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We investigate the role of pressure in a class of generalized Skyrme models. We introduce pressure as the trace
of the spatial part of the energy-momentum tensor and show that it obeys the usual thermodynamical relation.
Then, we compute analytically the mean-field equation of state in the high- and medium-pressure regimes by
applying topological bounds on compact domains. The equation of state is further investigated numerically for
the charge-one Skyrmions. We identify which term in a generalized Skyrme model is responsible for which part
in the equation of state. Further, we compare our findings with the corresponding results in the Walecka model.
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I. INTRODUCTION

The Skyrme model [1] is a low-energy effective model of
QCD where baryons (atomic nuclei) are realized as emergent
objects in a mesonic fluid. In modern language, they are
solitons in a field theory based entirely on some mesonic
field U, in the simplest version, U ∈ SU(2). The pertinent
topological charge carried by a soliton (Skyrmion) may be
identified with the baryon charge.

The most general Lagrange density respecting Poincare
invariance and leading to a standard Hamiltonian reads

L0246 = L0 + L2 + L4 + L6, (1.1)

where

L2 = −λ2 Tr (LμLμ), L4 = λ4 Tr ([Lμ,Lν]2),

L6 = −(24π2)2λ6BμBμ. (1.2)

Here, the left invariant current Lμ is given by

Lμ = U †∂μU (1.3)

and L0 is a nonderivative part, i.e., a potential. In its simplest
version L024, where the sextic part is neglected, the model
was shown to describe baryons and light nuclei with a very
good accuracy [2–7]. However, this particular proposal leads
to results that are difficult to reconcile with two important
qualitative properties of atomic nuclei and nuclear matter. It
gives rather large binding energies and describes crystal-like
nuclear matter [8], whereas nuclear matter is only weakly
bound in atomic nuclei and behaves more like a fluid. These
unwanted properties of the usual Skyrme model can be
resolved if one adds a larger amount of the sextic term. This is
related to the observation that there exists a submodel within
the family of Skyrme type models, which has the BPS property
(classical zero binding energies [9]) and describes a fluid (has
the energy-momentum tensor of a perfect fluid [10] and is, in
fact, a field theoretical realization of the Eulerian fluid [11]).
This submodel is called the BPS Skyrme model [9] and reads

LBPS ≡ L6 + L̃0 (1.4)

where L̃0 is a further potential. Then, an improved proposal,
which might also be valid for the high baryon charge regime,
is given by the near-BPS Skyrme model [12]

L = ε(L0 + L2 + L4) + LBPS, (1.5)

where the usual Skyrme model only provides rather small
corrections to masses (binding energies), as ε is assumed to be
a small parameter. Let us remark that the sextic term L6 can be
effectively introduced by a coupling with the ω meson [13–18].
Here we consider the general Skyrme theory with the SU(2)
fields only, where some effects induced by further mesons
emerge due to a particular form of the action rather than by
the inclusion of some new explicit degrees of freedom.

Although the BPS limit is physically very well motivated
and provides rather accurate results for binding energies for
larger nuclei [after a careful treatment of semiclassical quan-
tisation of (iso)rotational modes, inclusion of the Coulomb
interaction and isospin breaking [12] (see also Ref. [19])],
it is still necessary to investigate the full near-BPS version.
The inclusion of the non-BPS part leads to the appearance of
physical pions and determines the proper geometry (shape) of
Skyrmions [20], which is of high importance as it results in
particular patterns for the isorotational excitations. Hopefully,
one can get a model that unifies the convincing results for
baryons and light nuclei with the crucial properties of the BPS
model. This is, in principle, a difficult task since the solvability
property of the BPS model is lost once the perturbative part
(usual Skyrme action) is added. Moreover, such a perturbation
is nonanalytical as the non-BPS part is the dominating part
close to the vacuum. Hence, no small ε expansion exists at the
level of the field equations. Some recent findings for solitons
with first few baryon charges, however in a not-so-near-BPS
regime, can be found in Ref. [21] (see also Ref. [22]).

The aim of the present work is to investigate the issue of
the equation of state (EoS) in the general Skyrme model with
a special focus on the near-BPS model. The BPS submodel
allows for a rather complete analysis of its thermodynamics at
zero temperature, as a consequence of the BPS property and
of its perfect fluid form which, however, no longer hold for the
general (non-BPS) model. The first difficulty, therefore, is to
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properly define the pressure, since in the absence of a perfect
fluid description no obvious definition exists. This is analyzed
in Sec. II. In Sec. III, using some topological energy bounds on
a compact domain, an asymptotic equation of state is derived.
Then, in Sec. IV, we make a conjecture about subleading
terms in the EoS by exploiting some properties of generalized
BPS Skyrme models. In Sec. V, the medium and large pressure
regimes are checked numerically for the charge-one, hedgehog
configuration. Section VI is devoted to a comparison with the
equation of state (EoS) of the Walecka model. Finally, we
summarize our findings. We shall frequently use the standard
Skyrme field parametrization

U = cos ξ + i sin ξ �n · �σ ,
(1.6)

�n = (sin χ cos �, sin χ sin �, cos χ )

where ξ,χ,� are real field variables and �σ are the Pauli
matrices. Further, we shall always assume that U = 1, i.e.,
ξ = 0, is the vacuum value of the Skyrme field, which it must
approach at spatial infinity.

II. AVERAGE PRESSURE AND AVERAGE CHEMICAL
POTENTIAL

The energy-momentum tensor in the BPS Skyrme model
takes the form of a perfect fluid energy-momentum tensor and,
therefore, it directly defines the field theoretical (microscopic)
pressure and baryon chemical potential (i.e., the pressure
and chemical potential densities). For a generic Skyrme
Lagrangian, there is no such fluid description and one usually
has a nontrivial energy-momentum tensor with different
stresses T ij in different directions. However, a pressure density
p = 1

3

∑
i T

ii and the corresponding average pressure P , i.e.,
the volume average of 1

3T ii (summation assumed), as well
as an average chemical potential μ̄ may still be defined as
proper thermodynamic (macroscopic) variables, i.e., obeying
the required thermodynamical relations(

∂E

∂V

)
B

= −P, (2.1)

(
∂E

∂B

)
V

= μ̄. (2.2)

Here E = E(V,P,B,μ̄) is the static energy of the Skyrme
model, depending on the volume V , pressure P , baryon charge
B, and chemical potential μ̄. For this purpose, we first define
the following generalized step function

