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We present the dominant two- and three-pion-exchange contributions to the nucleon-nucleon interaction at
sixth order (next-to-next-to-next-to-next-to-next-to-leading order, N5LO) of chiral perturbation theory. Phase
shifts with orbital angular momentum L � 4 are given parameter free at this order and allow for a systematic
investigation of the convergence of the chiral expansion. The N5LO contribution is prevailingly repulsive and
considerably smaller than the N4LO one, thus, showing the desired trend towards convergence. Using low-energy
constants that were extracted from an analysis of πN scattering at fourth order, the predictions at N5LO are in
excellent agreement with the empirical phase shifts of peripheral partial waves.
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I. INTRODUCTION

The derivation of nuclear forces from chiral effective field
theory has been a topic of active research for the past quarter
century [1–17] (see also Refs. [18,19] for recent reviews). By
1998, the evaluation of the nucleon-nucleon (NN ) interaction
up to next-to-next-to-leading order (N2LO, third order in
small momenta) was completed [2–4] and, by 2003, these
calculations were extended to N3LO [5–11]. As it turned out,
at N2LO and N3LO, one is faced with a surplus of attraction,
in particular, when the low-energy constants (LECs) for
subleading pion-nucleon couplings are applied consistently,
as extracted from analyses of elastic πN scattering [3,4,10].1

Finally, in 2014, this issue was picked up and calculations up
to N4LO were conducted [15]. It was shown that the 2π - and
3π -exchange contributions at N4LO are prevailingly repulsive
and, thus, are able to fully compensate the excessive attraction
of the lower orders. However, it was also noticed that the N2LO,
N3LO, and N4LO contributions are all roughly of the same
magnitude, raising legitimate concerns about the convergence
of the chiral expansion of the NN potential.

It is, therefore, the purpose of the present paper to move on
to the next order and to investigate the NN interaction at N5LO
(of sixth power in small momenta) with the goal of obtaining
more insight into the convergence issue.

Besides this, the order N5LO has other interesting features.
At this order, a new set of NN -contact terms depending with
the sixth power on momenta appears, bringing the total number
of short-distance parameters to 50. This set includes then terms
that contribute up to F waves.

However, the focus of the present paper is on peripheral
partial waves with orbital angular momentum L � 4, which
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1Note that in the N3LO potential of Ref. [11] the subleading

LEC c3 was chosen (in terms of magnitude) on the low side
(c3 = −3.2 GeV−1) to reduce the attractive central force.

are exclusively ruled by the nonpolynomial pion-exchange
expressions constrained by chiral symmetry. Hence, this
investigation is a test of the implications of chiral symmetry
for the NN interaction up to sixth order.

This paper is organized as follows: In Secs. II A, II B, and
II C, we consider the two-, three-, and four-pion exchange
contributions at sixth order and argue that some parts are
negligibly small. The predictions for elastic NN scattering
in peripheral partial waves are shown in Sec. III, and Sec. IV
concludes the paper.

II. PION-EXCHANGE CONTRIBUTIONS TO THE NN
INTERACTION AT N5LO

This section is subdivided into three subsections in which
we will consider various classes of two- and three-pion
exchange diagrams. We will present arguments for neglecting
the chiral four-pion exchange at this order.

Crucial ingredients to our calculations are the πN ampli-
tudes at various orders. For this, we follow Ref. [20] where
also the effective Langrangian up to fourth order is given,
which defines the LECs ci , d̄i , and ēi (cf. Table I, below).
We use the standard definition for chiral orders, according to
which the nth order scales with the nth power of mπ or an
external momentum Q. Consistent with Ref. [20], we count
Q/MN ∼ Q2/�2

χ , where MN denotes the nucleon mass and
�χ the chiral symmetry breaking scale.

Our semi-analytical results will be stated in terms of
contributions to the momentum-space NN amplitudes in the
center-of-mass system (CMS), which arise from the following
general decomposition of the NN potential:

V ( �p ′, �p ) = VC + τ 1 · τ 2 WC

+ [VS + τ 1 · τ 2 WS] �σ1 · �σ2

+ [VLS + τ 1 · τ 2 WLS] i �S · (�k × �q )

+ [VT + τ 1 · τ 2 WT ] �σ1 · �q �σ2 · �q
+ [VσL + τ 1 · τ 2 WσL] �σ1 · (�q × �k ) �σ2 · (�q × �k),

(2.1)
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TABLE I. Low-energy constants as determined in Ref. [20]. The
sets GW and KH are based upon the πN partial wave analyses of
Refs. [26] and [27], respectively. The ci , d̄i , and ēi are in units of
GeV−1, GeV−2, and GeV−3.

GW KH

c1 −1.13 −0.75
c2 3.69 3.49
c3 −5.51 −4.77
c4 3.71 3.34
d̄1 + d̄2 5.57 6.21
d̄3 −5.35 −6.83
d̄5 0.02 0.78
d̄14 − d̄15 −10.26 −12.02
ē14 1.75 1.52
ē15 −5.80 −10.41
ē16 1.76 6.08
ē17 −0.58 −0.37
ē18 0.96 3.26

where �p ′ and �p denote the final and initial nucleon momenta
in the CMS, respectively. Moreover, �q = �p ′ − �p is the
momentum transfer, �k = ( �p ′ + �p)/2 the average momentum,
and �S = (�σ1 + �σ2)/2 the total spin, with �σ1,2 and τ 1,2 the
spin and isospin operators of nucleon 1 and 2, respectively.
For on-shell scattering, Vα and Wα (α = C,S,LS,T ,σL) can
be expressed as functions of q = |�q | and k = |�k| only. The
one-pion exchange contribution is of the well-known form
W

(1π)
T = −(gA/2fπ )2(m2

π + q2)−1 with gA the axial-vector
coupling constant, fπ = 92.4 MeV the pion decay constant,
and mπ the pion mass. Numerical values for gA and mπ will
be given in Sec. III. This expression fixes at the same time our
sign convention for the NN potential V ( �p ′, �p).

