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Unified treatment of subsaturation stellar matter at zero and finite temperature
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The standard variational derivation of stellar-matter structure in the Wigner-Seitz approximation is generalized
to the finite-temperature situation where a wide distribution of different nuclear species can coexist in the same
density and proton fraction condition, possibly out of β equilibrium. The same theoretical formalism is shown
to describe on one side the single-nucleus approximation (SNA), currently used in most core-collapse supernova
simulations and on the other side the nuclear statistical equilibrium (NSE) approach, routinely employed in r-
and p-process explosive nucleosynthesis problems. In particular, we show that in-medium effects have to be
accounted for in NSE to have a theoretical consistency between the zero-temperature and the finite-temperature
modeling. The bulk part of these in-medium effects is analytically calculated in the local density approximation
and shown to be different from a Van der Waals excluded-volume term. This unified formalism allows controlling
quantitatively the deviations from the SNA in the different thermodynamic conditions, as well as having a NSE
model which is reliable at any arbitrarily low value of the temperature, with potential applications for neutron-star
cooling and accretion problems. We present different illustrative results with several mass models and effective
interactions, showing the importance of accounting for the nuclear species distribution even at temperatures lower
than 1 MeV.
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I. INTRODUCTION

Since the pioneering work of Baym and collaborators in the
early 1970s [1,2], the theoretical formalism to variationally
calculate the equation of state and composition of neutron-star
crusts with cluster degrees of freedom is well settled and has
been exploited by many authors in the past decades [3–7].
Because of the crystalline structure of low-density neutron-
star matter, the problem of neutron-star structure at a given
pressure is indeed reduced to the composition of a simple
Wigner-Seitz cell, composed of a single nucleus immersed in
a gas of neutrons and electrons. The ground state of the system
is then given by a set of coupled variational equations for the
nucleus atomic and baryonic number (and shape, if the more
exotic pasta phases are included), the volume of the cell, and
the free neutron density [1,2].

An alternative formulation within density functional theory
was developed at the same time in another seminal paper
for neutron-star physics by Negele and Vautherin [8]. This
entirely microscopic approach is, in principle, more appealing
than a cluster model because it allows accounting for the
polarization of the neutron and electron gas. More generally,
a microscopic description avoids the artificial distinction
between clusters and free neutrons and naturally accounts
for the interface interaction between them. For this reason,
and owing to the great improvements of the predictive power
of mean-field energy-density functionals in the past decades
[9–12], microscopic Hartree-Fock and Hartree-Fock-
Bogoliubov methods have been widely employed for the
computation of the neutron-star equation of state [13–19]. As
a consequence of this important collective theoretical effort,
present uncertainties on the equation of state of neutron-
star matter at zero temperature are essentially limited to
the still imperfect knowledge of the density dependence of
the symmetry energy [20], which is itself better and better

constrained thanks to the recent improvements in ab initio
neutron-matter calculations [21–28].

This standard picture was recently challenged in Ref. [29],
where it is argued that the attractive interaction between the
lattice nuclei and the surrounding free neutrons might induce
lattice instabilities similar to the case of the ferroelectric phase
transition in terrestrial metallic alloys. This very promising
avenue is not explored in the present paper and we restrict to
the standard picture where the neutrons-nucleus interaction
is supposed to only lead to a modification of the surface
tension.

Neutron stars being born hot, a natural extension of
the above-mentioned works concern the consideration of
finite-temperature stellar matter, with applications ranging
from neutron-star cooling, accretion in binary systems, and
dynamics of supernova matter with associated nucleosynthesis
problems. For these applications matter is typically out of β
equilibrium and therefore needs to be considered in a large
interval of baryonic densities ρB and proton fractions yp.
Finite-temperature mean-field calculations in the Wigner-Seitz
cells have been largely employed [30–35]. However, because
of the computational effort associated with these calculations,
microscopic modeling of the finite-temperature Wigner-Seitz
cells is not adapted to the large-scale calculations needed
for supernova simulations, even if some large-scale time-
dependent Hartree-Fock calculations start to be performed
[36–38]. For this reason, hybrid models with cluster degrees of
freedom are more appealing to address the finite-temperature
problem. The extension of the Baym et al. compressible liquid-
drop models to finite temperature was already proposed in the
1980s [5] and allowed the elaboration of the famous Lattimer-
Swesty (LS) [39] and Shen [40] supernova equation-of-state
models, which are still widely used in present supernova
simulations.
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The problem of both microscopic and liquid-drop models
is that they share the so-called single-nucleus approxima-
tion (SNA); that is, a unique configuration is assumed for
each (T ,ρB,yp) thermodynamic condition, against the very
principle of statistical mechanics which stipulates that finite
temperature corresponds to a mixing of different microstates.
In particular, in the LS and Shen equation of state (EoS),
besides free nucleons, only one kind of light cluster (α
particles) and one kind of heavy cluster are assumed to
exist. The idea is to account in an average way for the
properties of the statistical cluster distribution. The SNA
may not affect very strongly thermodynamic properties of
matter in the temperature and density domains of interest [41],
but it has important consequences for dynamical processes
dependent on reaction rates of specific nuclei [42,43] and
for the gas-liquid phase transition. Therefore, more modern
approaches rely on an extended nuclear statistical equilibrium
(NSE) concept, where the distribution of clusters over, in
principle, all mass numbers is taken into account and obtained
self-consistently under conditions of statistical equilibrium
[44–47]. Originally, the NSE was introduced to describe the
reaction network taking place at the end of the evolution of
massive stars in red supergiants [44]. Being very diluted,
nuclei interact weakly and are almost not modified by the
surrounding medium. These conditions naturally lead to the
Saha equations. The NSE in the dense and hot matter in the core
of supernovae was first applied in the EoS of Hillebrandt and
Wolff [48].

