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Constraining the slope parameter of the symmetry energy from nuclear structure
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Four quantities deducible from nuclear structure experiments have been claimed to correlate with the slope
parameter L of the symmetry energy: neutron skin thickness, cross section of low-energy dipole (LED) mode,
dipole polarizability αD , and αDS0 (i.e., product of αD and symmetry energy S0). By means of calculations in the
Hartree-Fock plus random-phase approximation with various effective interactions, we compare the correlations
between L and these four quantities. The correlation derived from different interactions and the correlation from
a class of interactions that are identical in symmetric matter as well as in S0 are simultaneously examined. These
two types of correlation may behave differently, as exemplified in the correlation of αD to L. It is found
that the neutron skin thickness and αDS0 correlate well to L, and therefore are suitable for narrowing down
the value of L via experiments. The LED emergence and upgrowth makes the αDS0-L correlation strong,
although these correlations are disarranged when a neutron halo appears in the ground state.
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I. INTRODUCTION

Properties of nuclear matter is a basic subject in nuclear
physics. The equation of state (EOS) of symmetric nuclear
matter (SNM), which is characterized by the saturation density
ρ0, the saturation energy E/A(ρ0), and the incompressibility
K∞, has been studied for a long time, and its properties around
ρ0 are known rather well. In contrast, the EOS of pure neutron
matter (PNM) has not been established, despite its importance
connected with compact astrophysical objects, e.g., neutron
stars (NSs). Recent observation of a two-solar-mass NS [1]
has imposed a constraint on the EOS, and has given additional
momentum for resolving the PNM EOS in particular. Based
on the SNM EOS, the PNM EOS is mostly governed by
the symmetry energy S as a function of density ρ, which is
characterized by S0 = S(ρ = ρ0) and the slope parameter

L = 3ρ0
∂S(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

. (1)

As S0 has long been investigated and is known rather well, the
current uncertainty in the PNM EOS mainly originates in the
uncertainty in L.

Although many-body systems consisting only of neutrons
do not exist on earth, experiments using radioactive beams
disclosed that many nuclei have certain volumes dominated
by neutrons, i.e., neutron skins. This may offer a means of
constraining the PNM EOS from experiments on the structure
of neutron-rich nuclei. Objects dominated by neutrons may be
formed also in the process of nuclear reactions, which could
leave a signal in observables. Many studies narrowing the
PNM EOS have been devoted to searching observables which
strongly correlate with L, e.g., nuclear mass systematics [2–7],
neutron skin thickness [8–13], fragmentation in heavy ion
collisions [14–17], and low-energy E1 mode (LED) [18,19]
in unstable nuclei. Among them, we focus on quantities
relevant to the structure of specific nuclides, for which model
dependence is considered to be relatively weak.

In Ref. [12], neutron skin thickness �rnp in 208Pb has
been found to correlate linearly to L with a large correlation
coefficient 0.98, by calculations using 47 effective interactions.
This suggests that accurate determination of �rnp serves
to constrain L. The LED mode is considered as a relative
oscillation between the neutron skin and the remnant core. In
Ref. [18], a linear correlation between the LED cross section
(σLED) and L has been suggested, from calculations in the
random-phase approximation (RPA) for 68Ni and 132Sn with
26 effective interactions. By combining it with the experimen-
tal data, L = 49–81 MeV has been deduced [20,21]. However,
the covariance analysis for effective interactions [22–24] has
shown that this correlation is not always strong. Instead, the
dipole polarizability αD has been claimed to be better in
constraining L than cross section and transition strength of
the LED. If the αD-L correlation is assumed, the experimental
data in 208Pb indicate L = 46 ± 15 MeV [25]. It has further
been argued, in Ref. [26], that a product of αD and S0 is better
correlated with L than αD alone, based on the droplet model
with some assumptions.