We will state contributions in terms of their spectral
functions, from which the momentum-space amplitudes Vα(q)
and Wα(q) are obtained via the subtracted dispersion integrals:

VC,S(q) = 2q8

π

∫ �̃

nmπ

dμ
Im VC,S(iμ)

μ7(μ2 + q2)
,

VT (q) = −2q6

π

∫ �̃

nmπ

dμ
Im VT (iμ)

μ5(μ2 + q2)
,

(2.2)

and similarly for WC,S,T . The thresholds are given by n = 2
for two-pion exchange and n = 3 for three-pion exchange. For
�̃ → ∞ the above dispersion integrals yield the finite parts of

(a)

(b)

(c)
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FIG. 1. Two-pion-exchange contributions to the NN interaction
at N5LO. (a) The subleading one-loop πN amplitude is folded with
the chiral ππNN vertices proportional to ci . (b) The leading one-loop
πN amplitude is folded with itself. (c) The leading two-loop πN

amplitude is folded with the tree-level πN amplitude. Solid lines
represent nucleons and dashed lines pions. Small dots and large solid
dots denote vertices of chiral order 1 and 2, respectively. Shaded
ovals represent complete πN -scattering amplitudes with their order
specified by the number in the oval.

loop functions as in dimensional regularization, while for finite
�̃ � nmπ we employ the method known as spectral-function
regularization (SFR) [21]. The purpose of the finite scale �̃ is
to constrain the imaginary parts to the low-momentum region
where chiral effective field theory is applicable.

Before discussing the various groups of diagrams in detail,
a general remark is in place concerning iterative diagrams.
Iterative components occur for 2π as well as 3π exchanges
and have to be subtracted. We perform these subtractions in
the same way as was done for the planar 2π -exchange box
diagram in Ref. [3]. The subtraction of iterative components
in the 3π cases is explained in detail in Ref. [6].

A. Two-pion exchange contributions at N5LO

The 2π -exchange contributions that occur at N5LO are
displayed graphically in Fig. 1. We will now discuss each
class separately.

1. Spectral functions for 2π -exchange class (a)

The N5LO 2π -exchange two-loop contributions, denoted by class (a), are shown in Fig. 1(a). For this class the spectral
functions are obtained by integrating the product of the subleading one-loop πN amplitude (see Ref. [20] for details)
and the chiral ππNN vertex proportional to ci over the Lorentz-invariant 2π -phase space. In the ππ center-of-mass
frame this integral can be expressed as an angular integral

∫ 1
−1 dx [8]. Altogether, the results for the nonvanishing spectral
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functions read

ImVC = m6
π

√
u2 − 4(

8πf 2
π

)3

(
1

u2
− 2

)
[(c2 + 6c3)u2 + 4(6c1 − c2 − 3c3)]

{
2c1u + c2u

36
(5u2 − 24)

+c3u

2
(u2 − 2) +

[
c3(2 − u2) + c2

6
(4 − u2) − 4c1

]√
u2 − 4 B(u)

}

+ m6
π

√
u2 − 4

8πf 4
π u

{
[4c1 + c3(u2 − 2)]

[
ē15(u4 − 6u2 + 8) + 6ē14(u2 − 2)2 + 3ē16

10
(u2 − 4)2

]

+ c2(u2 − 4)

[
3ē15

10
(u4 − 6u2 + 8) + ē14(u2 − 2)2 + 3ē16

28
(u2 − 4)2

]}
, (2.3)

ImWS = c2
4m

6
π (u2 − 4)

9
(
8πf 2

π

)3

{
u
√

u2 − 4

[
5u2

6
− 4 + 2g2

A

15
(2u2 − 23)

]
− (u2 − 4)2B(u)

+ 6g2
Au

∫ 1

0
dx

(
x − 1

x

)
[4 + (u2 − 4)x2]3/2 ln

x
√

u2 − 4 +
√

4 + (u2 − 4)x2

2

}

+ c4m
6
πu(u2 − 4)3/2

240πf 4
π

[10ē17(2 − u2) + ē18(4 − u2)] = μ2 ImWT , (2.4)

with the dimensionless variable u = μ/mπ > 2 and the logarithmic function

B(u) = ln
u + √

u2 − 4

2
. (2.5)

Consistent with the calculation of the πN -amplitude in Ref. [20], we utilized the relations between the fourth-order LECs,
such that only ē14 to ē18 remain in the final result.

2. Spectral functions for 2π -exchange class (b)

A first set of 2π -exchange contributions at three-loop order, denoted by class (b), is displayed in Fig. 1(b). For this class
of diagrams, the leading one-loop πN -scattering amplitude is multiplied with itself and integrated over the 2π -phase space.
Including also the symmetry factor 1/2, one gets for the spectral functions

ImVC = m6
π

√
u2 − 4

(4fπ )8π3u

{
− 3

70
(5u2 + 8)(u2 − 4)2 + 3g2

A(1 − 2u2)

[
1 + 2 − u2

4u
ln

u + 2

u − 2

]

×
[
u − u3

2
+ 4B(u)√

u2 − 4

]
+ g4

A

[
32(3 − 2u2)√

u2 − 4
B(u) + 3(2u2 − 1)2

(
u2 − 2

u
ln

u + 2

u − 2

+ (u2 − 2)2

8u2

(
π2 − ln2 u + 2

u − 2

))
− 2258

35
+ 24u + 5336u2

105
− 12u3 − 2216u4

105
+ 18u6

35

]

+ g6
A(2u2 − 1)

(
1 + 2 − u2

4u
ln

u + 2

u − 2

)[
46u − 3u3 − 96 + 64

u + 2
+ 24(5 − 2u2)√

u2 − 4
B(u)

]

+ 64g8
A

9

[
3119u2

70
− 71u6

1120
− 197u4

70
− 85u3

8
+ 97u

4
− 582

7
− 16

u + 2
+ 8

(u + 2)2
+ 6u4 − 60u2 + 105√

u2 − 4
B(u)

]}
,

(2.6)

ImWS = g4
Am6

π

√
u2 − 4

(4fπ )8π3u

{
u2 − 4

48

[
4u + (4 − u2) ln

u + 2

u − 2

]2

− π2

48
(u2 − 4)3

+ g2
Au

[
(u2 − 4) ln

u + 2

u − 2
− 4u

][
5u

4
− u3

24
− 8

3
+ 5 − u2

√
u2 − 4

B(u)

]

+ 32g4
Au2

27

[
u4

40
+ 13u2

10
+ 11u

2
− 118

5
− 8

u + 2
+ 3(10 − u2)√

u2 − 4
B(u)

]}
= μ2ImWT , (2.7)
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ImVS = g8
Am6

πu
√

u2 − 4

3(4fπ )8π5

∫ 1

0
dx (x2 − 1)