In recent NSE implementations [49–53], the interactions
between a cluster and the surrounding gas is treated in the so-
called excluded-volume approach. The clusters and the gas of
light particles do not overlap in space and the clusters’ binding
energy is kept as in the free limit. It is known, however, from
virial expansion at low density and quantal approaches [54–57]
that the cluster properties are modified by the coexistence with
a gas. In particular, the recent Shen et al. equation of state [58]
includes these in-medium effects for light particles within
a virial expansion ensuring the proper model-independent
low-density limit. Moreover, the excluded-volume treatment
of cluster-nucleon interaction is not compatible with micro-
scopic calculations in the Wigner-Seitz cell, where cluster
properties are naturally modified by the surrounding gas by
the density dependence of the self-consistent mean-field and
the Pauli-blocking effect of occupied single-particle states. The
conceptual difference between the classical excluded-volume
picture and the quantal picture emerging from microscopic
calculations was discussed in Ref. [59]. It leads to two different
definitions of clusters in dense media, namely configuration-
space and energy-space clusters, with different particle number
and energy functionals. Including one or the other of the
two definitions in a finite-temperature NSE partition sum
will naturally produce differences in the observables, even
if the total free energy of the Wigner-Seitz cell entering in the
SNA approaches [39,40,58] does not depend by construction
on the cluster definition [59]. As a consequence, it is not
clear if the NSE models have the correct limit towards
T = 0, where the SNA approximation becomes exact. Recent
comparisons [60] indicate that huge differences exist among
the different models even at very low temperature, suggesting

that the zero-temperature limit is not fully under control. Such
an uncontrolled model dependence might be an important
hindrance to pin down the EoS dependence of supernova
dynamics [61,62].

In this paper we develop an analytical unified theoretical
formalism to describe on one side the SNA and on the other
side the NSE approach. To this aim, we map the energetics
and composition of a microscopic Wigner-Seitz cell into a
model of the same cell with cluster degrees of freedom. If
a density- and isospin-dependent modification of the cluster
surface energy is included, this cluster model can thus exactly
span the full spectroscopy (ground state and excited states) of
the extended Thomas-Fermi (ETF) approximation [34], with
the only uncertainty given by the employed energy-density
functional.

A variational minimization of the total free energy of the
Wigner-Seitz cell with respect to the cell composition leads
to the standard SNA equilibrium approach, at zero as well as
finite temperature. A complete finite-temperature treatment
is obtained by calculating the partition sum of a system
of independent cells, leading to a statistical distribution of
cells with different compositions. NSE equations naturally
emerge from this treatment, but energy-space clusters are
demonstrated to be the correct degrees of freedom to get a
consistent treatment towards the zero-temperature limit. We
also show that a cutoff in the cluster density of states has to be
applied to avoid double counting of scattering states.

The first part of the paper is devoted to zero temperature.
Section II A defines the degrees of freedom and associated
energy functionals used in this work. Section II B gives the
variational equations to be solved at zero temperature to get
the ground state of stellar matter. The nonstandard case where
β equilibrium is not imposed is also considered. This case is not
physically realistic, but gives the reference zero-temperature
limit of supernova matter, thus guaranteeing the consistency of
the finite-temperature formalism. To maximize the predictive
power of the formalism, an experimental nuclear mass table is
used in Sec. II C to predict the composition of the neutron-star
crust, and results are compared to the rich literature available
on this subject. The equation of state is briefly addressed in
Sec. II D, and to conclude the zero-temperature discussion,
the issue of phase transitions is analyzed in Sec. II E. We
confirm that the constraint of charge neutrality quenches
the first-order nuclear-matter liquid-gas phase transition. A
residual very narrow transition region exists at densities
of the order of ρ0/5–ρ0/3, depending on the interaction,
which physically corresponds to the emergence of pasta
phases.

In the second part of the paper, we switch to finite temper-
ature. Section III A gives the derivation of the coupled varia-
tional equations in the SNA approximation, as well as some
applications in β equilibrium. Sections III B and III C build the
partition sum of the model in the canonical and in the grand-
canonical ensemble, leading to the derivation of the general-
ized NSE equations, which are compared to the SNA approxi-
mation in Sec. III D. The way in which the phenomenology of
dilute nuclear matter is modified, in stellar matter, by electrons
is discussed in Sec. III E. Finally, Sec. IV gives a summary and
conclusions.
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II. ZERO-TEMPERATURE STELLAR MATTER

A. Energy in the Wigner-Seitz cell

Let us define a zero-temperature thermodynamic condition
for compact star matter as a given value for the baryon density
ρB and proton fraction, yp = ρp/ρB , where ρp is the proton
density. Because by definition there is no interaction among
Wigner-Seitz (WS) cells, the total energy density of the system
is given by

εtot
WS(ρB,yp) = lim

N→∞

∑N
i=1 Etot

WS(i)∑N
i=1 VWS(i)

, (1)

where Etot
WS(i) is the total energy (including rest mass contri-

bution) of the ith WS cell. Each cell consists of NWS neutrons
and ZWS protons in a volume VWS. We make the standard sim-
plifying approximation that the cell consists of a single cluster
with the possible addition of an homogeneous nuclear gas, as
well as a homogeneous electron gas. This approximation is
inspired by the numerical results of microscopic calculations
[13–19]. The polarization of the nuclear gas by the cluster
is shown to be small by these works. For this reason, this
effect is generally accounted for in cluster models as an in-
medium modification of the surface tension [2,5,7]; see below.
Concerning the electron gas, self-consistent calculations have
shown that, because of the high electron incompressibility, the
homogeneous approximation is excellent for all densities [14].
This WS picture, however, is not fully realistic because it is also
well known that at finite-temperature light clusters can coexist
with the single heavy nucleus [63,64]. For this reason in the
Lattimer-Swesty equation-of-state α particles are added to the
nucleon gas inside the WS cell [39], but interactions between
the α’s and the cluster (or the gas) are neglected in that model.
This coexistence effect of heavy and light clusters will be
automatically accounted by our formalism, because in the NSE
model presented in Sec. III C the equilibrium configuration
will consist in a mixture of different WS cells containing
clusters of all species. However, two-body Coulomb and
possibly nuclear effects owing to multiple clusters inside a
same cell are out of the scope of the present treatment, and
each (light or heavy) cluster is associated to its proper WS cell.

As we explicitly work out, for a given set (AWS,IWS,VWS)
(AWS = NWS + ZWS,IWS = NWS − ZWS), equilibrium im-
poses a unique mass and composition of the cluster and of the
gas. Five variables define this mass and composition, namely,
the cell volume VWS, the gas density and composition ρg =
ρng + ρpg , yg = ρng − ρpg , where ρng (ρpg) is the density of
neutrons (protons) in the gas, and the neutron N and proton Z
numbers associated with the cluster. The total energy in the WS
cell is written as Etot

WS = ZWSmpc2 + NWSmnc
2 + EWS with

EWS(A,Z,ρg,yg,ρp) = Evac + VWS
(
εHM + εtot

el

) + δE. (2)

Here εHM(ρg,yg) is the energy density of homogeneous
asymmetric nuclear matter, εtot

el (ρel) is the total energy density
(including rest mass contribution) of a uniform electron
gas at the density ρel = ypρB imposed by charge neutrality,
Evac(A,Z) is the energy of a cluster with Z protons and
N = A − Z neutrons in the vacuum, and δE is the in-medium
modification owing to the interaction between the cluster

and the gas. A part of the in-medium correction is given by
the Coulomb screening by the electron gas and by the Pauli-
blocking effect of high-energy cluster single-particle states
owing to the gas [56]. This latter effect can be approximately
accounted for in the local density approximation by simply
subtracting from the local energy density the contribution
of the unbound gas states. This local density approach is
certainly insufficient for the in-medium effect on light clusters
for which more sophisticated approaches have been proposed
[54,56,58], but we expect it to represent the most important
correction for medium-heavy nuclei. Indeed, residual surface
terms in that case appear to have only a perturbative effect [52].