�̃(U ) =
{

1 for U �= 1
0 for U = 1 , (2.3)

[for the standard parametrization (1.6), �̃(U ) may be replaced
by the standard step function �(ξ )]. Further, we define the
locus function of a static Skyrmion configuration U = U0(�x)
as the pullback U ∗

0 [�̃(U )] of �̃(U ) under U0, and the locus set
of the Skyrmion U0(�x),

 = {�x ∈ R3 | U ∗
0 [�̃(U )] ≡ �̃[U0(�x)] = 1}, (2.4)

i.e., the set  ⊂ R3 where the Skyrmion is located (deviates
from the vacuum). Now, let us consider the general Skyrme

static energy functional

E(V,P,B,μ̄) =
∫

d3x ε[U ] + P

(∫
d3x�̃(U (�x)) − V

)

− μ̄

(∫
d3xB0 − B

)
, (2.5)

where ε[U ] is the energy density and P and μ̄ are Lagrange
multipliers. In particular, P imposes the condition that all
possible solutions of the variational problem (2.5) must have
volume V , i.e.,

∫
d3x �̃[U (�x)] = ∫


d3x = V . Obviously, P

and μ̄ obey the thermodynamical relations (2.1) and (2.2) by
construction. We still have to show that the Lagrange multiplier
P is indeed the average pressure as defined above. For that
we consider scaling transformations xi → eλxi = (1 + λ)xi .
Then δλU = λxi∂iU . For the energy functional (2.5) we get
off shell, in first order in λ,

δλE = λ

∫
Tiid

3x − 3λP

∫
d3x�̃[U (�x)], (2.6)

where we use the fact that the variation of the energy∫
d3x ε[U ] under the scaling transformation gives the integral

of the trace of the spatial part of the energy-momentum
tensor [20]. But any solution of the Euler-Lagrange equations
is a stationary point and, therefore, δλE = 0 on-shell and

P =
1
3

∫


Tiid
3x∫


d3x

, (2.7)

which is exactly the average pressure definition. We remark
that the Lagrange multiplier imposing a fixed value for the
volume does not uniquely determine the compact domain .
In fact, using the volume-preserving diffeomorphisms we get
infinitely many different sets , which result in different values
of the trace integral (i.e., the pressure P ). In other words, one
has to fix the compact domain  and, therefore, the Skyrmion
solution up to target space symmetries, to get a unique average
pressure. In general, this is a very difficult task. However, for
a spherically symmetric unit charge Skyrmion, the obvious
choice is such that the symmetry of the equilibrium solution
is preserved while squeezed. Then,  is a three-dimensional
ball. Moreover, in the BPS limit the static energy functional is
invariant under the volume preserving diffeomorphisms of the
base space and therefore all SDiff related  give exactly the
same pressure—as is the case for a perfect fluid.

Let us also remark that the proper (thermodynamical)
volume appearing in relation (2.1) is the geometrical volume
of a topological soliton. It means that in a typical case such
a volume tends to infinity in the equilibrium (zero pressure)
limit since typical Skyrmions are infinitely extended solutions.
This leads to some difficulties if one wants to consider
the mean-field energy density ε̄ = E/V at the equilibrium.
Obviously, one gets ε̄ = 0, which is the same as for the vacuum
configuration. Note, however, that compact Skyrmions with
finite volumes are known (for example, they are quite common
in the BPS Skyrme model).
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III. ASYMPTOTIC EQUATION OF STATE

Now we will use these definitions to compute thermody-
namical functions in the asymptotic regime, i.e., in the limit
of high pressure (density) or equivalently in the limit of small
volume. In order to do that we need an expression that shows
how the energy of Skyrmions changes with volume and baryon
density. This is a quite difficult problem as, in principle, it
requires the solution of the full three-dimensional problem.
However, in the asymptotic regime we can use some previously
found topological bounds.

The relevant bounds for the quartic (Skyrme) and sextic
terms are [23,24]

E4 = 1

16

∫
d3x Tr [Li,Lj ]2 � 3(2π2)4/3 B4/3

V 1/3
, (3.1)

E6 =
∫

d3x (εijk TrLiLjLk)2 � B2

V
. (3.2)

There is no bound for the quadratic part

E2 =
∫

d3x Tr LiLi, (3.3)

or for a general potential. Therefore, the asymptotic static
energy for any Skyrme model can be approximated as [λ6 =
λ2/(24)2 and λ0 = μ2]

E = λ2E2 + λ4E4 + λ2π4E6 + λ0E0

� λ43(2π2)4/3 B4/3

V 1/3
+ π4λ2 B2

V
� π4λ2 B2

V
. (3.4)

In the small volume limit, the quartic term provides a
subleading contribution. The same holds for the potential
term and the σ model part, which affect the total energy even
less. However, since in the small volume limit the sextic term
governs the masses of Skyrmions, one recovers the BPS limit.
Hence, the bound is, in fact, saturated for sufficiently small
volumes (high pressures). This is not the case for the quartic
term. As we will see, the corresponding bound is not saturated.
All this allows us to predict the asymptotic formula for the
energy as

E = π4λ2 B2

V
+ α

B4/3

V 1/3
+ o(V −1/3), V → 0, (3.5)

with

α � 3(2π2)4/3λ4. (3.6)

Then, the average pressure is

P = π4λ2ρ̄2
B + α

3
ρ̄

4/3
B + o

(
ρ̄

4/3
B

)
, (3.7)

and the average baryon chemical potential

μ̄ = 2π4λ2ρ̄B + 4α

3
ρ̄

1/3
B + o

(
ρ̄

1/3
B

)
, (3.8)

where ρ̄B = B
V

is the average baryon (particle) density. The
average energy density is

ε̄ = π4λ2ρ̄2
B + αρ̄

4/3
B + o

(
ρ̄

4/3
B

)
. (3.9)

In the leading approximation, we reobtain the BPS Skyrme
model asymptotic behavior

P = π4λ2ρ̄2
B, (3.10)

μ̄ = 2π4λ2ρ̄B, (3.11)

ε̄ = π4λ2ρ̄2
B. (3.12)

The resulting equation of state reads

ε̄ = P. (3.13)

Let us summarize the main findings.