{
(u2 − 4)x

[
48π2f 2

π

g4
A

(d̄14 − d̄15) − 1

6

]
+ 4

x

− [4 + (u2 − 4)x2]3/2

x2
√

u2 − 4
ln

x
√

u2 − 4 +
√

4 + (u2 − 4)x2

2

}2

= μ2ImVT , (2.8)

ImWC = −m6
π (u2 − 4)5/2

(4fπ )8(3πu)3

[
2 + 4g2

A − u2

2

(
1 + 5g2

A

)]2

+ m6
π (u2 − 4)3/2

9(4fπ )8π5u

∫ 1

0
dx x2

{
3x2

2
(4 − u2)

+ 3x
√

u2 − 4
√

4 + (u2 − 4)x2 ln
x
√

u2 − 4 +
√

4 + (u2 − 4)x2

2
+ g4

A[(4 − u2)x2

+2u2 − 4]

[
5

6
+ 4

(u2 − 4)x2
−

(
1 + 4

(u2 − 4)x2

)3/2

ln
x
√

u2 − 4 +
√

4 + (u2 − 4)x2

2

]

+ [
4
(
1 + 2g2

A

) − u2
(
1 + 5g2

A

)]√
u2 − 4

B(u)

u
+ u2

6

(
5 + 13g2

A

) − 4
(
1 + 2g2

A

)

+ 96π2f 2
π [(4 − 2u2)(d̄1 + d̄2) + (4 − u2)x2d̄3 + 8d̄5]

}2

. (2.9)

Note the squared integrands in the last two equations. The parameters d̄j belong to the ππNN-contact vertices of third chiral
order.

3. 2π class (c)

Further 2π -exchange three-loop contributions at N5LO, denoted by class (c), are shown in Fig. 1(c). For these the two-loop
πN -scattering amplitude (which is of order 5) would have to be folded with the tree-level πN amplitude. To our knowledge,
the two-loop elastic πN -scattering amplitude has never been evaluated in a decent analytical form. Note that the loops involved
in the class (c) contributions include only leading order chiral πN vertices. According to our experience such contributions are
typically small. For these reasons we omit class (c) in the present calculation.

4. Relativistic 1/M2
N corrections

This group consists of the 1/M2
N corrections to the chiral leading 2π -exchange diagrams. Representative graphs are shown

in Fig. 2. Since we count Q/MN ∼ (Q/�χ )2, these relativistic corrections are formally of sixth order (N5LO). The expressions
for the corresponding NN amplitudes are adopted from Ref. [9]:

VC = g4
A

32π2M2
Nf 4

π

[
L(�̃; q)

(
2m4

π + q4 − 8m6
πw−2 − 2m8

πw−4
) − m6

π

2w2

]
, (2.10)

WC = 1

192π2M2
Nf 4

π

{
L(�̃; q)

[
g2

A

(
2k2

(
8m2

π + 5q2
) + 12m6

πw−2 − 3q4 − 6m2
πq2 − 6m4

π

) + g4
A

(
k2

(
16m4

πw−2 − 20m2
π − 7q2

)

− 16m8
πw−4 − 12m6

πw−2 + 4m4
πq2w−2 + 5q4 + 6m2

πq2 + 6m4
π

) + k2w2
] − 4g4

Am6
π

w2

}
, (2.11)

VT = − 1

q2
VS = g4

A L(�̃; q)

32π2M2
Nf 4

π

(
k2 + 5

8
q2 + m4

πw−2

)
, (2.12)

WT = − 1

q2
WS = L(�̃; q)

1536π2M2
Nf 4

π

[
g4

A

(
28m2

π + 17q2 + 16m4
πw−2

) − 2g2
A

(
16m2

π + 7q2
) + w2

]
, (2.13)

VLS = g4
A L(�̃; q)

128π2M2
Nf 4

π

(
11q2 + 32m4

πw−2
)
, (2.14)

WLS = L(�̃; q)

256π2M2
Nf 4

π

[
2g2

A

(
8m2

π + 3q2
) + g4

A

3

(
16m4

πw−2 − 11q2 − 36m2
π

) − w2

]
, (2.15)

VσL = g4
A L(�̃; q)

32π2M2
Nf 4

π

, (2.16)
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where the (regularized) logarithmic loop function is given by

L(�̃; q) = w

2q
ln

�̃2
(
2m2

π + q2
) − 2m2

πq2 + �̃

√
�̃2 − 4m2

π q w

2m2
π (�̃2 + q2)

, (2.17)

with the abbreviation w = √
4m2

π + q2.

B. Three-pion exchange contributions at N5LO

The 3π -exchange contributions of order N5LO are shown in Fig. 3. We can distinguish between diagrams which are
proportional to c2

i [Fig. 3(a)] and contributions that involve (parts of) the leading one-loop πN amplitude [Fig. 3(b)]. Below, we
present the spectral functions for each class.

1. Spectral functions for 3π -exchange class (a)

This class consists of the diagrams displayed in Fig. 3(a). They are characterized by the presence of one subleading ππNN
vertex in each nucleon line. Using a notation introduced in Refs. [7,15], we distinguish between the various subclasses of diagrams
by roman numerals.

Class XIa:

ImWC = g2
Ac2

4m
6
π

6
(
4πf 2

π

)3

∫ u−1

2
dw (w2 − 4)3/2

√
λ(w), (2.18)

ImVS = g2
Ac2

4m
6
π

6
(
8πf 2

π

)3

∫ u−1

2
dw

(w2 − 4)3/2

u4
√

λ(w)
[w8 − 4(1 + u2)w6 + 2w4(3 + 5u2)

+ 4w2(2u6 − 5u4 − 2u2 − 1) − (u2 − 1)3(5u2 + 1)], (2.19)

Im(μ2VT − VS) = g2
Ac2

4m
6
π

6
(
8πf 2

π

)3

∫ u−1

2
dw (w2 − 4)3/2

√
λ(w)

[
(w2 − 1)2

u4
+ 1 − 2

u2
(7w2 + 1)

]
, (2.20)

with the kinematical function λ(w) = w4 + u4 + 1 − 2(w2u2 + w2 + u2). The dimensionless integration variable w is the
invariant mass of a pion-pair divided by mπ .