As in Ref. [59], we introduce the leftover bound part of the
cluster,

Ae = A

(
1 − ρg

ρ0

)
, (3)

Ze = Z

(
1 − ρpg

ρ0p

)
, (4)

that we call “e cluster,” ρ0(δ) and ρ0p(δ) stand for the total and,
respectively, proton densities of saturated nuclear matter of
isospin asymmetry δ = 1 − 2ρ0,p/ρ0. ρ0(δ) may be calculated
as [59]

ρ0(δ) = ρ0(0)

(
1 − 3Lsymδ2

Ksat + Ksymδ2

)
. (5)

where Ksat is the symmetric nuclear-matter incompressibility,
and Lsym, Ksym denote the slope and curvature, respectively,
of the symmetry energy at (symmetric) saturation ρ0(0).

In the above expressions the quantity δ represents the asym-
metry in the nuclear bulk. It differs from the global asymmetry
of the nucleus I/A = 1 − 2Z/A because of the competing
effect of the Coulomb interaction and symmetry energy,
which act in opposite directions in determining the difference
between the proton and neutron radii. For a nucleus in the
vacuum, we take the estimation from the droplet model [65]:

δ = δ0 =
I + 3ac

8Q
Z2

A5/3

1 + 9Jsym

4Q
1

A1/3

. (6)

In this equation, Jsym is the symmetry energy per nucleon at
the saturation density of symmetric matter, Q is the surface
stiffness coefficient, and ac is the Coulomb parameter. In
the presence of an external gas of density ρg and asymmetry
δg = (ρng − ρpg)/ρg = yg/ρg , the bulk asymmetry defined by
Eq. (6) is generalized such as to account for the contribution
of the gas as [59]

δ(ρg,yg) =
[

1 − ρg

ρ0(δ)

]
δ0(Ze,Ae) + ρg

ρ0(δ)
δg, (7)

where δ0(Ze,Ae) is the asymmetry value given by Eq. (6)
if we consider only the bound part of the cluster, A = Ae,
Z = Ze, I = Ie.

For simplicity, in the following variational derivation of the
equilibrium equations we initially assume δ = I/A in Eq. (7),
which implies neglecting isospin inhomogeneities. However,
we include this effect in Sec. III C.
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It is interesting to observe that Eq. (2) can now be
conveniently written as

EWS(A,Z,ρg,yg,ρp) = Ee + VWS
(
εHM + εtot

el

) + δEsurf,
(8)

with Ee standing for the in-medium modified cluster energy
in the e-cluster representation,

Ee(A,Z,ρg,yg,ρp) = Evac − εHM
A

ρ0
+ δECoulomb, (9)

or, alternatively,

EWS(A,Z,ρg,yg,ρp) = (VWS − V0)εHM + VWSε
tot
el

+Evac + δEsurf + δECoulomb, (10)

where V0 = A/ρ0(δ) is the equivalent cluster volume cor-
responding to δ isospin asymmetry. In this representation,
that we call “r-cluster” representation [59], the in-medium
effects only affect the surface properties of the cluster. The
in-medium bulk term apparent in Eq. (9) is here interpreted
as an excluded volume. At variance with the classical Van der
Waals model, this “excluded volume” is not a simple limitation
of the r-space integral of the partition sum, but it directly
affects the energetics of the WS cell.

Once the dominant bulk and Coulomb in-medium effects
are accounted for by the definition of the e-cluster representa-
tion Eq. (9), the residual in-medium energy shift δEsurf can be
shown to behave as a surface term [59,66].

The different contributions to the energy are defined as
follows. The presence of electrons in the cell modifies the
cluster energy with respect to its vacuum value by the so-called
Coulomb shift,

Enuc = Evac + δECoulomb, (11)

with

δECoulomb = acfWSA
−1/3Z2, (12)

and the Coulomb screening function in the WS approximation
given by

fWS(δ,ρel) = 3

2

[
2ρel

(1 − δ)ρ0

]1/3

− 1

2

[
2ρel

(1 − δ)ρ0

]
, (13)

where we used for the average proton density inside the nucleus
ρ0,p(δ) = ρ0(δ)(1 − δ)/2. For the electron total energy density
(containing the rest mass contribution) we use the expression
proposed in Ref. [1] and valid above 104 g cm−3, where
electrons may be considered free,

εtot
el = m4

elc
5

8π2�3
{(2t2+1)t(t2 + 1)1/2 − ln[t + (t2 + 1)1/2]},

(14)
where t = �(3π2ρel)1/3/melc. The total electron chemical
potential (including the rest mass contribution) is defined as a
function of the total proton density ρp = ypρB as

μtot
el = dεtot

el

dρel
(ρel = ρp) = m3

elc
4

8(3ρelπ2)2/3�2

×
[

(t2 + 1)1/2(1 + 6t2) + t2(2t2 + 1)

(t2 + 1)1/2
− 1

(1 + t2)1/2

]
.

(15)

Unless otherwise explicitly mentioned, we use for the
energy functional of the cluster in vacuum, Evac(A,Z), the
table of experimental masses of Audi et al. [67], publicly
available in electronic format. When these latter are not known,
which is typically the case close to and above the drip lines,
we use a liquid-drop parametrization [68] with coefficients
fitted out of HF calculations using the same Skyrme effective
interaction which is employed for the homogeneous gas. This
parametrization, hereafter called Skyrme-LDM, where LDM
stands for liquid drop model, reads

Evac
LDM

A
= av − asA

−1/3 − aa(A)

(
1 − 2Z

A

)2

− ac

Z2

A4/3
,

(16)
with the asymmetry energy coefficient:

aa(A) = aa
v

1 + aa
v

aa
s A1/3

. (17)

For the numerical applications concerning the NSE model
in Sec. III C, this parametrization is supplemented in the
case of even-mass nuclei with a simple phenomenological
pairing term, �(A) = ±12/

√
A, where +(−) corresponds to

even-even (odd-odd) nuclei. The in-medium surface correction
δEsurf(A,δ,ρg,δg) owing to the interaction with the surround-
ing gas can, in principle, be accounted for by a density-
dependent modification of the surface and symmetry-surface
coefficients. A determination of these coefficients within the
ETF model [66] will be published elsewhere [69]. For the
numerical applications of this paper, we ignore this correction
and consider that the main in-medium effect is given by the
bulk nuclear and Coulomb binding energy shift.