The above four quantities (�rnp, σLED, αD, and αDS0)
have been proposed in separate works, and there have been
few studies comparing them directly, with the exception of
Ref. [27]. Moreover, depending on the studies, two different
types of the correlations have been argued that should be
distinguished. The αD-L correlation has been investigated
using the covariance analysis, for which a single interaction
and its variants are employed. These variants are generated so
as to have similar properties to the original interaction except
L. In contrast, the other correlations have been investigated
using many interactions with different origins. It is not
obvious whether these two types of correlations have the
same behavior. We also point out that nucleus dependence has
not been discussed sufficiently. Most calculations have been
implemented in 68Ni, 132Sn, and 208Pb, partly because they
are spherical, neutron rich, and accessible by experiments.
Nuclear deformation possibly draws complications, indeed.
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Still, there could be better candidates. Further investigation
including careful assessment of correlations is desired in order
to constrain L from experimental data.

In this article we investigate the correlations of �rnp, σLED,
αD, and αDS0 with L for a number of spherical nuclei. The
paper is organized as follows. In Sec. II, we briefly explain
interactions we employ and introduce an additional term to
them, which controls the value of L. Numerical results are
given in Sec. III, and we discuss the interaction and nucleus
dependences of the correlations. Our conclusion is given in
Sec. IV.

II. METHOD

We perform the RPA calculations on top of the Hartree-Fock
(HF) wave functions in a fully self-consistent manner, by
using the numerical methods of Refs. [28,29]. In investigating
the interaction dependence of the correlations between L and
the quantities, we employ a variety of effective interactions,
covering a wide range of L. They are three Skyrme interactions
which have widely been used (SkM∗ [30], SLy4 [31], and
SGII [32]), the two latest designed ones (UNEDF0 and
UNEDF1 [33]), and four Skyrme interactions (SkI2, SkI3,
SkI4, and SkI5 [34]) that give large L values, and two more
Skyrme interactions (SkT4 [35] and Ska [36]) which are less
frequently used but useful for checking robustness of the
correlations. In addition, three Gogny (D1 [37], D1S [38],
and D1M [39]) and two M3Y-type interactions (M3Y-P6 and
M3Y-P7 [40]) are adopted. Using these effective interactions
which cover L = 18–129 MeV, we discuss the correlations
among different interactions (CDIs). The L values given by
these interactions are listed in Table I, accompanying ρ0, K∞,
S0, and incompressibility of symmetry energy Ksym.

There have been a certain number of relativistic mean-field
(RMF) calculations. Most of the RMF Lagrangians adopted so
far tend to give large L values (�100 MeV), which do not seem

TABLE I. Saturation density ρ0, incompressibility of symmetry
nuclear matter K∞, symmetry energy S0, slope parameter L, and
incompressibility of symmetry energy Ksym, given by the Skyrme,
Gogny, and M3Y interactions.

ρ0 (fm−3) K∞ (MeV) S0 (MeV) L (MeV) Ksym (MeV)

SkM∗ 0.160 216.4 30.0 45.8 −155.8
SLy4 0.160 229.9 32.0 45.9 −119.7
SGII 0.158 214.5 26.8 37.7 −145.8
UNEDF0 0.160 229.8 30.5 45.1 −189.6
UNEDF1 0.159 219.8 29.0 40.0 −179.4
SkI2 0.157 240.7 33.4 104.3 70.6
SkI3 0.158 258.0 34.8 100.5 72.9
SkI4 0.160 247.7 29.5 60.4 −40.6
SkI5 0.156 255.6 36.6 129.3 159.4
SkT4 0.159 262.9 35.5 94.1 −24.5
Ska 0.155 235.3 32.9 74.6 −78.4
D1 0.166 229.4 30.7 18.4 −274.6
D1S 0.163 202.9 31.1 22.4 −241.5
D1M 0.165 225.0 28.6 24.8 −133.2
M3Y-P6 0.163 239.7 32.1 44.6 −165.3
M3Y-P7 0.163 254.7 31.7 51.5 −127.8

compatible with experimental data. Their results are similar,
though not identical, to the SkIn (n = 2–5) ones. There may
be room to obtain RMF Lagrangians giving smaller L values.
Although we have not implemented the RMF calculations,
we shall mention some of the RMF results available in the
literature.