(i) The sextic term gives the main contribution in the high-
pressure limit. This means that this term should not be
omitted if dense nuclear matter is considered. The
asymptotic equation of state always has a universal
(potential independent) form ε̄ = P .

(ii) The quartic, usual Skyrme term, gives a subleading
contribution, which modifies the equation of state
at moderate pressures. The functional dependence is
known, which is not the case for the multiplicative
constant α, for which we have derived a lower bound.

(iii) The potential and the σ model part give contributions,
which are even subleading in comparison to the
E4 contribution. On the other hand, they may be
significant close to nuclear saturation density.

For a deeper insight into the role played by the σ model part
as well as by the potential term, we need to perform numerical
computations. Nonetheless, one can get some help from the
BPS Skyrme model, which, as we will see below, can give
some understanding on the functional mass-volume relation
originating from the E2 and E0 terms.

IV. BPS FLUID TOY MODELS

Each part of the generalized Skyrme model has a specific
number of spatial derivatives. This is a main—but clearly not
the only—difference between them. As we have previously
commented, the sextic term is special as it leads to a perfect
fluid model. Here, we want to learn how a specific number of
derivatives can change the equation of state, assuming that all
terms are based on the same thermodynamical quantity—here
the baryon density. Within this approach, we replace the σ
model term and the quartic Skyrme term by energy functionals
based only on the baryon density, which is a natural quantity
for the sextic term (note that similar nonlinear models have
been recently considered in Ref. [25] in the context of the
baby Skyrme model in 2 + 1 dimensions).

We start with the Skyrme (quartic) term

L4 = λ4 Tr ([Lμ,Lν]2) −→ Lf
4 = λ4(BμBμ)2/3, (4.1)

which now is represented by a four-derivative term (in the
sense that under Derrick scaling xμ → �xμ it scales like �−4)
constructed from the baryon density (current). Such a new term
leads to the following energy density (for static solutions)

ε = λ4ρ
4/3
B , (4.2)

055807-3



C. ADAM, M. HABERICHTER, AND A. WERESZCZYNSKI PHYSICAL REVIEW C 92, 055807 (2015)

and pressure

P = 1
3λ4ρ

4/3
B , (4.3)

where we use that, for a general energy density based on baryon
(particle) density, the pressure reads

P = ρB

∂ε

∂ρB

− ε. (4.4)

The corresponding equation of state reads

P = 1
3 ε̄, (4.5)

which exactly coincides with the mean-field equation of
state for the usual Skyrme term. Hence, the substitution
completely reproduces the thermodynamical properties of the
E4 model. This leads to the conjecture that, at least to some
extent, thermodynamical properties related to each term of
the generalized Skyrme model can be similar to properties
generated by the BPS fluid counterpart, i.e, by terms built out
of the baryon density elevated to a certain power. Now, let us
apply the same strategy to extract information about possible
equations of state that may emerge from E2 and E0. In the
case of the σ model term we get

L2 = −λ2 Tr (LμLμ) −→ Lf
2 = −λ2(BμBμ)1/3. (4.6)

Thus, we find

ε = λ2ρ
2/3
B , (4.7)

P = −λ2

3
ρ

2/3
B , (4.8)

and the equation of state

P = − 1
3ε. (4.9)

As expected, this part is responsible for a negative pressure,
i.e., an attractive force (which is balanced by the inclusion of
other stabilizing terms).

The issue of the potential is more subtle as it does not
depend on the baryon density but, in general, on the Skyrme
field. One finds that

ε = U , P = −U , (4.10)

and

P = −ε. (4.11)

However, for the step-function potential U = �̃(U ), it only
contributes as a numerical constant to thermodynamical
quantities. Then, for example, the energy density is shifted
by such a constant. Since in a first approximation, we can
always model a potential by the step-function potential, we
may expect that a constant density term shows up.

Hence, finally we conjecture a theoretically motivated
energy density-baryon density relation, which can be valid
not only for asymptotically high pressure but also in a
medium-pressure regime

ε̄ = π4λ2ρ̄2
B + αρ̄

4/3
B + β + β̃ ρ̄

2/3
B + O(1). (4.12)

This leads, for the charge one sector, to the following energy-
volume formula

E = π4λ2 1

V
+ α

1

V 1/3
+ βV + β̃ V 1/3 + O(V ). (4.13)

In the subsequent sections we will compare formula (4.13)
with numerical computations. One should keep in mind that, in
contrast to the first two leading terms, which have been proven
to emerge in the high-pressure regime, the last two subleading
terms are conjectured (or at best heuristically motivated) by
analyzing similar BPS models.

V. NUMERICAL RESULTS IN THE CHARGE-ONE
SECTOR

The equation of state as well as the equivalence of the
two pressure definitions can be tested by direct numerical
computations in the charge one sector where the hedgehog
ansatz can be assumed

U = cos ξ + i sin ξ �n · �σ , (5.1)

where ξ = ξ (r), �n = (sin θ cos φ, sin θ sin φ, cos θ ) is a unit
vector covering the S2 target subspace once, and �σ are the
Pauli matrices. Then, the energy contributions are given by

E0 = 4π

∫
r2dr2(1 − cos ξ ), (5.2)

E2 = 4π

∫
r2dr2

(
ξ 2
r + 2 sin2 ξ

r2

)
, (5.3)

E4 = 4π

∫
r2dr

(
2

sin2 ξ

r2
ξ 2
r + sin4 ξ

r4

)
, (5.4)

E6 = 4π

∫
r2dr

1

4r4
sin4 ξξ 2

r . (5.5)

The aim is not only to verify the asymptotic formula for the
EoS but also to get some insight into the role that is played
by the quadratic and potential parts, for which we do not have
any analytical (asymptotic) expression. For B = 1 Skyrmions
we solve a one-dimensional ODE with boundary conditions,
which guarantee the nontrivial topology and pressure

ξ (r = 0) = π, ξ (r = R) = 0. (5.6)

In other words, we enclose the Skyrmion in a finite volume
V = (4π/3)R3.

We use the collocation method [26] to determine the profile
function ξ , which minimizes the Skyrme energy functional
E with boundary conditions ξ (0) = π and ξ (R) = 0. The
associated Euler-Lagrange equations are solved on the interval
0 < r < R. For the high-pressure regime, we consider the
interval 0.1 < R < 1. We start with R = 0.1 as right boundary
point and then increase in each collocation run the right
boundary value by dr = 0.0001. The increment dr is chosen
to be sufficiently small, which allows us to check numerically
the equivalence of field-theoretical and thermodynamical
pressure. For the low-pressure regime, we run simulations up
to a maximal boundary point value of 10 with dr = 0.001.