Below saturation, the Coulomb screening effect of the
electrons is never total. This implies that only a finite number
Nspecies of nuclear species (A,Z) can exist at zero temperature,
and consequently a finite number of WS cells NWS(ρB,yp) =
Nspecies. Equation (1) then becomes

εWS(ρB,yp) =
NWS(ρB,yp)∑

k=1

EWS(k)

VWS(k)
p(k), (18)

p(k) = lim
Nk,V →∞

NkVWS(k)

V
, (19)

where V is the total volume and p(k) is the number of
realizations of the k cell. The SNA [39] consists of considering
NWS(ρB,yp) = 1,p(1) = 1. This approximation is exact at
zero temperature in the absence of phase transitions, and, in
principle, should fail at finite temperature, even in the absence
of phase transitions. In the following we explore if phase
transitions are there or not and the degree of violation of SNA
at finite temperature.

B. Zero-temperature solution in the SNA

The variational formalism to obtain the composition of
stellar matter at zero temperature was proposed long ago [1,2]
and regularly employed since then, using more sophisticated
models for the nuclear energetics [70–73]. We follow the very
same strategy, but, at variance with the seminal papers [1,2],
we determine the optimal configuration for each given (ρB,yp)
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point without implementing β equilibrium in the variational
constraints. This choice allows us to keep the same formalism
for neutron-star crust and the finite-temperature supernova
matter, which is not in β equilibrium. Concerning the specific
application to the NS crust, we determine in a second step the
yp(ρB) relation imposed by β equilibrium.

The variables to be variationally found are
(VWS,A,δ,ρg,yg). The two constraints, which will lead
to the introduction of two chemical potentials, can be written
as

ρg = 1

VWS
(AWS − Ae), (20)

yg = 1

VWS
(IWS − Ie). (21)

Using the relations (3) and (4) between r clusters and e
clusters we can write the auxiliary function to be minimized,

D(A,δ,ρg,yg,VWS) = εHM + Ee/VWS − αρg(ρ0 − A/VWS)

+αρ0(ρB−A/VWS)−βyg(ρ0−A/VWS)

+βρ0ρB(1 − 2yp) − βρ0
Aδ

VWS
, (22)

where α and β are Lagrange multipliers. An additional
complication comes from the fact that at zero temperature
the gas can only be a pure gas.

Indeed, within the neutron and proton drip lines a pure
nucleus solution is, by definition, more bound than a solution
where one particle would be in the gas. The drip lines are
defined by the lowest N (Z) solution of the equations

Enuc(N + 1,Z,ρel) − Enuc(N,Z,ρel) � 0,
(23)

Enuc(N,Z + 1,ρel) − Enuc(N,Z,ρel) � 0.

Notice that because of the electron screening the drip lines in
the neutron-star crust are displaced with respect to nuclei in
the vacuum, and, in particular, the fission instability line does
not exist. However, Eqs. (23) admit a solution for any N , Z,
meaning that when the equilibrium solution is below that line
the nucleus will be in equilibrium with the vacuum. Above the
neutron (proton) drip line, we will have an equilibrium with
a neutron (proton) vacuum gas. This T = 0 anomaly is very
well known in nuclear matter. An equilibrium with the vacuum
does not impose an equality between two chemical potentials,
because the vacuum has μ = 0. If a system with A particles and
energy E(A) is in equilibrium with the vacuum, its chemical
potential is defined by a one-sided Maxwell construction
between E(A = 0) = 0 and E(A) with slope E(A)/A. The
chemical potential of this particular equilibrium is given by

μ ≡ dE

dA
= E

A
, (24)

which implies d(E/A)/dA = 0; that is, the equilibrium
solution minimizes the energy per particle (and not the total
energy, as it is the case in a finite well-defined volume V ).

Coming back to the minimization of the auxiliary function
Eq. (22), the minimization with respect to the gas densities
gives the definition of the neutron (proton) chemical potential

μn (μp) as

α + β = μn

ρ0
= μng

ρ0
if ρng > 0, (25)

α − β = μp

ρ0
= μpg

ρ0
if ρpg > 0, (26)

with μn(p)g = ∂εHM/∂ρn(p)g . If one of the two densities is zero,
that is, below the corresponding drip line, we lose one equation
but also one unknown variable, and one can use one of the
conservation equations to determine the missing variables. The
result is a system of four coupled equations:

ρBp(n) = A(1 ∓ δ)

2VWS
, (27)

ρBn(p) = ρg

(
1 − A

ρ0VWS

)
+ A(1 ± δ)

2VWS
, (28)

∂(Enuc/A)

∂A

∣∣∣∣
δ

= 0, (29)

1

A

∂Ee

∂δ

∣∣∣∣
A

± 1

1 ∓ δ

∂Ee

∂A

∣∣∣∣
δ

= ±μg

1

1 ∓ δ

(
1 − ρg

ρ0

)
+ μg

ρg

ρ2
0

dρ0

dδ
. (30)

The upper (lower) sign refers to a neutron (proton) gas, ρBp(n)

indicates the proton (neutron) baryon density for a neutron
(proton) gas, ρg = ρn(p)g , and μg = μn(p)g . The two last
equations suppose that Enuc is a differentiable function of A
and δ, which is obviously not the case if we take experimental
masses. In this case the derivatives have to be interpreted as
finite differences. We can see that the Coulomb screening effect
of the electrons enters in the equilibrium equations, while the
kinetic energy of the electrons does not play any role in the
equilibrium sharing. This is the reason why this term is usually
disregarded out of β equilibrium. However, we will see that it
does play a role, determining the possible existence of phase
transitions.