Class XIIa:

ImVC = g2
Ac2

4m
6
π

8960πf 6
π

(u − 3)3

[
u3 + 9u2 + 12u − 3 − 3

u

]
, (2.21)

ImWC = 2g2
Ac2

4m
6
πu2

(
4πf 2

π

)3

∫∫
z2<1

dω1dω2 k1k2

√
1 − z2 arcsin(z), (2.22)

ImVs = g2
Ac2

4m
6
π(

4πf 2
π

)3

∫∫
z2<1

dω1dω2

{
2ω2

1

(
ω2

2 − 9ω2u + 9u2 + 1
) + 3ω1[ω2(1 + 8u2) − 6u − 6u3]

+ 1

4
(9u4 + 18u2 + 5) + 2zk2

k1

[
ω3

1(4u − ω2) + ω2
1(7ω2u − 2 − 2u2) − 2ω1(2u + ω2) + 2 + 2u2 − 4ω2u

]

+ 3 arcsin(z)

k1k2

√
1 − z2

[
2ω3

1u(u2 + 1 − 2ω2u) + ω2
1

(
ω2u(7 + 11u2) − 5ω2

2u
2 − 1 − 4u2 − 3u4)

+ ω1

4
(6u5 + 12u3 − 2u − ω2(5 + 16u2 + 15u4)) + (1 − u4)(u2 + 3)

8

]}
, (2.23)

Im(μ2VT − VS) = g2
Ac2

4m
6
π

(4πf 2
π )3

∫∫
z2<1

dω1dω2

{
4ω2

1

(
ω2

2 + 6u2 + 2 − 10ω2u
) + 6u2(1 + u2)

+ 2ω1[3ω2(1 + 7u2) − 18u3 − 10u] + 2zk2

k1

[
ω3

1(7u − 2ω2) + u2 − ω2u

+ω2
1(13ω2u − 3 − 10u2) + ω1(2 + 3u2)(u − 2ω2)

] + 3 arcsin(z)

k1k2

√
1 − z2

× (u2 − 2ω1u + 1)(u2 − 2ω2u + 1)

[
ω1

2
(6u − 5ω2) − u2

2
− 2ω2

1

]}
, (2.24)
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with the magnitudes of pion momenta divided by mπ , and their scalar product given by

k1 =
√

ω2
1 − 1, k2 =

√
ω2

2 − 1, z k1k2 = ω1ω2 − u(ω1 + ω2) + u2 + 1

2
. (2.25)

The upper/lower limits of the ω2-integration are ω±
2 = 1

2 (u − ω1 ± k1

√
u2 − 2ω1u − 3/

√
u2 − 2ω1u + 1 ) with ω1 in the range

1 < ω1 < (u2 − 3)/2u.
The contributions to ImWS and Im(μ2WT − WS) are split into three pieces according to their dependence on the isoscalar and

isovector low-energy constants c1,3 and c4:

ImWS = g2
Am6

π (u − 3)2

2240πf 6
π

{
7c2

1

(
4

3
+ 3

u
− 2

3u2
− 1

u3

)
+ c1c3

(
2u2

3
+ 4u − 2

3
− 5

u
− 2

3u2
− 1

u3

)

+ c2
3

(
3u2

4
+ u

8
− 5

2
− 3

u
+ 19

12u2
+ 19

8u3

)}
, (2.26)

Im(μ2WT − WS) = g2
Am6

π (u − 3)

1120πf 6
π

{
7c2

1

(
1

3u
+ 1

u2
+ 3

u3
− 2u − 1

)
+ c1c3

(
13u + 4 − 5u2 − 5u3

3
+ 1

3u
+ 1

u2
+ 3

u3

)

+ c2
3

8

(
23u2 − u5

3
− u4 − 4u3 − 8u − 3 + 8

3u
− 19

u2
− 57

u3

)}
, (2.27)

ImWS = g2
Ac4m

6
π

1120πf 6
π

(u − 3)2

{
c1

(
u2 + 6u − 1 − 15

2u
− 1

u2
− 3

2u3

)

+ c3

4

(
2u4

9
+ 4u3

3
+ u2

3
− 25u

6
+ 6

u
+ 1

u2
+ 3

2u3

)}
, (2.28)

Im(μ2WT − WS) = g2
Ac4m

6
π

1120πf 6
π

(u − 3)3

{
c1

(
1

u2
+ 1

u3
− u

3
− 3 − 4

u

)
+ c3

4

(
u3

9
+ u2 + 5u

3
+ 8

3
+ 11

3u
− 1

u2
− 1

u3

)}
,

(2.29)

ImWS = g2
Ac2

4m
6
π

8960πf 6
π

(u − 3)2

(
25u

12
− u4

9
− 2u3

3
− u2

6
− 3

u
− 1

2u2
− 3

4u3

)
, (2.30)

Im(μ2WT − WS) = g2
Ac2

4m
6
π

8960πf 6
π

(u − 3)3

(
1

2u2
+ 1

2u3
− u3

18
− u2

2
− 5u

6
− 4

3
− 11

6u

)
. (2.31)

2. Spectral functions for 3π -exchange class (b)

This class is displayed in Fig. 3(b). Each 3π -exchange diagram of this class includes the one-loop πN amplitude (completed
by the low-energy constants d̄j ). Only those parts of the πN -scattering amplitude, which are either independent of the pion CMS
energy ω or depend on it linearly could be treated with the techniques available. The contributions are, in general, small. Below,
we present only the larger portions within this class. The omitted pieces are about one order of magnitude smaller. To facilitate a
better understanding, we have subdivided this class into subclasses labeled by roman numerals, following Refs. [7,15].

The auxiliary function

G(w) =
[

1 + 2g2
A − w2

4

(
1 + 5g2

A

)]√
w2 − 4

w
ln

w + √
w2 − 4

2

+ w2

24

(
5 + 13g2

A

) − 1 − 2g2
A + 48π2f 2

π [(2 − w2)(d̄1 + d̄2) + 4d̄5] (2.32)

arises from the part linear in ω of the isovector non-spin-flip πN amplitude g−(ω,t) with t = (wmπ )2 (see, e.g., Appendix B in
Ref. [20]). The spectral functions derived from this selected set of 3π -exchange diagrams read as follows.