In the covariance analysis in Refs. [22–24], a class of
interactions that share basic properties with an original
interaction were considered. Following Ref. [41], we here
introduce an additional term for the interaction,

vij =⇒ vij − VL

[
ρα(r i) − ρα

0

]
Pσ δ(r i − rj ) , (2)

where Pσ is the spin exchange operator. This additional term
does not change S0 because it vanishes at ρ = ρ0, and has no
effects on the SNM EOS because 〈Pσ δ(ri − rj )〉 = 0 in the
SNM. We thus obtain a class of interactions having different L
by varying VL, with changing neither SNM EOS nor S0. All the
nonrelativistic interactions contain a density-dependent term
in which the coupling constant is proportional to a power of the
density. We keep this power α of each original interaction also
for the additional term in Eq. (2). The correlation given by the
interactions belonging to the same class, which are generated
from a single interaction but have different VL, will be called
the correlation in a single class of interactions (CSI) in this
paper.

Figure 1(a) illustrates how VL affects the EOS, by taking
the SLy4 interaction and its variants with VL = 0, ±1000,
±2000 fm3+3α MeV as an example. The L value is changed
linearly with VL, as VL = −2000 (2000) fm3+3α MeV shifts L
from the original value 46 MeV to 17 (75) MeV. The neutron
skin thickness is defined by

�rnp =
√

〈r2〉n −
√

〈r2〉p, (3)

for a specific nuclide. As is expected, L correlates linearly
with the neutron skin thickness in 208Pb among this class
of interactions, as shown in Fig. 1(c). The additional term
changes the binding energy of 208Pb by ∼ 15 MeV with
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FIG. 1. VL dependence [Eq. (2)] of (a) EOS and (b) the slope
parameter L, calculated with SLy4 interaction on setting VL =
0, ±1000, ±2000 fm3+3αMeV, and (c) relation between neutron skin
thickness in 208Pb and L shifted by adjusting VL.
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VL = −2000 (2000) fm3+3αMeV. We do not take this differ-
ence seriously, since this energy shift is comparable to the
difference of the binding energies obtained from different
interactions. For instance, UNEDF0 and UNEDF1 yield 1625
and 1643 MeV for 208Pb, respectively. Although a small L
value may make some drip-line nuclei even unbound as pointed
out in Ref. [42], this does not influence the arguments below.

The E1 transition operator is expressed as

O(E1) = N

A

∑
i∈p

riY
(1)(�i) − Z

A

∑
i∈n

riY
(1)(�i) , (4)

after the center-of-mass correction. Here i is the index of
nucleons and i ∈ p (i ∈ n) indicates that the sum runs over
protons (neutrons). The E1 strength function is calculated as

S(E1)(ω) = γ

π

∑
n

[
1

(ω − ωn)2 + γ 2
− 1

(ω + ωn)2 + γ 2

]

× |〈�n|O(E1)|�0〉|2, (5)

where n is the index of the excited states and ω denotes the
excitation energy. For the smearing parameter γ , we adopt
γ = 0.5 MeV, after confirming that the results do not change
much with γ = 0.1–0.5 MeV. The LED cross section σLED is
given by

σLED = 16π3e2

9�c

∫ ωdip

0
dω ωS(E1)(ω) , (6)

where ωdip is the energy at which S(E1)(ω) is separated into the
LED and giant dipole resonance (GDR) regions. Although the
LED and the GDR components could mix in a certain energy
range [43], we here separate them by energy for simplicity. It
is not obvious how ωdip should be defined. We determine ωdip

as follows. If we find a distinguishable LED peak in S(E1)(ω),
ωdip is defined as the energy corresponding to the minimum of
S(E1)(ω) that exists between the LED peak and the GDR.

The dipole polarizability αD is calculated as

αD = 8πe2

9

∫ ∞

0
dω

S(E1)(ω)

ω
. (7)

Owing to the energy denominator, αD is expected to be sensi-
tive to the LED. It should be noted that αD is unambiguously
defined, unlike σLED.

As a measure of correlations, it is customary to use the
correlation coefficient. For the two quantities (x,y) for which
we have data points (xk,yk) (k = 1,2, . . . ,Nd ), the correlation
coefficient is given by

R[x,y] =
∑Nd

k=1(xk − x̄)(yk − ȳ)√∑Nd

k=1(xk − x̄)2
√∑Nd

k=1(yk − ȳ)2
, (8)

with x̄ = ∑Nd

k=1 xk/Nd and likewise for ȳ. We obtain
|R[x,y]| = 1 if x and y are fully correlated and R[x,y] = 0 if x
and y are fully uncorrelated. In the present case k corresponds
to individual interactions, covering the interactions mentioned
above up to the variants with varying VL. x is fixed to be the
slope parameter L, and y is taken to be �rnp, σLED, αD , or
αDS0 for a specific nuclide.
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FIG. 2. (Color online) Correlations of the slope parameter L with
(a) the neutron skin thickness �rnp , (b) the LED cross section σLED,
(c) the dipole polarizability αD, and (d) αDS0 of 132Sn. See text for
details.