Different observations are in order.
First, from Eq. (29) we can see that, both below and

above the drip, the minimization conditions correspond to
the minimization of the energy per nucleon with respect to
the nucleus size, at the isospin value imposed by the constraint
and the chemical equilibrium with the gas Eq. (30). Concerning
Eq. (30), the coupling of the isoscalar to the isovector sector is
trivially attributable to the fact that we are using (A,δ = I/A)
as isoscalar and isovector variables instead of (A,I ), which
would be the more natural choice if we did not have ρ0 = ρ0(δ).
With this choice of variables, if we consider the textbook
example of two ideal gases composed of two different species
of molecules 1, 2, E = E1(A1,I1) + E2(A2,I2) fulfilling the
conservation equations

A = A1 + A2, I = I1 + I2, (31)

using the same Lagrange multiplier method as before and
defining μ,μ3 as the conjugated chemical potentials of
component 2, we find the classical equality of chemical
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potentials if we work with the variables (A,I ),

∂E1

∂A1

∣∣∣∣
I1

= ∂E2

∂A2

∣∣∣∣
I2

= μ,
∂E1

∂I1

∣∣∣∣
A1

= ∂E2

∂I2

∣∣∣∣
A2

= μ3, (32)

while we have a coupling to the isovector sector for the mass
sharing equation if we work with (A,δ):

∂E1

∂A1

∣∣∣∣
δ1

= μ + δ1μ3,
∂E1

∂δ1

∣∣∣∣
A1

= A1μ3. (33)

This is a very natural result because with this choice of
variables the two constraints are not independent anymore;
that is, the constraint associated with the β multiplier contains
the variable A1.

Second, the factor (1 − ρg/ρ0) introduces a coupling
between the two subsystems cluster and gas, that is, an
interaction. This comes from that fact that our two systems
are, in fact, coupled: The energy of the cluster depends on
the composition of the gas as it can be seen from Eq. (9).
This coupling is attributable to the fact that a part of the
high-density part of the WS cell is constituted by the gas.
From Eq. (10), we can see that this is an effect of the excluded
volume which enters the mass conservation constraint. In the
e-cluster language [see Eq. (8)], we can equivalently say that
it is an effect of the self-energy shift of the e cluster inside the
gas. This shows that the excluded volume indeed acts as an
interaction. This effect goes in the direction of reducing the
effective chemical potential with respect to the noninteraction
case, that is, reducing the cluster size. If we account for the
cluster compressibility, that is, the δ dependence of ρ0, an extra
effective coupling emerges [last term in the right-hand side of
Eq. (30)].

In the case of moderate asymmetries below the neutron
drip, the set of coupled equations Eqs. (27), (28), (29), and
(30) reduces to the single equation Eq. (29) giving the most
stable isotope for a given asymmetry. If we assume a functional
form as Eq. (16) for the cluster energy functional, this equation
admits an analytical solution:

as − a2
a(A)

aa
s

I 2

A2
= 2ac(1 − fWS)

Z2

A
. (34)

The solution is particularly simple in the case of symmetric
nuclei I = 0:

Aeq(I = 0) = 2as

ac(1 − fWS)
. (35)

In the vacuum ρel = 0,fWS = 0 and we get a nucleus
around A ≈ 55, Aeq = 2as/ac, while at saturation density
ρel = ρ0p = ρ0/2 Aeq → ∞, showing that we do obtain the
homogeneous matter limit at saturation.

C. The structure of the neutron-star crust

The different solutions of Eqs. (27)–(30) lead to a
unique composition (A,δ,ρg,VWS) for each couple of external
constraints (ρB,yp). Let us consider the energy density,
εtot

WS(ρB,yp) = Etot
WS/VWS. It contains a baryonic εB and a

leptonic εtot
el part, εtot

WS(ρB,yp) = (ρpmp + ρnmn)c2 + εB +
εtot

el , with εB(ρB,yp) = Ee/VWS + εHM [see Eq. (8)]. In the
long-lived neutron star, the proton and neutron densities do

not correspond to separate conservation laws because weak
processes transforming protons into neutrons are in complete
equilibrium. The structure of the neutron-star crust is then
obtained by choosing, among all the different ZWS values
corresponding to different values of the proton fraction yp,
the one leading to an absolute minimum of the energy density.
This minimization condition reads

ε
βeq
WS (ρB) = min

yp

[
εtot

WS(ρB,yp)
]
. (36)

In the inner crust above the neutron drip the densities are
continuous variables and the energy density is a differentiable
function. The minimization then trivially gives the usual
chemical β-equilibrium condition

∂εtot
WS

∂ρn

− ∂εtot
WS

∂ρp

= mnc
2 + ∂εB

∂ρn

− mpc2 − ∂εB

∂ρp

− ∂εtot
el

∂ρp

= μtot
n − μtot

p − μtot
el = 0, (37)

where μtot
i = ∂εB/∂ρi + mic

2 with i = n,p is the chemical
potential including the rest mass contribution.

Below the drip line (outer crust), the baryonic energy den-
sity is simply given by εB = Enuc/VWS = Ee(ρg = 0)/VWS,
and the minimization condition (36) reduces to

ε
βeq
WS (ρB) = min

Z

(
Enuc

VWS
+ ρnmnc

2 + ρpmpc2 + εtot
el

)
. (38)

The value of Z leading to the minimal energy Z = Zβeq(A)
corresponds to the equilibrium nucleus. This is still a β-
equilibrium condition, but it has to be interpreted as the
ensemble of two inequalities:

μtot
n (N − 1,Z + 1) − μtot

p (N,Z) − μtot
el (Z) < 0, (39)

μtot
n (N,Z) − μtot

p (N + 1,Z − 1) − μtot
el (Z − 1) > 0. (40)

In this set of inequalities, μtot
n (N,Z)dρn = EB(N +

1,Z) − EB(N,Z), with EB(N,Z) = [Enuc(N,Z) + Nmnc
2 +

Zmpc2]/VWS(N,Z). An equivalent relation holds for μtot
p .

Most of the published studies on the composition of the
neutron-star crust employ empirical mass formulas [1,2] or
microscopic functionals from self-consistent Hartree-Fock-
Bogoliubov calculations [16,70–73] to describe the cluster
energy functional Evac. A functional approach is unavoidable
in the inner crust, because no experimental measurement exists
above the drip line. Conversely, in the outer crust the predictive
power of the approach entirely depends on the quality of the
mass formula to describe experimental data. Now it comes out
that the energy surface in the presence of the electron gas has
a huge number of quasidegenerate minima.

This is shown for an arbitrary chosen density within the
outer crust ρB = 10−7 fm−3 in Fig. 1. This figure shows the
energy surface of the equilibrium WS cells corresponding to
different yp values obtained using the Finite Range Droplet
Model (FRDM) parametrization by Moller and Nix from
Ref. [74], as well as the measured nuclear masses from
Ref. [67]. We can see that, though the FRDM predictions are
very close to the measured mass, the obvious tiny differences
can affect the determination of the absolute minimum. This
means that even modern highly predictive mass formulas
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FIG. 1. Surface of the energy per baryon EWS/AWS at ρB =
10−7 fm−3 and different values of proton fractions. The cluster energy
is calculated according to FRDM [74] (a) and using the experimental
database [67] (b).

describing nuclear masses within 0.5 MeV or even less can
lead to inexact results when applied to the outer crust.