We use the nonlinear curve-fitting function OPTI-
MIZE.CURVE_FIT from Python’s SCIPY package [27] to fit the
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asymptotic energy and pressure formulas to our numerical data
in the high-pressure regime.

The energy and length units have to be fixed by comparison
with experimental nuclear physics data. In this article, we
calibrate the usual Skyrme model without the sextic part using
the approach of Refs. [2]. The energy and length units are
tuned to match the experimental nucleon (MN = 939 MeV)
and � (M� = 1231 MeV) masses. This fixes the energy and
length scale as follows

12π2 ×
[

Fπ

4eSky

]
= 12π2 × 5.58 MeV,

(5.7)[
2

eSkyFπ

]
= 0.755 fm,

and gives the well-known parameter values

eSky = 4.84, Fπ = 108 MeV, � = 46.8,

and mπ = 138 MeV. (5.8)

In this article, if not explicitly stated otherwise, the rescaled
pion mass μ is set to 1. Note that the limitations of the
parameter set (5.8) have been discussed previously [28–30]
and different parameter choices have been explored in the
literature, e.g., Refs. [6,7,28,31].

Our numerical results in Sec. V B on BPS and near-BPS
Skyrme models are expressed in terms of the same energy and
length units (5.7). However, note that for the full near-BPS
Skyrme model E0246, discussed in Sec. V B 3, the coupling
parameters of the BPS part are fixed by matching the BPS
Skyrmion mass to one fourth of the helium nucleus mass and
the Skyrmion radius to the nucleon radius (see Sec. V B 3 and
Ref. [32] for a detailed discussion).

A. Perturbative Skyrme model

We start with the usual, old Skyrme model without the
sextic part. The reason for this is to find a clear signal from
the quartic term, which now gives the leading high pressure
behavior and then understand the influence of the potential
and sigma model terms as first subleading effects. The energy
functional we minimize reads

E024 = λ2E2 + λ4E4 + λ0E0, (5.9)

where the constants are

λ2 = 1

24π2
, λ4 = 1

12π2
, λ0 = 1

12π2
, (5.10)

or zero in the case where the pertinent term is omitted. Here
we consider the usual Skyrme potential, which is relevant for
the conventional (perturbative) Skyrme model

E0 = Tr (1 − U ). (5.11)

For all possible submodels we first checked the equivalence
between the average field-theoretical pressure and the ther-
modynamical pressure. We always found a perfect agreement
between the pressures computed by Eqs. (2.1) and (2.7). It is
also a precision test for our numerical computations.

1. E4 model

We begin with the simplest submodel, which contains
only the quartic part. Such a limit of the Skyrme model has
been considered before, however, from the instanton point of
view [33]. Obviously, due to the Derrick theorem there are no
stable solitonic solutions at equilibrium (zero pressure), i.e., in
the full infinite R3. However, if we close the system in a finite
volume V , then Skyrmions do exist. For a charge one soliton
we have the following energy integral

E4 = λ4E4 = 1

12π2
4π

∫ R

0
drr2

(
2

sin2 ξ

r2
ξ 2
r + sin4 ξ

r4

)
.

(5.12)
This leads to a relatively simple equation of motion

d2

dr2
cos ξ + 1

r2
sin2 ξ cos ξ = 0 (5.13)

accompanied by the pertinent boundary conditions. Unfor-
tunately, we were not able to solve it analytically. It is
straightforward to notice that a solution on the segment [0,R]
can be related to a solution on a different segment [0,�R] by
the scale transformation r → �r . Then, the energy scales with
the factor �−1, which leads to

E4[V ] = 1

V 1/3
E4[V = 1] ≡ α

1

V 1/3
, (5.14)

where the coefficient α can be understood as the energy in the
unit volume. Hence, the pressure is a simple function of the
volume

P = α

3

1

V 4/3
. (5.15)

In Fig. 1, such an equation is confirmed by numerical
computations. Indeed, we find that

α = 1.853 or α = 924.4 MeV fm, (5.16)

where the first value is in Skyrme units while the second is
in physical units. It is worth to compare this with the pre-
viously derived bound. Namely, 3(2π2)4/3/(12π2) = 1.351.
This shows that the bound is not saturated. The true solution
is significantly above the bound.

Finally, we get an exact density-pressure equation of state,
which is valid for any value of the pressure

ε̄ = 3P. (5.17)

This result can be easily generalized to any topological sector
and to any given compact . Indeed, let us consider the energy
functional

E4[] = 1

12π2

1

16

∫


d3xTr [Li,Lj ]2. (5.18)

Obviously, it scales homogeneously under scaling transforma-
tions. Then again

E4[V ; ] = αB,

V 1/3
, (5.19)

where the constant α depends on the topological charge and
a particular form of the compact manifold (assumed now to
have unit volume). From bound (3.1) we know that

αB, � 3(2π2)4/3B4/3. (5.20)
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(a) (b)

FIG. 1. (Color online) (a) Energy and (b) pressure of the B = 1 Skyrmion as a function of the volume for E4 model.

However, as the energy functional is not invariant under
the volume preserving transformations this constant should
depend on the choice of . In any case, it proves that the
equation of state (5.17) is an off-shell universal equation of
state for the pure quartic model.

Finally, let us remark that the bound is saturated if the
geometries of the base and target spaces coincide. Indeed, if
the base space is a three-sphere with a radius R then we get

ES3

4 = 1

12π2
4π

1

R

∫ π

0
dψ

(
2 sin2 ξξ 2

ψ + sin4 ξ

ψ2

)
, (5.21)

where ψ is the third angular coordinate on the sphere. This
variational problem has a solution ξ = ψ . Hence, the charge-
one Skyrmionic solution is just the identity map between the
base and target spheres. One can easily verify that in this
case the bound is equal to the value of the last integral. This
agrees with a classical result of Manton [34] where he shows
that the identity map is a stable solution for the E24 Skyrme
model for a sufficiently small radius R of the base space
sphere. The geometrical reason why the R3 and S3 cases are
so distinct is the following. The bound can be saturated if
and only if the three eigenvalues of the corresponding strain
tensor are (i) all equal and (ii) constant, which means that the
corresponding map must be an isometry [23]. This is a very
restrictive condition which, for the target space S3, may be
fulfilled only if the base space is also a three-sphere.