III. NUMERICAL RESULTS

A. Correlations in 132Sn

Figure 2 shows correlations of L with the neutron skin
thickness �rnp, the LED cross section σLED, the dipole polar-
izability αD and αDS0 in 132Sn, obtained by the HF and the
HF+RPA calculations. Effective interactions are distinguished
by colors and symbols, as listed in the upper part of the figure.
Results with VL = 0 are represented by full symbols, while
those with their VL 	= 0 variants by open symbols. The results
of the same class of interactions are connected by lines so as
to show the CSIs.

It is seen in Fig. 2(a) that �rnp correlates well with L.
Indeed, we obtain R[L,�rnp] = 0.959. This correlation is
well expressed by a linear function, as �rnp = 0.00114L +
0.160 fm with standard deviation 0.014 fm, by assuming
the unit of L to be MeV. With respect to the CSIs, the
three interactions UNEDF0, UNEDF1, and SkI4 give slopes
less than 1.0 × 10−3 fm/MeV, while slopes of the other
Skyrme interactions are steeper than 1.2 × 10−3 fm/MeV
and those of the Gogny and M3Y interactions fall in the
narrow range (1.15 ± 0.05) × 10−3 fm/MeV. The maximum
(minimum) slope is 1.46 (0.83) × 10−3 fm/MeV of SGII
(UNEDF1), which deviates by 30% from the value fitting
all the interactions (i.e., 1.14 × 10−3 fm/MeV). We note
that slopes of the CSIs stay around 1.14 × 10−3 fm/MeV
within 10% in more than half of the interactions. The CDIs
(correlations among the interactions with VL = 0) are strong
as well, having R[L,�rnp] = 0.939. Thus L can be well
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constrained by �rnp in 132Sn if it is measured precisely. The
standard deviation 0.014 fm is converted to an uncertainty of
12 MeV for L.

Correlations between L and σLED are shown in Fig. 2(b).
We discard the σLED results in the case that S(E1)(ω) has two
peaks in the LED region, because we cannot unambiguously
determine ωdip at which the LED and GDR regions are
separated, and ωdip may change discontinuously by changing
VL even if we adopt a certain definition. Four interactions
SkI2, SkI3, SkI4, and SkI5 and their variants produce
quite large σLED, which clearly deviate from the results
of the other interactions. The CSIs are not similar even
within these four classes of interactions. It is noted that the
Gogny and M3Y interactions yield correlations similar to the
Skyrme interactions other than the above SkI series. If we
ignore the results of the SkI series, R[L,σLED] = 0.928 is
obtained and σLED can be fitted to a linear function of L as
σLED = 0.399L + 15.4 mb MeV with the standard deviation
5.0 mb MeV. When we fit σLED by a quadratic function, we
obtain σLED = 0.00138L2 + 0.238L + 18.7 mb MeV with the
standard deviation 4.7 mb MeV. Compared with Ref. [18] [see
Fig. 2(b) of Ref. [18]], the slope of the linear function is smaller
by a factor ∼ 2. This discrepancy can be interpreted as follows:
In Ref. [18], the CDI of σLED with L has been investigated
via 19 Skyrme interactions and seven relativistic effective La-
grangians which cover L = 0–130 MeV. Among them, seven
relativistic Lagrangians and three Skyrme interactions SkI2,
SkI3, and SK255 [44], all of which give L � 100 MeV, seem to
behave differently from the other interactions. The high weight
(10 out of the 26 interactions) of these large-L interactions
leads to the steep slope in Ref. [18]. If we exclude the results
of SkI2, SkI3, SK255, and the RMF in Fig. 2(b) of Ref. [18]
and refit the others to a linear function, the slope is compatible
with our result. However, with ambiguity in the definition of
σLED and large deviation by certain interactions, we conclude
that σLED is currently unsuitable for constraining L.