The importance of this model dependence is shown in Fig. 2
and Table I.

Let us first discuss the outer crust, on the left of the
vertical lines in Fig. 2. We can see that the use of an
experimental mass table leads to sizable differences even
with sophisticated mass formulas like the FRDM model [74].
The solution of the variational equations for densities up
to about ρB = 10−5 fm−3 leads to an equilibrium nucleus
whose mass has been experimentally measured. This means
that, up to that density, fully model-independent results can
be obtained using the experimental mass table, as done for
the values noted as “exp + Sly4” in the table. If the FRDM
model is used instead (results labeled “FRDM” in the table),
differences appear even at very low density. Not only is
the density at which the transition from a nuclear species
to another is observed not correctly reproduced (column
1 and 4, respectively), the isotope (column 2 and 5) and
element (column 3 and 6) sequence is not correct either.
These differences are attributable to the imperfect reproduction
of nuclear-mass measurements by the model and stress the
importance of using experimental values for the nuclear mass
when studying the crust composition.
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FIG. 2. (Color online) Outer crust composition at T = 0: Bary-
onic (a) and atomic (b) numbers of the β-equilibrium nucleus as a
function of the baryonic density. BPS corresponds to predictions
by BPS [1]; FRDM and exp + SLY4 (SKMs) stand for present
model predictions when nuclear masses are calculated according to
finite-range droplet model of Ref. [74] and, respectively, atomic mass
data of Ref. [67] +LDM-SLY4 (SKMs) model of Ref. [68]. The
vertical lines mark the drip line in the stellar medium.

In the inner depths of the outer crust, the equilibrium
nucleus is so neutron rich that no mass measurement exists.
Then the crust composition depends on the theoretical cluster
functional employed and, more specifically, on its properties
in the isovector channel, which are still largely unknown. As
is well known, this induces a strong model dependence on
the composition. As shown in Table I, the lowest density
at which this model dependence appears is of the order
of ρB = 10−5 fm−3. At that density the solution of the
variational equations solved using the SLY4 functional when
experimental masses are not available produces as preferred
isotope 96Se (A = 96,Z = 34). Now, the smallest Z for which
an experimental mass exists for A = 96 is Z = 35, showing
that this solution is attributable to a mismatch between the
prediction of the SLY4 functional and the experimental data.
The results in italic in Table I are therefore not reliable.
The observed deviation in Fig. 2 between exp + SLY4 and
exp + SKMs is similarly attributable to the fact that the
mismatch is bigger with the less performing SKMs functional.
The full model independence of the outer crust composition
is confirmed by the fact that our results for the outer crust are
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TABLE I. Composition of the outer layer of the outer crust of a
cold neutron star as a function of baryonic density. FRDM and exp +
SLY4 stand for model predictions when nuclear masses are calculated
according to finite-range droplet model of Ref. [74] and, respectively,
atomic mass data of Ref. [67] +SLY4 model of Ref. [68]. The atomic
and mass numbers in italics for the set exp + SLY4 correspond to
nuclides for which experimental mass evaluations (or extrapolations)
do not exist.

FRDM exp + SLY4

ρB (fm−3) A Z ρB (fm−3) A Z

1.000 ×10−10 56 26 1.000 ×10−10 56 26
4.467 ×10−9 52 24 5.012 ×10−9 62 28
3.388 ×10−8 62 28 1.513 ×10−7 58 26
4.786 ×10−8 58 26 1.698 ×10−7 64 28
7.585 ×10−8 54 24 8.128 ×10−7 66 28
1.950 ×10−7 64 28 9.772 ×10−7 86 36
5.623 ×10−7 66 28 1.862 ×10−6 84 34
1.479 ×10−6 82 34 6.761 ×10−6 82 32
2.291 ×10−6 84 34 1.096 ×10−5 96 34
4.786 ×10−6 80 32 6.918 ×10−5 102 36
6.761 ×10−6 82 32 9.120 ×10−5 104 36
1.349 ×10−5 80 30 1.148 ×10−4 106 36
3.090 ×10−5 78 28
7.943 ×10−5 124 42
1.097 ×10−4 122 40
1.585 ×10−4 120 38

in agreement with Refs. [71,72]. This essentially shows that
our variational equations are correctly solved. In Ref. [71] the
model-independent region is slightly larger than in our work,
because they have used the FRDM model to complement the
experimental information when unavailable, and this latter,
as we have already stressed, has a smaller mismatch with
experimental data.

Whatever the predictive power of the mass model, a model
dependence is unavoidable in the inner crust, where the
equation of state of the pure neutron gas directly enters in
the minimization equations [16]. To illustrate this point, we
show in Fig. 3 the total composition of the neutron-star crust
obtained with different models. Whatever the equation of state,
the predictions of Eqs. (27)–(30) show that, in the inner crust,
the mass and charge of the unique nucleus of the WS cell
continuously increase with baryonic density and then suddenly
fall to zero. The abrupt cluster disappearance occurs because,
depending of the employed interaction, at a density of the order
of ρ0/5–ρ0/3 homogeneous matter becomes energetically
more favorable than clusterized matter.

The precise value of the density corresponding to cluster
dissolution depends on the effective interaction mainly through
the Lsym parameter of the equation of state [18] but also on the
exact prescription for the cluster surface tension, particularly
its isospin dependence, which cannot be unambiguously
extracted from mean-field calculations [75–78]. A more
sophisticated expression for the surface symmetry energy,
different from the one of Ref. [68], was variationally calculated
in Ref. [7] for some selected Skyrme models, and slightly
higher transition densities are consequently reported.
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FIG. 3. (Color online) Crust composition at T = 0: Baryonic (a)
and atomic (b) numbers of the equilibrium nucleus as a function
of the baryonic density. NV stands for predictions by Negele and
Vautherin [8]; BPS + BBP corresponds to predictions by BPS [1] and
BBP [2]; exp + SLY4 (SKMs) stand for present model predictions
when nuclear masses are calculated according to atomic mass data
of Ref. [67] + LDM-SLY4 (SKMs) model of Ref. [68]. The inset
in (b) depicts the evolution with baryonic density of the total proton
fraction.

Because of the abrupt behavior shown by Fig. 3, the
crust-core transition was typically considered as (weakly)
first order in the literature [2]. For this reason the density of
cluster melting is still known in the literature as the “transition
density.” It is, however, nowadays well established that at
the density of nuclei dissolution nonspherical pasta can be
energetically favored, making the transition continuous from
the thermodynamic point of view. We come back to this point
in Sec. II E.