Class Xb:

ImWS = g2
Am6

π

(4fπ )8π5

∫ u−1

2
dw

4G(w)

27w2u4
[(w2 − 4)λ(w)]3/2, (2.33)

Im(μ2WT − WS) = g2
Am6

π

(4fπ )8π5

∫ u−1

2
dw

4G(w)

9w2u4
(w2 − 4)3/2

√
λ(w)

3u2 + 1

u2 − 1
[u4 − (w2 − 1)2]. (2.34)
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Class XIb:

ImWS = g2
Am6

π

(4fπ )8π5

∫ u−1

2
dw

8G(w)

27w2u4
(w2 − 4)3/2

√
λ(w) [2u2(1 + 7w2) − u4 − (w2 − 1)2], (2.35)

Im(μ2WT − WS) = g2
Am6

π

(4fπ )8π5

∫ u−1

2
dw

8G(w)

9w2u4

(w2 − 4)3/2

√
λ(w)

(u2 + 1 − w2)2[2w2(1 + 3u2) − w4 − (u2 − 1)2]. (2.36)

Class XIIb:

ImWS = g2
Am6

π

9f 8
π (4π )5

∫∫
z2<1

dω1dω2 G(w)
[(

ω2
1 + ω2

2 − 2
)
(1 − 3z2) − 5k1k2z

]
, (2.37)

Im(μ2WT − WS) = − g2
Am6

π

3f 8
π (4π )5

∫∫
z2<1

dω1dω2 G(w)ω1ω2

[
5 + 2z

(
k1

k2
+ k2

k1

)]
, (2.38)

setting w =
√

1 + u2 − 2uω1.
Class XIIIb:

ImVS = g4
Am6

π

(4fπ )8π3u3

∫ u−1

2
dw 2G(w)λ(w)(2 − w2), (2.39)

Im(μ2VT − VS) = g4
Am6

π

(4fπ )8π3u3

∫ u−1

2
dw 4G(w)(2 − w2)(1 + u2 − w2)2, (2.40)

ImWS = g4
Am6

π

3f 8
π (4π )5

∫∫
z2<1

dω1dω2 G(w)

{
u(ω1 + 4ω2) − 2 − ω2

1 + 8ω2
2

3
+ z2

(
ω2

1 + 4ω2
2 − 5

)

+ zk2

k1

(
4uω1 + ω2

1 − 5
) + zk1

k2

(
uω2 + ω2

2 − 2
) + arcsin(z)√

1 − z2

[
k1

k2
(1 − uω2) + z(1 − uω1)

]}
, (2.41)

Im(μ2WT − WS) = g4
Am6

π

f 8
π (4π )5

∫∫
z2<1

dω1dω2
2ω1

3
G(w)

{
2ω2

k2
1

[ω1(u − ω2) − 1] + u + 2ω2

+zk1ω2

k2
+ zk2

k1
(4u + ω1) + ω1

(
2zk2

k1

)2

+ arcsin(z)

k1k2

√
1 − z2

[
(1 + u2)

(
ω1 + ω2 − u

2

)
− 2uω1ω2

]}
, (2.42)

setting again w =
√

1 + u2 − 2uω1.
Class XIVb:

ImVS = g4
Am6

π

(4fπ )8π3u3

∫ u−1

2
dw

G(w)

2
λ(w)[u2 + w2 + 4(u2 − 1)w−2 − 5], (2.43)

Im(μ2VT − VS) = g4
Am6

π

(4fπ )8π3u3

∫ u−1

2
dw G(w)(w2 − 1 − u2)[w4 − 2w2(3 + u2) + (u2 − 1)2(1 + 4w−2)] . (2.44)

C. Four-pion exchange at N5LO

The exchange of four pions between two nucleons occurs
for the first time at N5LO. The pertinent diagrams involve
three loops and only leading order vertices, which explains
the sixth power in small momenta. Three-pion exchange with
just leading order vertices turned out to be negligibly small
[5,6], and so we expect four-pion exchange with leading order
vertices to be even smaller. Therefore, we can safely neglect
this contribution.

III. PERTURBATIVE NN SCATTERING IN PERIPHERAL
PARTIAL WAVES

To obtain an idea of the physical relevance and implications
of the contributions evaluated in Sec. II, we will now calculate

the impact of these on elastic NN scattering in peripheral
partial waves. Specifically, we will consider partial waves
with orbital angular momentum L � 4 (i.e., G waves and
higher), because polynomial terms up to sixth power do
not make any contributions to these angular momentum
states. The L � 4 partial waves are sensitive only to the
nonpolynomial pion-exchange expressions governed by chiral
symmetry.

The smallness of the phase-shifts in peripheral partial waves
suggests that the calculation can be done perturbatively. This
avoids the complications and possible model dependences
(e.g., cutoff dependence) that the nonperturbative treatment
with the Lippmann-Schwinger equation, necessary for low
partial waves, is beset with.

Previous systematic investigations of peripheral partial
waves have been conducted at N2LO in Refs. [3,4], at N3LO in
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FIG. 2. Relativistic 1/M2
N corrections to 2π -exchange diagrams

that are counted as order 6. Notation as in Fig. 1. Open circles
represent 1/MN corrections.

Ref. [10], and at N4LO in Ref. [15]. Here, we will now present
the investigation at N5LO.

The perturbative K matrix for neutron-proton (np) scatter-
ing is calculated as follows:

K( �p ′, �p) = V
(np)

1π ( �p ′, �p ) + V
(np)

2π,it( �p ′, �p )

+V
(np)

3π,it( �p ′, �p ) + V ( �p ′, �p ) (3.1)

(a)

(b)

Class XIa Class XIIa

Class Xb Class XIb

Class XIIb Class XIIIb Class XIVb

3
3 3

3
3

3 3
3

3

FIG. 3. Three-pion exchange contributions at N5LO. (a) Dia-
grams proportional to c2

i . (b) Diagrams involving the one-loop πN

amplitude. Roman numerals refer to subclasses following the scheme
introduced in Refs. [7,15]. Notation as in Fig. 1.

with V
(np)

1π ( �p ′, �p ) the one-pion-exchange (1PE) potential
that applies to np scattering taking charge-dependence into
account. It is given by

V
(np)

1π ( �p ′, �p ) = −V1π (mπ0 ) + (−1)I+1 2 V1π (mπ±), (3.2)

where I = 0,1 denotes the total isospin of the pn system and

V1π (mπ ) = − g2
A

4f 2
π

�σ1 · �q �σ2 · �q
q2 + m2

π

. (3.3)

We use the values mπ0 = 134.9766 MeV and mπ± =
139.5702 MeV for the neutral and charged pion masses.
V

(np)
2π,it( �p ′, �p ) represents the once-iterated 1PE given by

V
(np)

2π,it( �p ′, �p ) = P
∫

d3p′′

(2π )3

M2
N

Ep′′

V
(np)

1π ( �p ′, �p ′′) V
(np)

1π ( �p ′′, �p )

p2 − p′′2 ,

(3.4)

where P denotes the principal value and Ep′′ =
√

M2
N + p′′2.