Figure 2(c) shows the αD-L relations. Despite the relatively
large value of R[L,αD] = 0.90, the lines representing the
CSIs are widely scattered. This indicates that the CDIs behave
differently from the CSIs. If all the results of αD are fitted to a
linear function, we obtain αD = 0.0261L + 5.94 e2 fm2/MeV
with the standard deviation 0.53 e2 fm2/MeV. However, the
slopes given by the CSIs are significantly larger; 0.031–0.051
e2 fm2/MeV2 with the Skyrme interactions, ∼0.027 with the
Gogny interactions, and ∼0.033 with the M3Y interactions.
The intercepts are also distributed in as wide range as 2.14–
6.15 e2 fm2/MeV. It is thus important to take into account
the CSI and the CDI simultaneously. The αD-L correlation
might look good when we pay attention only to the CSI, as
in the previous covariance analysis, and likewise to the CDI.
However, there exists a notable difference between the CSI and
the CDI. It is not necessarily suitable to constrain L only by αD .

The αDS0-L correlations are shown in Fig. 2(d). The strong
correlation between αDS0 and L is clearly seen. The corre-
lation coefficient is R[L,αDS0] = 0.953. The linear fitting
gives αDS0 = 1.13L + 170 e2 fm2 with the standard deviation
15 e2 fm2, which corresponds to 13 MeV uncertainty of L,
and the quadratic fit gives αDS0 = 0.00393L2 + 0.617L +
180 e2 fm2 with the standard deviation 13 e2 fm2. Even if
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FIG. 3. (Color online) Correlations of �rnp and L in (a) 208Pb,
(b) 40,48Ca, and (c) 68,84Ni. See Fig. 2 for colors and symbols.

we restrict ourselves to the CDI by setting VL = 0, the
correlations have similar behavior: R[L,αDS0] = 0.947, the
fitted linear function is αDS0 = 1.08L + 169 e2 fm2 with
the standard deviation 11 e2 fm2, and the quadratic function is
αDS0 = 0.00208L2 + 0.773L + 177 e2 fm2 with the standard
deviation 11 e2 fm2. As pointed out in Ref. [45], S0 has positive
correlation with L among the interactions with VL = 0. This
helps αDS0 to correlate with L better than αD alone. Thus αDS0

will be useful in constraining L, although it requires precise
assessment of S0. We have investigated the correlations of
�rnp, σLED, αD, and αDS0 in 132Sn with L, and have found
that �rnp and αDS0 are promising for constraining L.

B. Nucleus dependence

The correlations between L and observables related to the
neutron skin were discussed mainly in 68Ni, 132Sn, and 208Pb
in the previous studies. We next consider nucleus dependence
of the �rnp-L and αDS0-L correlations.

We have calculated the �rnp-L correlations in doubly
magic nuclei and in nearly doubly magic nuclei, 16,22,24O,
40,48,54,70Ca, 68,78,84Ni, 132,140,176Sn, and 208Pb, some of
which are plotted in Fig. 3. In 208Pb, �rnp correlates
well to L, giving R[L,�rnp( 208Pb)] = 0.965. This result is
consistent with that reported in Ref. [12]. The linear function
obtained by fitting is �rnp( 208Pb) = 0.00107L + 0.103 fm
with the standard deviation 0.013 fm, being equivalent to
12 MeV uncertainty of L. The slope of the fitted function
is smaller by ∼30% than that of Ref. [12]. This discrepancy is
again attributed to the contribution of the RMF results with
L � 100 MeV, because they increase the slope in Fig. 3
of Ref. [12]. Still the �rnp-L correlation in 208Pb is so
strong as to be promising for getting constraint on L. The
�rnp-L correlation gradually becomes the weaker for the
lighter nuclei. Notice that the steeper slope in the linear
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function tends to make the correlation coefficient larger. When
errors in experimental data are taken into consideration, a
steep slope is further advantageous in constraining L. As
mentioned above, we obtain R[L,�rnp( 132Sn)] = 0.959. In
68Ni, R[L,�rnp( 68Ni)] = 0.901 and the linear fitting gives
�rnp( 68Ni) = 0.000761L + 0.133 fm. In 48Ca, the correla-
tion coefficient drops to R[L,�rnp( 48Ca)] = 0.785 and the
linear fitting results in �rnp( 48Ca) = 0.000546L + 0.138 fm.
In the Z = N nuclei 16O and 40Ca, the calculated �rnp are
almost independent of L. The �rnp-L correlation also becomes
weak in drip-line nuclei such as 84Ni, as shown in Fig. 3(c).
�rnp is strongly affected by the spatial extension of the loosely
bound neutron orbits around the neutron Fermi level. In nuclei
near the neutron drip line, the additional term introduced
in Eq. (2) with negative VL, which lowers L, lifts up the
neutron Fermi level and makes the loosely bound orbits extend
significantly. This effect is connected to the neutron halo which
may irregularly increase �rnp. This mechanism makes the
�rnp-L correlation weaker in neutron drip-line nuclei (e.g.,
22,24O, 70Ca, and 176Sn).