The effect of the nuclear-matter equation of state in the
prediction of the composition of the inner crust has been
studied in detail in the recent years [16,72]. It leads to the
difference in Fig. 3 between the dotted and dash-dotted lines,
which represent two characteristic equations of state. A more
extensive study of the different Skyrme interactions is beyond
the scope of this paper; however, some extra results on this
subject can be found in Ref. [52]. It is interesting to notice that,
at variance with A and Z, yp(ρB) plotted in the inset of Fig. 3(b)
shows no sensitivity to the equation of state. This means
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that the energetics of electrons dominates over the details of
the nucleon-nucleon interaction. The significant difference in
atomic number between our model (irrespective of the effective
interaction) and the original Negele-Vautherin Hartree-Fock
calculation [8] is attributable to the fact that our cluster model
with the energy-density functional [68] Eq. (16) contains only
the smooth part of the cluster energy. The neglected shell
effects are responsible for the emergence of the magic number
Z = 40 in the Hartree-Fock calculation. We can see that
the knowledge of shell closures for extremely neutron-rich
nuclei is much more important for the description of the inner
crust than the isovector equation of state, and it is clear that,
to be predictive, the model at zero temperature should be
augmented of realistic proton shell effects, as it is done in the
Strutinsky approximation by Goriely and collaborators [16], at
the obvious price of a greatly increased numerical effort. This
limitation of Eq. (16) will, however, not be a serious problem
for the finite-temperature applications for which the model has
been conceived and which is studied in the second part of this
paper.

The most striking feature of Fig. 3 is the huge qualitative
discrepancy at high density with the original inner-crust BBP
model [2]. To understand the origin of this difference, Fig. 4
displays the behavior as a function of the baryonic density of
the mass of the energy cluster [59] from Eq. (3). SKMs [79]
and SLY4 [9] effective interactions have been considered. We
can see that the difference between BBP and our approach
starts when the e-cluster size starts to depart from the r-cluster
size, that is, when the contribution of the neutron gas becomes
important. In this situation one can expect a modification of
the surface energy of the cluster according to Eq. (9). In
BBP, the in-medium modified surface energy is assumed to
be a monotonically decreasing function of the gas density,
independent of the isospin, exactly vanishing when the density
of the gas reaches the density of the cluster [2]. In the language
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FIG. 4. (Color online) Behavior of the cluster mass number as a
function of the baryonic density in the inner crust using two different
Skyrme functionals (SKMs [79] and SLY4 [9]) for both the free
neutron energy density and the nuclear masses according to the LDM-
Skyrme model of Ref. [68]. The total mass of the cluster is compared
to the bound part of the cluster, obtained by simply subtracting the
number of free neutrons according to Eq. (3).

of the present paper, this happens when Ae = 0 [see Eq. (3)].
In such a condition, BBP clusters are liquid drops with bulk
only, and their size naturally diverges. However, this approach
neglects the energy cost of the isospin jump at the cluster-gas
interface. It is shown in Refs. [52,66], in the framework of
the ETF theory, that the in-medium correction to the surface
energy shows a complex dependence on the isospin, and
specifically behaves very differently in symmetric nuclear
matter and in the equilibrium with a pure neutron gas. Only in
the case of symmetric nuclei immersed in a symmetric gas can
the transition to the homogeneous core be seen as the simple
vanishing of surface energy with diverging size of the nuclei;
conversely, in the case of β-equilibrium matter, the inclusion
of in-medium surface effects leads to a weak decrease of the
average cluster size and a slightly advanced dissolution of
clusters in the dense matter.

Finally, it is important to stress that results at densities
higher than about one-fifth of normal nuclear-matter density
are not reliable in any of the presented models because of the
lack of deformation degrees of freedom which could allow the
appearance of pasta phases [3,4].

D. Equation of state

A quantity of primary importance when discussing the
sensitivity of stellar matter energetics to the details of the
nucleon-nucleon interaction or linking nuclear parameters
with astronomical observables is the equation of state and,
in particular, the dependence of total pressure on total energy
density.

The total energy density and pressure of the WS cell
are plotted in Fig. 5 as functions of baryonic density, in
comparison with the result from the macroscopic BBP [2] and
the microscopic Negele-Vautherin [8] model. We can see that
the quantitative value of the energy density obviously depends
on the model, and more specifically on the effective interaction,
but in all cases over the considered density range the energy-
density surface is convex. This means that there is no way
to minimize the system energy by state mixing, such that
the system is thermodynamically stable. The discontinuous
change of the crust composition owing to the shell effects
only leads to very tiny backbendings in the baryonic pressure,
as shown in the insert of Fig. 5 and already observed by
different authors [16,70–73]. These structures can be formally
interpreted as phase transitions, but are so small that they are
not expected to have any thermodynamic consequence and can
simply be understood as an interface effect.

The absence of a phase coexistence region covering a broad
density domain, well known in the astrophysical context, is
surprising from the nuclear physics viewpoint because it is
in clear contrast with the phenomenology of pure baryonic
matter, which is dominated at subsaturation densities by the
nuclear liquid-gas phase transition [80]. One may wonder if
this difference is attributable to the fact that we are limiting
our analysis to a limited part of the two-dimensional baryon
density space that is explored in β equilibrium. Indeed, the
β equilibrium trajectory corresponds to very neutron-rich
matter, and it is well known that the coexistence zone in
the nuclear-matter phase diagram shrinks with increasing
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FIG. 5. (Color online) Total (baryonic + leptonic) energy den-
sity and pressure as a function of baryonic density corresponding
to the neutron-star crust (T = 0, β equilibrium). Experimental [67]
and LDM binding energies [68] have been used in the outer and,
respectively, inner crust. The employed nuclear effective interaction
are SLY4 [9] and SKMs [79]. Present results are confronted with
those of NV [8] and BBP [2].

asymmetry. We therefore turn to demonstrate that the differ-
ence between stellar-matter and nuclear-matter thermodynam-
ics is not restrained to β equilibrium.

E. Phase transitions in the inner crust?

In the previous section we have assumed that a one-
to-one correspondence exists between baryonic density and
chemical potential; that is, a unique WS configuration can
be systematically associated with each pressure and chemical
potential field inside the star.

This is correct only in the absence of phase transitions,
and it is, in principle, possible that a mixture of different
WS configurations might lead to a lower energy density
than a periodic repetition of the same cell. The highly
degenerate energy minima showed by the experimental energy
surface even without the (more model dependent) inclusion of
unbound neutrons beyond the drip lines (see Fig. 1) evoke the
possibility that first-order phase transitions could even appear
at finite temperature in the outer crust.