At sixth order, more iterations of 1π exchange should be
included. However, we found that the difference between the
once-iterated 1PE and the infinitely iterated 1PE is so small
that it could not be identified on the scale of our phase shift
figures. For that reason, we omit iterations of 1PE beyond what
is contained in V

(np)
2π,it( �p ′, �p ).

Furthermore, V
(np)

3π,it( �p ′, �p ) stands for terms where irre-
ducible 2PE is iterated with 1PE. At third order and higher,
we include the iteration of the NLO 2PE with 1PE and, at
fourth order and up, we include the iteration of the N2LO 2PE
with 1PE. We find irreducible 2PE of higher orders (N3LO and
N4LO) iterated with 1PE to be negligible. The same applies
to irreducible 3PE iterated with 1PE. Besides this, we have
also iterated 2PE with 2PE; namely, NLO 2PE iterated with
NLO 2PE, NLO 2PE iterated with N2LO 2PE, NLO 2PE
iterated with iterated 1PE, N2LO 2PE iterated with iterated
1PE, and N3LO 2PE iterated with iterated 1PE. All iterations
of 2PE with 2PE turn out to be negligible. In summary, the
only non-negligible iterative contributions that involve more
than two pions are the ones where an irreducible 2PE of order
NLO or N2LO is iterated with 1PE, which makes sense since
contributions have to be of reasonably long range to contribute
in a noticeable way in G and higher partial waves. Again,
those latter ones we include and denote them symbolically by
V

(np)
3π,it( �p ′, �p ) in Eq. (3.1).

Finally, the third term on the right-hand side of Eq. (3.1),
V ( �p ′, �p ), stands for the sum of irreducible multipion exchange
contributions that occur at the order up to which the calculation
is conducted. In multipion exchanges, we use the average
pion mass mπ = 138.039 MeV and, thus, neglect the charge
dependence due to pion-mass splitting. For the average
nucleon mass, we use twice the reduced mass of the pn system:

MN = 2MpMn

Mp + Mn

= 938.9183 MeV. (3.5)

Through relativistic kinematics, the CMS on-shell momentum
p is related to the kinetic energy Tlab of the incident neutron
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FIG. 4. Effect of individual sixth-order contributions on the neutron-proton phase shifts of two G waves. The individual contributions are
added up successively in the order given in parentheses next to each curve. Curve (1) is N4LO and curve (6) contains all N5LO contributions
calculated in this work. A SFR cutoff �̃ = 800 MeV is applied. The filled and open circles represent the results from the Nijmegen multienergy
np phase-shift analysis [28] and the GWU np analysis SP07 [29], respectively.

in the laboratory system, by

p2 = M2
pTlab(Tlab + 2Mn)

(Mp + Mn)2 + 2TlabMp

, (3.6)

with Mp = 938.2720 MeV and Mn = 939.5654 MeV the
proton and neutron masses, respectively. The K matrix,
Eq. (3.1), is decomposed into partial waves following Ref. [22]
and phase shifts δL are then calculated via

tan δL(Tlab) = − M2
Np

16π2Ep

p KL(p,p) . (3.7)

For more details concerning the evaluation of phase shifts,
including the case of coupled partial waves, see Ref. [23] or
the Appendix of Ref. [24].

Chiral symmetry establishes a link between the dynamics
in the πN system and the NN system (through common
low-energy constants). In order to check the consistency, we
use the LECs for subleading πN couplings as determined
in analyses of low-energy elastic πN scattering. Appropriate
analyses for our purposes are contained in Refs. [20,25], where
πN scattering has been calculated at fourth order using the
same power-counting of relativistic 1/MN corrections as in
the present work. The authors of Ref. [20] performed two
fits: one to the GW [26] and one to the KH [27] partial wave
analysis resulting in the two sets of LECs listed in Table I.
In our present work, we apply the LECs based upon the GW
analysis because it includes all πN data up to 2006, while the
KH analysis may be perceived as outdated since it is from 1986.
Moreover, we absorb the Goldberger-Treiman discrepancy into

an effective value of the nucleon axial-vector coupling constant
gA = gπNNfπ/MN = 1.29.

As shown in Figs. 1 to 3 and derived in Sec. II, the sixth-
order corrections consists of several contributions. We will
now demonstrate how the individual sixth-order contributions
impact NN phase shifts in peripheral waves. For this purpose,
we display in Fig. 4 phase shifts for two peripheral partial
waves, namely, 1

G4 and 3
G5. In each frame, the following

curves are shown:

(1) N4LO (as defined in Ref. [15]).
(2) The previous curve plus the N5LO 2π -exchange

contributions of class (a); Fig. 1(a) and Sec. II A 1.
(3) The previous curve plus the N5LO 2π -exchange

contributions of class (b); Fig. 1(b) and Sec. II A 2.
(4) The previous curve plus the N5LO 3π -exchange

contributions of class (a); Fig. 3(a) and Sec. II B 1.
(5) The previous curve plus the N5LO 3π -exchange

contributions of class (b); Fig. 3(b) and Sec. II B 2.
(6) The previous curve plus the 1/M2

N corrections (denoted
by “1/M2”); Fig. 2 and Sec. II A 4.

In summary, the various curves add up successively the in-
dividual N5LO contributions in the order indicated by the curve
labels. The last curve in this series, curve (6), includes all N5LO
contributions calculated in this paper. For all curves of this
figure a SFR cutoff �̃ = 800 MeV [cf. Eq. (2.2)] is employed.

From Fig. 4, we make the following observations. The
two-loop 2π -exchange class (a), Fig. 1(a), generates a strong
repulsive central force through the spectral function Eq. (2.3),
while the spin-spin and tensor forces provided by this class,
Eq. (2.4), are negligible. The fact that this class produces
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FIG. 5. (Color online) Phase-shifts of neutron-proton scattering in G and H waves at various orders as denoted. The shaded (colored)
bands show the variations of the predictions when the SFR cutoff �̃ is changed over the range 700 to 900 MeV. Empirical phase shifts are as
in Fig. 4.

a relatively large contribution is not unexpected, since it is
proportional to c2

i . The 2π -exchange contribution class (b),
Fig. 1(b), creates a moderately repulsive central force as seen
by its effect on 1