Therefore, the �rnp in heavy nuclei distant from the drip
line may be appropriate in constraining L. Measurement on
208Pb seems to provide one of the best possibilities in this
respect. However, despite great effort and much progress, it
is not yet easy to experimentally determine �rnp( 208Pb) with
good precision. It should also be kept in mind that the �rnp-L
correlation has been investigated only phenomenologically.
Without support from quantitatively reliable theories, cross-
checks from other nuclei and/or other quantities are important.

Let us turn to nucleus dependence of the αDS0-L corre-
lation. Because of the energy denominator in Eq. (7), αDS0

is rather sensitive to the LED, which emerges and grows up
beyond the magic numbers N = 14,28,50, and 82 [46,47]. We
expect that αDS0 correlates better with L as the LED develops
in the neutron-rich nuclei. In Table II we list R[L,αDS0] for
the stable doubly magic nuclei and neutron-rich nuclei having
well-developed LED, 16,24O, 40,48,54Ca, 68,84Ni, 132,140Sn, and
208Pb. The optimized values of the coefficients a and b when
the calculated results are fitted as αDS0 = aL + b, with the
standard deviation σ of the fitting, are shown as well.

TABLE II. Correlation coefficient R[L,αDS0], and the optimized
values of the coefficients a and b when the calculated results are fitted
as αDS0 = aL + b, with the standard deviation σ of the fitting.

Nucleus (AZ) R[L,αDS0] a (e2 fm2/MeV) b (e2 fm2) σ (e2 fm2)

16O 0.848 0.068 9.6 1.8
24O 0.628 0.058 9.8 1.5
40Ca 0.881 0.210 33.4 4.7
48Ca 0.898 0.242 39.6 5.0
54Ca 0.857 0.331 69.1 8.4
68Ni 0.929 0.448 70.5 7.6
84Ni 0.662 0.574 142.7 27.7
132Sn 0.953 1.130 170.1 15.2
140Sn 0.934 1.354 213.6 21.9
208Pb 0.927 1.864 336.8 31.8
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FIG. 4. (Color online) αDS0-L correlations in (a) 48,54Ca and (b)
132,140Sn. Data of 140Sn are shifted by 50 e2fm2 to accommodate
them with the results of 132Sn in a single plot. See Fig. 2 for colors
and symbols.

The left panel of Fig. 4 illustrates how the LED affects the
αDS0-L correlation, by comparing the results of 54Ca with
those of 48Ca. From 48Ca to 54Ca, αDS0 becomes larger
and the slope of the fitted linear function becomes steeper
(0.242 to 0.331 e2 fm2/MeV). The steep slope is expedient
for constraining L from experiment. The LED emergence and
development contributes to the αDS0-L correlation. However,
in 54Ca the αDS0-L relation of the M3Y-P6 and P7 interactions
deviates significantly from that of the other interactions, while
such deviation is not found in 48Ca. As a result, we obtain
R[L,αDS0( 54Ca)] = 0.86, smaller than R[L,αDS0( 48Ca)] =
0.90. This is mainly because the M3Y-P6 and P7 interactions
produce higher neutron Fermi levels than the other interactions
in 54Ca, and generate a neutron halo when we take VL < 0.
As in �rnp, the presence of the halo disturbs the correlation,
since the halo may produce large LED and thereby cause
large αD . It can be confirmed experimentally whether 54Ca
is a halo nucleus. If the neutron halo is ruled out, then 54Ca
can be a candidate to constrain L from αDS0. Excluding the
M3Y interactions, we obtain R[L,αDS0( 54Ca)] = 0.96 and
steeper slope (0.40 e2 fm2/MeV) in the linear fitting. Also
for 68,84Ni, whereas the slope obtained by the linear fitting
becomes steeper in 84Ni, R[L,αDS0( 84Ni)] = 0.66 is small
because of the neutron halo. A similar trend is seen in the
drip-line nucleus 24O. Before applying αDS0 in a certain
nucleus for constraining L, it should be confirmed that the
nucleus does not have a halo.