2. E04 model

The pure quartic Skyrme model can be stabilized by the
addition of a potential term. Then, the Derrick argument is
evaded and an equilibrium solution exists. One peculiarity of
this submodel (with the usual Skyrme potential) is that one
gets a compact Skyrmion, i.e., a topological soliton, which
achieves its vacuum value at a finite distance. The size of the
compact charge one Skyrmion at equilibrium is

R = 2.07 or R = 1.563 fm,

where the first number is in Skyrme units while the second in
physical units. This sets the maximum volume (i.e., the volume
at zero pressure) to Vmax = 15.9 fm3.

The general asymptotic energy formula

E = α
1

V 1/3
+ β̃V 1/3 + βV + o(V ), (5.22)

gives the following values for the parameters

α04 = 924.6 MeV fm, β04 = 13.4 MeV fm−3, β̃04 = 0.
(5.23)

In Fig. 2 we plot the numerically computed energy (mass)
and pressure as a function of the volume together with the
theoretical formulas. We find a perfect agreement. We can
also use the theoretical formula (5.22) to get the mass of the
equilibrium Skyrmion. Then, we get M04 = 580 MeV, which
is only 3.5% above the true mass. Undoubtedly, the theoretical
formula works very well for this submodel.

3. E24 model

The conventional way for stabilizing the E4 model is to
add the σ model part. This is the usual massless Skyrme
model. Now the equilibrium solution in the charge one sector
is an infinitely extended Skyrmion. Again, we want to fit the
theoretical energy formula. The first issue is that we get a
slightly smaller value of the leading term, namely, α24 =
915.9 MeV fm. This means that we are still a bit away from the
exact asymptotic regime. Apparently, one has to squeeze the
Skyrmion to higher pressures to reach the proper value for α.
It shows that the σ model part provides a significantly stronger
attractive force than the potential term, which influences the
squeezed configurations and has a stronger impact on the
energy-volume relation.

In the fitting procedure we take this into account by
imposing that α24 = 924.1 MeV fm. Then,

α24 = 924.1 MeV fm, β24 = 0, β̃24 = 311.5 MeV fm−1.
(5.24)

In Fig. 2 we compare the numerical results and the theoretical
curve. Again we find nice agreement in the high and medium
pressure regime. For sufficiently small pressure (large volume)
the theoretical formula is not valid any longer as the V 1/3 term
gives a diverging contribution.
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(a) (b)

(c) (d)

FIG. 2. (Color online) Energy and pressure of the B = 1 Skyrmion as a function of the volume for E04 and E24 model.

4. E024 model

Finally, one can include all three terms. Then, after fitting
the theoretical curve we get (with the same remark on the α
constant, which again does not take precisely its asymptotic
value but α = 915.9 MeV)

α024 = 924.1 MeV fm, β024 = −106.1 MeV fm−3,

β̃024 = 458.0 MeV fm−1. (5.25)

Note that the constant β, which is related to the potential part
of the action, takes a negative value. In fact, the potential
and σ model term contribute together to the subleading part
of the energy-volume relation, which leads to this effect. It
also suggests that the theoretical formula (the last two terms
motivated by the BPS model analysis) is not quite adequate
for this model. In fact, if we subtract the (corrected) leading
term from the numerical energy then the best fit is found for
V a where a ≈ 1/5, see Fig. 3. This leads to the following
effective mass-volume formula

E024 = α
1

V 1/3
+ γV 1/5 + o(V 1/5), (5.26)

where γ = 346.1 MeV fm−1/5. This shows that in the full
perturbative Skyrme model there is a rather strong mixing

between the σ model and potential part (and probable also with
the quartic term), which effectively provides new subleading
terms in the energy-volume relation. Therefore the theoretical
curve proposed previously does not seem to work quite well
in the full perturbative Skyrme model.

In Fig. 4 we plot numerical results describing how the en-
ergy (mass) and pressure depend on the average baryon density
nB = 1/V . Furthermore, we plot the resulting equation of state
relating the energy and pressure.

It is also instructive to compare the mean-field energy
density ε̄ with the true energy density distribution. This
comparison makes no sense at the equilibrium (P = 0) where
the soliton is infinitely extended. This means that the geometric
volume is infinity V = ∞ and the corresponding mean-
field energy density is simply zero. However, for squeezed
configuration the volume is always finite. Then, at least for
the medium- and high-pressure regime the mean-field values
obtained here for the charge-one sector should coincide with
their counterparts derived for a Skyrmion on a torus (crystal).
In Fig. 5 we plot the local energy density for different values
of the pressure together with the corresponding mean-field
energy density. It is visible that the energy density has a
global maximum whose value is significantly bigger than
the average mean-field energy density. For small pressure,
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(a) (b)

(c) (d)

FIG. 3. (Color online) Energy and pressure of the B = 1 Skyrmion as a function of the volume for E024 model. (a)–(c) with the theoretical
fit. (d) with the best fitted curve.

this is not surprising, as the corresponding solution has a
rather big volume. However, even for very large pressure
(P = 1.432 × 106 MeV fm−3) the maximum of the energy
density is approximately five times bigger that the average
value. For medium pressure this difference increases. For
example for P = 9.231 MeV fm−3 the maximum energy
density is 20 times bigger than the average value.

Let us finally remark that the leading term coefficient found
in our numerical computations, α = 1.853 in Skyrme units (or
α = 924.4 MeV in physical units), provides a bigger number
(a better bound) not only than the analytical bound but also
than the value found by Kutschera et al. for a multi-Skyrmion
configuration being a cubic lattice of Skyrmions, which in the
Skyrme units is αkut = 1.837 [35]. As in the asymptotic regime
the multi-Skyrmion should behave identical to the charge-one
Skyrmion, we think that this constant gives the proper bound
for high pressure.