G4 and a noticeable tensor force, as the
impact on 3

G5 demonstrates. The 3π -exchange class (a),
Fig. 3(a), is negligible in 1

G4, but noticeable in 3
G5 and,

therefore, it should not be neglected. This contribution is
proportional to c2

i , which suggests a non-negligible size but
it is typically smaller than the corresponding 2π -exchange
contribution class (a). The 3π -exchange class (b) contribution,
Fig. 3(b), turns out to be negligible [see the difference between
curve (4) and (5) in Fig. 4]. This may not be unexpected since
it is a three-loop contribution with only leading-order vertices.
Finally the relativistic 1/M2

N corrections to the leading 2π
exchange, Fig. 2, have a small but non-negligible impact,
particularly in 3

G5.
The predictions for all G and H waves, are displayed in

Fig. 5 in terms of shaded (colored) bands that are generated
by varying the SFR cutoff �̃ [cf. Eq. (2.2)] between 700
and 900 MeV. The figure clearly reveals that, at N3LO, the
predictions are, in general, too attractive. As demonstrated in
Ref. [15], the N4LO contribution, essentially, compensates this
attractive surplus. Now, let us turn to the new result at N5LO:
it shows a moderate repulsive contribution bringing the final
prediction right onto the data (i.e., empirical phase-shifts).
Moreover, the N5LO contribution is, in general, substantially
smaller than the one at N4LO, thus, showing a signature of
convergence of the chiral expansion.

Concerning the 3
G5 phase shifts, a comment is in place.

From Fig. 5, it may appear that in this case the order-by-order

convergence pattern is poor and the spread as a function of �̃
rather large and not shrinking with increasing order. Notice,
however, that we are talking here about very small numbers:
the whole phase shift scale of the 3

G5 frame is 0.8 deg and
the spread as a function of �̃ is about 0.1 deg in each order.
Moreover, the 3

G5 is known to be exceptionally sensitive to
dynamics at medium-to-short range. This has been noticed and
discussed before; see, e.g., Ref. [10].

Let us also comment on the spread as a function of the SFR
cutoff �̃ of the other phase shifts shown in Fig. 5. While this
spread goes down from N3LO to N4LO, it stays about the same
when moving from N4LO to N5LO. Note, though, that the
spread at N4LO and N5LO is relatively small as compared to
the lower orders. Nevertheless, on general grounds, one might
have expected a further reduction of this cutoff dependence at
N5LO, which is, however, not happening. At this stage of our
investigation, the reason is not clear and we have to leave this
issue to future considerations.

Finally, we also like to make a note on the empirical phase
shifts with which we compare our predictions in Figs. 4
to 7. We use the 1993 Nijmegen analysis [28] (represented
by filled circles in the figures) and the GWU analysis from
summer 2007 [29] (open circles). We have also considered
the recent Granada NN analysis [30]. However, it turned
out that, in general, the Granada and Nijmegen analyses
are so close to each other that it does not make sense to
show them separately. Therefore, concerning an alternative
analysis, we decided for GWU [29], for two reasons. The
GWU analysis is truly alternative to Nijmegen (and Granada),
because it is not performed with a cleaned-up database; it uses
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FIG. 6. (Color online) Phase-shifts of neutron-proton scattering in G and H waves at all orders from LO to N5LO. A SFR cutoff �̃ =
800 MeV is used. Empirical phase shifts are as in Fig. 4.

the full NN database. Moreover, the GWU analysis provides
empirical phase shifts also for partial waves with J = 5,6,
which we need. (The Nijmegen and Granada analyses stop at
J = 4.)

Figure 5 includes only the three highest orders. However,
a comparison between all orders is also of interest. Therefore,
we show in Fig. 6 the contributions to phase shifts through all
six chiral orders from LO to N5LO (as defined in Ref. [15]
and the present paper). Note that the difference between
the LO prediction (one-pion-exchange, dotted line) and the
data (filled and open circles) is to be provided by two- and
three-pion exchanges, i.e., the intermediate-range part of the
nuclear force. How well that is accomplished is a crucial test
for any theory of nuclear forces. NLO produces only a small
contribution, but N2LO creates substantial intermediate-range
attraction (most clearly seen in 1

G4, 3
G5, and 3

H6). In
fact, N2LO is the largest contribution among all orders. This
is due to the one-loop 2π -exchange (2PE) triangle diagram
which involves one ππNN-contact vertex proportional to ci .
This vertex represents correlated 2PE as well as intermediate

(1232)-isobar excitation. It is well known from the tradi-
tional meson theory of nuclear forces [31–33] that these two
features are crucial for a realistic and quantitative 2PE model.
Consequently, the one-loop 2π exchange at N2LO is attractive
and assumes a realistic size, describing the intermediate-range
attraction of the nuclear force about right. At N3LO, more
one-loop 2PE is added by the bubble diagram with two ci

vertices, a contribution that seemingly is overestimating the
attraction. This attractive surplus is then compensated by the
prevailingly repulsive two-loop 2π and 3π exchanges that
occur at N4LO and N5LO.

In this context, it is worth noting that also in conventional
meson theory [31] the one-loop models for the 2PE contri-
bution always show some excess of attraction (cf. Figs. 7–9
of Ref. [10]). The same is true for the dispersion theoretic
approach pursued by the Paris group [32,33]. In conventional
meson theory, the surplus attraction is reduced by heavy-meson
exchange (ρ and ω exchange) which, however, has no place
in chiral effective field theory (as a finite-range contribution).
Instead, in the latter approach, two-loop 2π and 3π exchanges
provide the corrective action.

We now turn to Fig. 7, where we show how the six chiral
orders impact the mixing angles with J = 4,5. Note that the
mixing angles depend only on the tensor force [the quadratic
spin-orbit term VσL in Eq. (2.16) is very small]. It is clearly
seen that the 1π exchange (LO) alone describes these mixing
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FIG. 7. (Color online) Mixing angles for neutron-proton scatter-
ing for J = 4,5 at all orders from LO to N5LO. A SFR cutoff
�̃ = 800 MeV is used. Filled and open circles are as in Fig. 4.
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angles correctly and that the various higher orders make only
negligible contributions, particularly, for J = 5. At any order
in the chiral expansion, tensor forces are created, but obviously
the tensor force contributions beyond LO are of shorter range
such that they do not matter in peripheral waves with L � 4.

IV. CONCLUSIONS

In this paper, we have calculated dominant 2π - and 3π -
exchange contributions to the NN interaction which occur at
N5LO (sixth order) of the chiral low-momentum expansion.
The calculations are done in heavy-baryon chiral perturbation
theory using the most general fourth-order Lagrangian for
pions and nucleons. We apply low-energy constants for
subleading πN coupling, which were determined from an
analysis of elastic πN scattering to fourth order using the same
power counting scheme as in the present work. The spectral
functions, which determine the NN amplitudes via subtracted
dispersion integrals, are regularized by a cutoff �̃ in the range
0.7 to 0.9 GeV. Besides the cutoff �̃, our calculations do not
involve any adjustable parameters.

