for by one and the same value of κLL.

FIG. 11. (Color online) The reduced transition probabilities
B(E2)out = B(E2,I → I − 1)out for the transitions between the TSD
wobbling band and the TSD ground band in 163Lu. Calculated values
are obtained with QRPA using (solid line) self-consistent ISQQ
interaction and (green dotted line) additionally LL interaction [see
Eq. (23)].

FIG. 12. (Color online) The reduced transition probabilities
B(M1)out for the transitions between the TSD wobbling band to
the TSD ground band in 163Lu. Calculated values are obtained with
QRPA using (blue line) self-consistent ISQQ interaction and (green
dotted line) additionally LL interaction [see Eq. (23)].

In the other case of a well-studied example of transverse
wobbling, 135Pr, the QTR calculations in Ref. [6], which
do not take into account the coupling to the scissors mode,
overestimate the B(M1)out values by a factor of three. One
expects a weaker coupling to the scissors mode, because 135Pr
is much less deformed than 163Lu, and it is known that the M1
strength collected by the scissors mode increases quadratically
with the deformation parameter [24,25].

The improvements achieved by including the IV LL
interaction term can be taken as an indication that the wobbling
motion is not a pure orientation vibration of the quadrupole
mass tensor with respect to the angular momentum vector. It
implies a coupling to vibrations of the proton and neutron
currents against each other (see the interpretation of the
scissors mode in Ref. [31]). The microscopical origin of
such schematic interaction of the current-current type remains
obscure at this point. As discussed above, taking into account
oscillations of the neutron quadrupole tensor against the
proton one also increases the wobbling frequency, but does

→
μ Σ μ2

Ν

FIG. 13. (Color online) B(M1) distribution of 162Yb obtained
by QRPA with the LL interaction, Eq. (23), choosing the strength
constant κ

LL
= 0.5 MeV/�

2. The fragmented B(M1) strength adds
up from 0 to 4 MeV to a sum strength of 1.5 μ2

N that can be interpreted
as scissors strength.
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not influence the magnetic properties. Regarding both, it
would be interesting to see how QRPA-based modern density
functionals and a consistent residual interaction describes
transverse wobbling.

As discussed Sec. II B, increasing the triaxiality of the
potential to γpot ≈ 30◦ by hand allows one to shift the B(E2)out

and B(E2)in values to the experimental ones. Simultaneously,
the wobbling frequency is shifted to somewhat above the
experimental value. Taking into account the LL interaction
in addition would result in a too high wobbling frequency.
This is a good reason to refrain from adjusting γpot.

Reference [32] reported a suppression of the B(M1)out

between rotational bands built on different members of the
quasineutron j15/2 multiplet in 235U by a factor of 20–50
compared to estimates in the framework of the QTR model. In
addition, the authors tabulated examples of B(M1)out values
between bands of high-j multiplet members, which all appear
strongly suppressed. This systematic quenching of M1 strength
suggests that the scissors mode draws M1 strength from the
low-energy transitions in analogy to the quenching of the
low-energy E1 transitions by coupling to the GDR (screening),
which is the mechanism suggested for the wobbling mode here.

IV. SUMMARY AND CONCLUSIONS

The transverse wobbling mode in 163Lu was reinvestigated
in the framework of quasiparticle-random-phase approxima-
tion. The QRPA calculations were based on the rotating mean
field that consisted of a deformed Nilsson potential and an
attenuated monopole pair field. Various versions of the residual
interaction were investigated. For all variants, the QRPA
wobbling frequencies decreased with the rotational frequency,
so confirming the transverse character of the solution.

First we studied an isoscalar quadrupole-quadrupole inter-
action and self-consistent deformation parameters. The results
in essence agree with previous QRPA calculations [11], which
used the same mean field Hamiltonian but another way of find-
ing the solutions. The calculated wobbling frequencies show
the right descent with the rotational frequency but are only 60%
of the experimental excitation energy. The B(E2)out/B(E2)in

ratios for the interband transitions connecting the wobbling
with the ground band and the intraband transitions show the
characteristic collective enhancement, but are low by about a
factor two. The B(M1)out values of these interband transitions
are a factor 10 too large compared with experiment.

Second, we determined the deformation parameters of the
Nilsson potential by means of the Strutinsky method, which
gives a triaxialty parameter of γpot ≈ 20◦. The factorized resid-
ual interaction was derived from the mean field by requiring
local rotational invariance. The results slightly moved toward
the experimental values, however, the discrepancies remained
as substantial as before. We agree with the explanation of
this insensitivity suggested in Refs. [13,14]. The increase of
the triaxility of the potential from γpot = 10◦ to 20◦ induces

only a marginal increase of the triaxiality of the density
distribution from γden = 10◦ to 12◦–13◦, which is reflected
by the small B(E2)out/B(E2)in ratios. At this point we have
to conclude that the reason for the low B(E2)out/B(E2)in

ratios remains unclear. Note that cranking calculations based
on modern energy density functionals [21–23] find similar
small triaxiality of the density in neighboring nuclides 158Er
and 160Yb. QRPA calculations based on such self-consistent
mean fields and an effective interaction derived from the
density functional are needed to clarify the issue. In case
they would also give too small B(E2)out/B(E2)in ratios as
found in this paper, this would reveal a serious problem of
the mean field calculations for the TSD region. Configuration
assignments based on the comparison with measured transition
quadrupole moments for in-band transitions, as, for example,
in Refs. [21,22], needed to be reconsidered, because they
rely on the assumption that the calculations give the correct
triaxiality of the density distribution.

Third, we included a repulsive isovector current-current
interaction of the schematic form κ

LL
(Lπ − Lν)2, where L

is the total orbital angular momentum. This LL interaction
couples the wobbling mode to the scissors mode, which
represents a concentration of orbital M1 strength in the region
E=3–4 MeV above the yrast line. The B(M1)out values are
reduced, because M1 strength is shifted into the scissors
region, and the wobbling frequencies increase because the
LL interaction is repulsive. The same interaction strength
κ

LL
generates the right upshift of the wobbling frequencies

and the right suppression of the B(M1)out values toward the
experimental values. Moreover, using the same κ

LL
value,

QRPA on the ground state of the neighbor 162Yb reproduces
the cumulative M1 strength below 4 MeV, known from
experimental systematics.

Altogether, QRPA based on the combination of the isoscalar
QQ and isovector LL interactions well reproduces the ex-
perimental frequencies on transverse wobbling of the triaxial
strongly deformed nuclide 163Lu. It accounts for the strong
suppression of the intraband M1 transitions. However, it
underestimates the collectivity of the interband E2 transitions.
The mode represents mainly an oscillation of the triaxial
charge distribution relative to the angular momentum vector,
which is manifest by strong E2 transitions from the one-
phonon to the zero-phonon wobbling bands. Additionally, it
contains a substantial admixture of scissorslike oscillations of
the proton currents against the neutron currents, which increase
the wobbling frequency and reduce the M1 transition strength
between the wobbling bands by a factor of 10.

Note added. Before this manuscript was submitted, one of
the co-authors, Fritz Dönau, passed away.
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