B. Near BPS Skyrme model

In this subsection, we switch on the sextic term which, as
we already know, governs the high-density regime. The total
energy has the following form

E0246 = ε(λ2E2 + λ4E4 + λ0E0) + λ6E6 + λ̃0Ẽ0. (5.27)

The constants are

λ2 = 1

24π2
, λ4 = 1

12π2
, λ0 = 1

12π2
,

(5.28)

λ6 = λ2π4 1

12π2
, λ̃0 = μ2

12π2
,

where λ and μ2 will be fixed later (or set to zero if the
corresponding term is omitted). For the usual (perturbative)
Skyrme model part, this corresponds to the same choice as
before, but which the overall multiplication by the parameter
ε, which is assumed to have three values ε = 1,0.1,0.01.
Again, the potential entering the perturbative Skyrme part is
the standard potential (providing the physical mass for pions)

E0 = Tr (1 − U ), (5.29)

while the BPS part of the potential is Ẽ0 = E2
0 .

1. BPS model: E06 model

In order to test the numerics we begin with the BPS Skyrme
model, which can be solved analytically. The field equations
of motion can be integrated to the following first-order
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(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 4. (Color online) Comparison plots for the B = 1 Skyrmion: (a)–(d) mass and pressure as a function of the average baryon density;
(e) mass as a function of pressure; (f)–(g) equation of state.
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(a) (b)

(c) (d)

(e)

FIG. 5. (Color online) Local energy density distribution for the B = 1 Skyrmion in the E024 model for different values of the pressure
together with the corresponding mean-field energy density.

equation [10]

λ

2r2
sin2 ξξr = −μ

√
Ẽ0 + P

12π2

μ2
, (5.30)

where we assumed the hedgehog ansatz for the charge one
soliton. Of course, the BPS equation can be found as the
zero pressure condition [36]. The potential reads Ẽ0 = 4(1 −
cos ξ )2. Using this equation, it is possible to compute the total
energy integral and find the volume of the solution with a given

pressure. Indeed, we find [11]

E(P ) = 2π

12π2
λμ

∫ π

0
dξ sin2 ξ

8(1 − cos ξ )2 + P 12π2

μ2√
4(1 − cos ξ )2 + P 12π2

μ2

,

(5.31)

V (P ) = 2π
λ

μ

∫ π

0
dξ sin2 ξ

1√
4(1 − cos ξ )2 + P 12π2

μ2

.

(5.32)
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This gives the following mean-field equation of state

ε̄ = P + μ̃2

(
5

2
3F2

[{
1
2 , 7

4 , 9
4

}
,
{

5
2 ,3

}
, − 4μ̃2

P

]
3F2

[{
1
2 , 3

4 , 5
4

}
,
{

3
2 ,2

}
, − 4μ̃2

P

]
)

, (5.33)

where pFq[{a1, . . . ,ap},{b1, . . . ,bq},z] is a generalized hyper-
geometric function, and μ̃2 = 1/3π2. Note, however, that the
true energy density is not spatially constant and, in fact, differs
quite significantly from its mean-field approximation. This is
of some importance, e.g., for the application to neutron stars.
For example, the mass-radius relation changes significantly if
we switch from the true non-mean-field energy density to the
mean-field average energy density [11].

The mean-field equation of state results, in the asymptotic
region, in a simple energy-volume formula

E = α̃
1

V
+ β∞V + o(V ), (5.34)

where

α̃ = 1

12π2
λ2π4 = π2

3
= 935.6 Mev fm3,

β∞ = 5

6π2
= 64.8 MeV fm−3. (5.35)

in Skyrme units and physical units (with the ANW calibration
assumed). Here we chose λ = 2 and μ = 1. This asymptotical
offset can be compared with the equilibrium energy density

ε̄0 = 1

3π3
= 26.0 MeV fm−3. (5.36)

The nonzero value is due to the compact nature of the
equilibrium solution. In fact, it has a finite size and a volume

R =
(

3π

2

)1/3

⇒ V = 2π2 = 8.49 fm3. (5.37)

Let us comment that for the most interesting full near-BPS
Skyrme model we apply a different choice for parameters and
different calibration scheme, which was previously used for
neutron stars.

In numerical computation we reproduce the mean-field
equation of state for the BPS Skyrme model. For instance,
we find

α̃ = 938.2 MeV fm3 and β = 61.5 Mev fm−3, (5.38)

which is in agreement with the analytical results within 0.3%
and 5% respectively.

2. E026 model

Now we consider a submodel for which the attractive force
is provided entirely by the sextic term, i.e., the quartic term is
absent. Additionally, we assume λ = 2 and μ = 1. The leading
term in the energy-volume relation is found in the numerical
computations. Specifically, we reach a regime where

α̃ε=0.01 = 938.4, α̃ε=0.1 = 939.0, α̃ε=1 = 940.6. (5.39)

Obviously, the leading part more correctly describes also a
medium volume regime if we are closer to the BPS limit, i.e.,
if we reduce the ε parameter (see Fig. 6). We also get the

subleading (linear in the volume) term. For the nearest BPS
Skyrme considered here (ε = 0.01) we find

βε=0.01 = 62.2 MeV fm−3, (5.40)

with, however, a nonzero value for the off-set. It is also possible
to fit β̃V 1/3 + βV curve. For ε = 0.1 and ε = 1 it leads to a
negative value for β, which seems to indicate that such a curve
is rather not the right one.

3. E0246 model

Finally, we consider the full near-BPS Skyrme model. As
we are close to the BPS limit (for ε = 0.1 and ε = 0.01) it
is reasonable to apply a different choice for the calibration.
Namely, we fit the parameters of the BPS part of the model
to the mass of the helium nucleon mHe/4 = 931.75 MeV and
size of the nucleon rN = 1.25 fm. For the BPS Skyrme model
we have

EBPS = 2

12π2
2π2λμ, (5.41)

R =
(

3π

2

)1/3(
λ

2μ

)1/3

. (5.42)

Then, λ2 = 2317 Mev fm3, μ2 = 3372 MeV fm−3 in physical
units or λ2 = 8.14 and μ2 = 2.19 in the Skyrme units. In
our numerical simulations we find the following values of the
leading term in the energy-mass relation

α̃ε=1 = 1929 MeV fm3, α̃ε=0.1 = 1908 MeV fm3,

α̃ε=0.01 = 1905 MeV fm3, (5.43)

which can be compared with the theoretical value α̃ = λ2π2

12 =
1905 MeV fm3.