Recent work on NN scattering in chiral perturbation
theory [15] had revealed that the N2LO, N3LO, and N4LO
contributions are all about of the same size, thus raising

some concern about the convergence of the chiral expansion
for the NN potential. Our present calculations show that
the contribution at N5LO is substantially smaller than the
one at N4LO, thus, indicating a signature of convergence.
The two-loop 2π -exchange contribution is the largest, while
the corresponding three-loop contribution is small, but not
negligible. Three-pion exchange is generally small at this
order. The phase-shift predictions in G and H waves, where
only the nonpolynomial terms governed by chiral symmetry
contribute, are in excellent agreement with the data.

This investigation represents the most comprehensive (and
successful) test of the implications of chiral symmetry for the
NN system.
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Côté, P. Pirès, and R. de Tourreil, Phys. Rev. C 21, 861
(1980).

064001-12

http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1103/PhysRevLett.72.1982
http://dx.doi.org/10.1103/PhysRevLett.72.1982
http://dx.doi.org/10.1103/PhysRevLett.72.1982
http://dx.doi.org/10.1103/PhysRevLett.72.1982
http://dx.doi.org/10.1103/PhysRevC.53.2086
http://dx.doi.org/10.1103/PhysRevC.53.2086
http://dx.doi.org/10.1103/PhysRevC.53.2086
http://dx.doi.org/10.1103/PhysRevC.53.2086
http://dx.doi.org/10.1016/S0375-9474(97)00586-1
http://dx.doi.org/10.1016/S0375-9474(97)00586-1
http://dx.doi.org/10.1016/S0375-9474(97)00586-1
http://dx.doi.org/10.1016/S0375-9474(97)00586-1
http://dx.doi.org/10.1016/S0375-9474(98)00234-6
http://dx.doi.org/10.1016/S0375-9474(98)00234-6
http://dx.doi.org/10.1016/S0375-9474(98)00234-6
http://dx.doi.org/10.1016/S0375-9474(98)00234-6
http://dx.doi.org/10.1103/PhysRevC.61.014003
http://dx.doi.org/10.1103/PhysRevC.61.014003
http://dx.doi.org/10.1103/PhysRevC.61.014003
http://dx.doi.org/10.1103/PhysRevC.61.014003
http://dx.doi.org/10.1103/PhysRevC.62.024001
http://dx.doi.org/10.1103/PhysRevC.62.024001
http://dx.doi.org/10.1103/PhysRevC.62.024001
http://dx.doi.org/10.1103/PhysRevC.62.024001
http://dx.doi.org/10.1103/PhysRevC.63.044010
http://dx.doi.org/10.1103/PhysRevC.63.044010
http://dx.doi.org/10.1103/PhysRevC.63.044010
http://dx.doi.org/10.1103/PhysRevC.63.044010
http://dx.doi.org/10.1103/PhysRevC.64.057001
http://dx.doi.org/10.1103/PhysRevC.64.057001
http://dx.doi.org/10.1103/PhysRevC.64.057001
http://dx.doi.org/10.1103/PhysRevC.64.057001
http://dx.doi.org/10.1103/PhysRevC.65.017001
http://dx.doi.org/10.1103/PhysRevC.65.017001
http://dx.doi.org/10.1103/PhysRevC.65.017001
http://dx.doi.org/10.1103/PhysRevC.65.017001
http://dx.doi.org/10.1103/PhysRevC.66.014002
http://dx.doi.org/10.1103/PhysRevC.66.014002
http://dx.doi.org/10.1103/PhysRevC.66.014002
http://dx.doi.org/10.1103/PhysRevC.66.014002
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(99)00821-0
http://dx.doi.org/10.1016/S0375-9474(99)00821-0
http://dx.doi.org/10.1016/S0375-9474(99)00821-0
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1103/PhysRevLett.110.192502
http://dx.doi.org/10.1103/PhysRevLett.110.192502
http://dx.doi.org/10.1103/PhysRevLett.110.192502
http://dx.doi.org/10.1103/PhysRevLett.110.192502
http://dx.doi.org/10.1103/PhysRevC.91.014002
http://dx.doi.org/10.1103/PhysRevC.91.014002
http://dx.doi.org/10.1103/PhysRevC.91.014002
http://dx.doi.org/10.1103/PhysRevC.91.014002
http://dx.doi.org/10.1103/PhysRevC.91.024003
http://dx.doi.org/10.1103/PhysRevC.91.024003
http://dx.doi.org/10.1103/PhysRevC.91.024003
http://dx.doi.org/10.1103/PhysRevC.91.024003
http://dx.doi.org/10.1103/PhysRevC.92.024002
http://dx.doi.org/10.1103/PhysRevC.92.024002
http://dx.doi.org/10.1103/PhysRevC.92.024002
http://dx.doi.org/10.1103/PhysRevC.92.024002
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1016/0375-9474(71)90279-X
http://dx.doi.org/10.1016/0375-9474(71)90279-X
http://dx.doi.org/10.1016/0375-9474(71)90279-X
http://dx.doi.org/10.1016/0375-9474(71)90279-X
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://arxiv.org/abs/arXiv:1410.0646
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1016/0375-9474(86)90438-0
http://dx.doi.org/10.1016/0375-9474(86)90438-0
http://dx.doi.org/10.1016/0375-9474(86)90438-0
http://dx.doi.org/10.1016/0375-9474(86)90438-0
http://dx.doi.org/10.1103/PhysRevC.48.792
http://dx.doi.org/10.1103/PhysRevC.48.792
http://dx.doi.org/10.1103/PhysRevC.48.792
http://dx.doi.org/10.1103/PhysRevC.48.792
http://dx.doi.org/10.1103/PhysRevC.88.064002
http://dx.doi.org/10.1103/PhysRevC.88.064002
http://dx.doi.org/10.1103/PhysRevC.88.064002
http://dx.doi.org/10.1103/PhysRevC.88.064002
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1103/PhysRevC.21.861
http://dx.doi.org/10.1103/PhysRevC.21.861
http://dx.doi.org/10.1103/PhysRevC.21.861
http://dx.doi.org/10.1103/PhysRevC.21.861