The correlation coefficients are high in both 132,140Sn,
R[L,αDS0( 132Sn)] = 0.95 and R[L,αDS0( 140Sn)] = 0.93, as
presented in the right panel of Fig. 4. Although R[L,αDS0]
slightly decreases from 132Sn to 140Sn, the slope becomes
steeper. Both nuclei are suitable for constraining L from αDS0,
if αD is accessible in future experiments.

The αDS0-L correlation in 208Pb has been calculated
in Ref. [26] employing Skyrme interactions and relativistic
Lagrangians, and the linear fitting gives the slope a = 2.3
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e2 fm2/MeV and the intercept b = 333 e2 fm2. Compared with
our result, the intercept is almost equal but the slope is
steeper. Another result of the αDS0-L relation is available from
Ref. [48], in which only the αD-L correlation is calculated with
a family of relativistic Lagrangians. We extract the αDS0-L
correlation using those results. The fitted linear function
representing the αDS0-L correlation of Ref. [48] has the slope
a ∼ 2.9 e2 fm2/MeV and the intercept b ∼ 310 e2 fm2. The
slope is again steeper than our result while the intercept is
compatible. Therefore, the currently available RMF results
increase the slope but have small impact on the intercept of
the αDS0-L relation.

IV. CONCLUSION

We have investigated the correlations of L with the
following four quantities: the neutron skin thickness �rnp,
the cross section of the low-energy dipole (LED) mode
σLED, the dipole polarizability αD , and the product of αD

and the symmetry energy S0. In order to directly compare
them and to unravel disorder in observables constraining L, we
have simultaneously discussed the correlations derived from
different interactions (CDI) and the correlation in a single class
of interactions (CSI). For the latter we introduce an additional
term to each interaction, which enables us to control the value
of L without influencing SNM EOS and S0.

The �rnp correlates almost linearly with L in heavy nuclei,
although there remains slight interaction dependence as recog-
nized via comparison with the results in Ref. [12]. The σLED-L

correlation has a significant interaction dependence. Together
with ambiguity in its definition, σLED is not recommended for
constraining L. In the αD-L correlation, we have found that
the CSI and the CDI behave differently. It is not reasonable to
constrain L only from αD . The αDS0-L correlation works well
for narrowing down L. The �rnp and αDS0 are promising for
constraining L, though with ∼12 MeV uncertainty.

The nucleus dependence of the �rnp-L and αDS0-L corre-
lations has also been discussed. While the neutron halo makes
the correlations weak, these correlations are strong in neutron-
rich medium- or heavy-mass nuclei without neutron haloes.
Except for neutron-halo nuclei, the LED makes the αDS0-L
correlation strong and the slope of the linear function steep, to
which the HF+RPA results are well fitted. Consequently, the
neutron-rich nuclei having well-developed LEDs (e.g., 54Ca
and 140Sn) are good candidates for obtaining constraint on L,
as well as the doubly magic nuclei 132Sn and 208Pb.
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Tashenov, V. Y. Ponomarev, A. Richter, B. Rubio, H. Sakaguchi,
Y. Sakemi, Y. Sasamoto, Y. Shimbara, Y. Shimizu, F. D. Smit, T.
Suzuki, Y. Tameshige, J. Wambach, R. Yamada, M. Yosoi, and
J. Zenihiro, Phys. Rev. Lett. 107, 062502 (2011).

[26] X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas,
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