As expected, the sextic term gives the leading behavior
for the mass-volume formula in the asymptotic regime. The
subleading contribution, emerging from the quartic part of the
action, has the form αV −1/3, with the following values for
the constant Fig. 7

αε=1 = 924.7 MeV fm, αε=0.1 = 92.7 MeV fm,

αε=0.01 = 9.8 MeV fm, (5.44)

which to a reasonable precision satisfies an obvious relation
αε = ε αε=1. This can be treated as a test for our numerics.

In Fig. 8 we compare the near-BPS Skyrme model (for three
values of ε) with the usual (perturbative) Skyrme model. Of
course, for a sufficiently large value of the average particle
density the total energy (mass) as well as the pressure obey the
relation, which follows from the pure BPS model (sextic part),
see Figs. 8(a), 8(c). For smaller values of nB (less squeezed
configurations), i.e., closer to the equilibrium the relations
are modified by a subleading behavior related to other terms
of the action. In general, taking smaller ε results in a flatter
M − nB curve for small nB . This is perhaps related to the fact
that the quartic term is more important for small densities and
its strength is increased or reduced by a particular value of
ε. Furthermore, the M − nB and p − nB curves grow much
faster for the full model (M ∼ nB and p ∼ n2

B) than in the
perturbative Skyrme model (M ∼ n

1/3
B and p ∼ n

4/3
B ).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. (Color online) Energy and pressure of the B = 1 Skyrmions as a function of the volume for E026 model.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. (Color online) Energy and pressure of B = 1 Skyrmion as a function of the volume for E0246 model.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8. (Color online) Comparison plots for the B = 1 Skyrmion: (a)–(d) mass and pressure as a function of the average baryon density;
(e)–(f) mass as a function of pressure; (g)–(h) equation of state.
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VI. COMPARISON TO THE WALECKA MODEL

Let us now understand the results from the point of view of
the Walecka effective model [37,38]. The pressure and energy
density are given as

P = 1

2

g2
ω

m2
ω

ρ̄2
B − 1

2

g2
σ

m2
σ

n2
s + 1

4π2

[(
2

3
k3
F − (m∗)2kF

)
E∗

F

+ (m∗)4 ln
kF + E∗

F

m∗

]
, (6.1)

ε̄ = 1

2

g2
ω

m2
ω

ρ̄2
B + 1

2

g2
σ

m2
σ

n2
s + 1

4π2

[(
2k3

F + (m∗)2kF

)
E∗

F

− (m∗)4 ln
kF + E∗

F

m∗

]
, (6.2)

where the in-medium Fermi energy (chemical potential) and
in-medium nucleon mass are

E∗
F =

√
k2
F + (m∗)2, m∗ = m − g2

σ

m2
σ

ns. (6.3)

The baryon and scalar densities at T = 0 are

ρ̄B = 2k3
F

3π2
, ns = m∗

π2

[
kF E∗

F − (m∗)2 ln
kF + E∗

F

m∗

]
. (6.4)

It is straightforward to find the leading behavior of the mean-
field energy density as a function of the mean-field baryon
density

ε̄ = 1

2

g2
ω

m2
ω

ρ̄2
B + 3

4

(
3π2

2

)1/3

ρ̄
4/3
B + 1

2

m2
Nm2

σ

g2
σ

, (6.5)

where the leading part comes from the ω meson repulsion, the
first subleading term is due to the free Fermion gas while the
second subleading term comes from the scalar meson (more
specifically, we use that in the asymptotic regime the scalar
condensate tends to a constant value),

ns = mNm2
σ

g2
σ

. (6.6)

The results can be summarized as follows.

(i) The asymptotic formulas for the equations of state in
the full (i.e., containing the BPS part) Skyrme model
and in the Walecka model coincide. Their functional
dependence is exactly the same. The leading part im-
plying ε̄  P comes from the baryon density current.
In the Skyrme model it enters via the sextic term while
in the Walecka model it appears due to the ω meson
repulsive interaction dominating at high density. So,
we may detect the ω meson in the Skyrme action—as
an emergent object hidden in the sextic term.

(ii) Furthermore, there is a coincidence between the first
subleading terms, which behave as ρ̄

4/3
B . In the Skyrme

model it is generated by the usual Skyrme (quartic)
part of the action while in the Walecka it is due to the
ultrarelativistic free fermion (nucleon) behavior.

(iii) Moreover, we got a constant term whose origin is
found to be the potential (the Skyrme model) or
scalar density condensation (the Walecka model). This

gives further support to the idea that the potential
corresponds to the σ meson and provides the attractive
long-distance force.

(iv) Let us note that there are no further terms in the
large density limit of the Walecka model that could
correspond to the term generated by the σ model part
of the Skyrme model. Namely, a term behaving as ρ̄a

with 4/3 > a > 0.

The observed similarity between the equations of state
can be used to get some quantitative insight into ω and σ
mesons within the Skyrme model framework, where such
low-energy particles are not explicitly included. If we compare
the coefficients in the expression above we find

π4λ2 = 1

2

g2
ω

m2
ω

, (6.7)

α = 3

4

(
3π2

2

)1/3

, (6.8)

β̃ = 1

2

m2
Nm2

σ

g2
σ

. (6.9)

The typical parameter values in the Walecka model are

mN = 939 MeV, mω = 783 MeV, mσ = (500–600) MeV,

(6.10)

g2
ω

4π
= 14.717,

g2
σ

4π
= 9.537. (6.11)

This gives (after taking into account the Plank constant � =
197.3 MeV fm)

1

2π4

g2
ω

m2
ω

= 12 MeV fm3,
3

4

(
3π2

2

)1/3

= 362 MeV fm,

1

2

m2
Nm2

σ

g2
σ

= (120–175) MeV fm−3. (6.12)

This can be compared with values derived for the generalized
Skyrme model. For the BPS model (or near-BPS version with
small ε, for example equals to 0.01) λ2 and μ2 for the pure
BPS Skyrme model in the case of the step-function potential
(with the parameter fit to the nuclear saturation density and the
binding energy per nucleon of infinite nuclear matter)

λ2 = 31 MeV fm3, β = 71 MeV fm−3. (6.13)

As we know, in the case of the usual (perturbative) Skyrme
model, with the calibration assumed here one gets

α = 924 MeV fm3. (6.14)

Thus, for near-BPS Skyrme models this should be multiplied
by the ε constant, which leads to a rather small number in
comparison to the Walecka model.

VII. CONCLUSIONS

In the present work we have analyzed thermodynamical
properties of Skyrmionic matter at zero temperature for the
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most general Skyrme theory that possesses both Poincaré
invariance and a standard Hamiltonian.

The main result is that the sextic term is responsible for the
leading behavior at high pressure and therefore is unavoidable
for any realistic application of the Skyrme model for a
description of nuclear matter at high densities. As we found,
the dependence of all global characteristics (total energy,
pressure, average energy density) on the geometric volume
tends to analytical relations derived for the BPS Skyrme model
as the volume decreases. The same happens with the mean-
field equation of state, which approaches a much stiffer form,
ε̄ = P , instead of ε̄ = 3P for the usual Skyrme model without
the sextic part. Similarly, the mean-field energy density grows
much more rapidly with the average baryon density—the
previously found ε̄ ∼ ρ̄

4/3
B relation [35] is replaced by ε̄ ∼ ρ̄2

B .
This resolves a longstanding discrepancy between the Skyrme
model and other conventional models of nuclear matter.
Indeed, the behavior generated by the sextic term coincides
with the corresponding relation derived by Bethe and John-
son [39] (nonrelativistic) as well as Walecka [37] (relativistic).
Moreover, the inclusion of this term might not only modify
the phase diagram of cold nuclear matter or neutron stars, but
can also influence the scattering of nuclei [40]. It is also an
intriguing observation that an effective low-energy model of
QCD, which here is represented by the Skyrme model, has a
solvable and integrable limit (in the sense of the generalized
integrability) at asymptotically high density (pressure).

The first subleading contribution is provided by the Skyrme
term, i.e., by the quartic part of the action, and it can modify the
thermodynamical properties at medium densities (pressure).
Although we analytically derived the functional dependence
for this contribution, we found only a lower bound for the true
value of the proportionality constant α. The true value was
obtained numerically. The next subleading terms were found
to be related to the attractive channels of the model, which
emerge from the σ model term and the potential. However, due
to the strong nonlinearity of the theory, there is a significant
mixing in these subleading contributions, which results in the
appearance of some new, effective terms in the energy-volume
relation. In particular, in the full E0246 model, instead of terms
V 1/3 and V —which are clearly visible in the E24 and E04

submodels, we find an effective V a , a ∈ (0,1) dependence.
Let us also note that, from the point of view of nuclear

matter properties, our results are relevant for the high- and
medium-pressure regimes. Definitely, the obtained mean-field
equations of states are not applicable at the saturation density,
where we got zero energy density. In fact, it is a common
feature of Skyrme-type models (with the exception of the BPS
Skyrme model and the E04 submodel) that B = 1 solitons
are infinitely extended at equilibrium (P = 0). Then the
equilibrium volume is infinite, which leads to a vanishing
mean-field energy density. This is not the expected behavior
for infinite B. In the original Skyrme model, e.g, at infinite B
a crystal-like configuration with a finite volume per baryon
number is conjectured to be the true minimizer even for
small P . This does not mean that one cannot use finite-
charge Skyrmions to understand thermodynamical properties
of nuclear matter or neutron stars. It simply means that one
has to be very careful with the mean-field approximation.

The full (non-mean-field) densities are still fine. We want
to underline that in our computations we solve the full field
equations, which provide us with full (spatially dependent)
densities. Then they are averaged, leading to the mean-
field equation of state. This is an alternative approach to
mean-field computations previously done for Skyrme-related
models [41].

If compared with another widely used effective model,
i.e., the Walecka model, we found a correspondence between
the ω meson interaction and the sextic term in the Skyrme
model. Both generate the same mean-field equation of state,
ε̄ = P . This again supports the crucial role played by the
sextic term (and the BPS Skyrme model part) in the Skyrme
framework. There is also a clear correspondence between
the main subleading terms related to the ultrarelativistic free
fermion gas (Walecka) and the quartic Skyrme term (Skyrme
model). The next subleading term in the mean-field equation
of state in the Walecka model emerges due to the attractive
scalar meson interaction. A similar constant term was found in
the Skyrme model as well and it is generated by the potential.
This provides some support to the natural expectation that the
potential in the Skyrme model corresponds to the σ meson
in the Walecka model. However, the situation is much more
involved as in the Skyrme model the ρ̄0

B term is accompanied
by a ρ̄

2/3
B term, which is generated by another source of the

attractive force, namely the σ model part. Furthermore, there is
no such term in the Walecka model. In addition, the observed
effective mixing between these attractive channels does not
allow for a clear understanding of a possible emergence of the
hidden scalar meson in the Skyrme model, in a similar fashion
as it has been recently understood in the case of the emergent
ω meson [42,43]. In any case, it is an interesting feature of
the Skyrme model that it does include some effects related to
low-lying mesons (here the ω and σ ) although they are not
introduced at the level of fields.

There are several natural directions in which the present
investigation can and should be further developed. First of
all, one should find the mean-field equation of state in
the limit of infinite nuclear matter. This can be achieved
by considering the general Skyrme model, with the sextic
term included, on a torus. The main advantage of this setup
follows from the fact that the minimum energy solution occurs
for a particular size (volume) of the torus. Therefore, the
equilibrium solutions (at zero pressure) do not correspond to
infinite geometrical volume which, as we already commented,
is a drawback of finite-charge solutions. As a consequence,
equilibrium solutions possess finite mean-field energy and
particle densities. Besides the derivation of the equation of
state and understanding how it differs from the charge one
results (which should be negligible in the high-pressure limit),
one can expect the appearance of some new phases (as, for
example, a half-Skyrmion phase). It would be desirable to
fully discover the Skyrme phase diagram with the coupling
constants as free parameters.

Second, one can ask the more mathematical question
regarding what the energy minimizer in a given topological
sector on a given compact manifold with a certain volume is
(see for example [44]). Obviously, the form of the solution
does not depend only on the volume of the manifold but also
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on its geometry (shape), although, as has been shown here, the
asymptotic (small volume) behavior is geometry independent.

Third, it would also be desirable to extend our results to
nonzero temperature, T > 0. The simplest way to accomplish
this is to apply the caloron approach, i.e., to use Euclidean
periodic solutions in four dimensions [45]. Alternatively, at
least in the BPS limit, one can try to compute the partition
function, which is essentially given by an integration over the
moduli space [46]. Unfortunately, for the BPS Skyrme model
this group has infinite dimension, which makes the problem
quite involved.
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