More generally, it is well known that such a first-order
phase transition covers almost the whole phase diagram of
subsaturation neutral nuclear matter [80] and has baryonic
density as order parameter. It is therefore natural to ask whether
such a phase transition persists in the stellar context. As a
matter of fact, the existence of such first-order phase transition
is systematically assumed in most seminal papers on the
stellar-matter equation of state [2,5], and, in particular, it is
implemented in the publicly available and popularly used LS
tables [39]. Even more modern equations of state of supernova
matter [50,81] invoke the persistence of the nuclear liquid-gas
phase transition in the stellar context, based on the fact that
the baryonic energy density of star matter is unstable with
respect to both thermodynamic [80,82] and finite-size density
fluctuations [7,83,84].

However, it was shown in different works that the liquid-gas
phase transition in stellar matter is quenched by the very strong
incompressibility of the electron background [14,82,84–86],
and microscopic modeling of the WS cell has confirmed
a continuous transition from the solid crust to the liquid
core through a sequence of inhomogeneous pasta phases
[13,14,18,19,31,35–38,87,88].

It is therefore important to examine this question in further
detail.

We have already seen in Sec. II C that the solution of
Eqs. (27)–(30) is always unique, even if many different
solutions can be very close in energy per nucleon (see Fig. 1).

This means that at zero temperature a unique cluster-
gas configuration can be associated with a given value of
ρWS

B = AWS/VWS, yWS
p = ZWS/AWS. This statement can, of

course, be model dependent, as we have seen that very small
variations of the mass functional can lead to very different
results. However, even if multiple solutions of the cluster
configuration would occur (which will indeed be the case at
finite temperature), this would not lead to a first-order phase
transition. For a first-order phase transition to occur, solutions
corresponding to different densities should be degenerate
in (constrained) energy. Then, the absolute energy-density
minimum would be obtained by mixing these degenerate
configurations with different ρWS

B ,yWS
p . If this was the physical

result, the SNA would fail, and even at zero-temperature
one should account for a distribution of different WS
cells.

Thermodynamic instabilities and eventual phase transitions
in systems with more than one component have, in principle,
to be studied in the full N -dimensional density space [89].
In our case, this means that the energy density has to be
studied in the full two-dimensional (ρn,ρp) plane, and the
β-equilibrium condition has to be applied only after the Gibbs
construction is performed (indeed, β equilibrium has to be
imposed only at the macroscopic level and can very well be
violated at the microscopic level of a single cell). However,
the problem simplifies if the order parameter is known. In
that case it is useful to introduce a Legendre transformation
of the thermodynamic potential with respect to the chemical
potentials of all the densities except the order parameter [80].
Then the multidimensional Gibbs construction exactly reduces
to a one-dimensional Maxwell construction on the residual
density.
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In the case of stellar matter the neutrality condition ρp =
ρel allows a variable change (ρn,ρp) → (ρB = ρn + ρp,ρL =
ρel). Owing to the very huge electron incompressibility, it
is reasonable to expect that the two coexisting phases, if
any, would not present any jump in electron density [84].
Microscopic calculations [14] have convincingly shown that
the electron polarization by the proton distribution is negligible
as long as the clusters have linear dimensions of the order of the
femtometer. Then we can safely perform a Legendre transform
with respect to ρL and introduce the constrained energy density

ε̄WS(ρB,μL) = εWS − μLρL, (41)

where εWS(ρB,ρL) = EWS/VWS, μL stands for lepton chemi-
cal potential, and ρL is the value taken by the lepton density
at chemical potential μL, ρL = ρL(μL). Note that μL = 0
corresponds to β equilibrium in lack of neutrinos, μtot

n =
μtot

p + μtot
el . We do not, therefore, need to examine the whole

μL plane, but can limit ourselves to the single point μL = 0.
We can then conclude that we can identify the possible

presence of phase transitions in the neutron-star crust by
simply considering the ρB density behavior of the energy
density in β equilibrium, εWS[ρB,ρL(ρB,μL = 0)]. As in
Sec. II B, εB = εWS − εtot

el is obtained solving, for each
condition (ρB,yp), the coupled Eqs. (27)–(30).

To better evidence possible convexities, it is useful to
introduce a linear bias with slope λB :

ε̄WS,λB
(ρB,μL = 0) = ε̄WS(ρB,μL = 0) − λBρB. (42)

For each λB value, which plays the role of an external chemical
potential field, the equilibrium density of star matter is given
by the minimum of this function. If the function ε̄WS is convex,
it will be characterized by a single minimum value giving the
usual relation between intensive and extensive variables,

λB = ∂ε̄WS

∂ρB

= μ′
B. (43)

In this equation, we have introduced a prime symbol on the
chemical potential to indicate that the electron contribution
is included in εWS. However, if ε̄WS has concave region(s)
on the baryonic density axis ρB , it will be possible to find
one or more values of λB such that two (or more) different
configurations correspond to the same value of the constrained
energy density. This will indicate a first-order phase transition,
and the associated λB value will correspond to the transition
chemical potential. The constrained energy density Eq. (42)
for clusterized matter in the crust is displayed in Fig. 6 for
some chosen values of λB corresponding to minima in the
outer (a) and inner (b), respectively. We can see that in both
the outer and the inner crust the constrained energy surface is
smooth and that the equilibrium configuration is given by a
single WS cell, thus justifying our variational procedure. The
FRDM mass model is limited to nuclei below the drip line
and cannot be used for calculations in the inner crust. For this
reason we have switched to the Skyrme-LDM mass model
[68] to produce panel (b). Again, a unique clusterized solution
characterizes the equilibrium up to a chemical potential of the
order of 10 MeV (λB = 11.25 MeV for Sly4). At that point the
corresponding equilibrium density is of the order of ρ0/3. As
we have discussed in commenting on Fig. 3, the precise value
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FIG. 6. (Color online) Constrained energy densities as a function
of density. (a) Outer crust as obtained using FRDM. The numbers
accompanying the curves are in MeV and stand for λB . (b) Crust
(thick line) and β-equilibrated homogeneous matter (thin line) at
T = 0, corresponding to SLY4 and λB = 11.25 MeV.

depends on the EoS and on the surface tension. We can see from
Fig. 6 that at this transition value of the chemical potential the
constrained energy density of the clusterized system is equal
to the one of homogeneous matter, meaning that it is possible
to put in equilibrium the two phases.

This defines a tiny region of first-order phase transition,
much less extended than the liquid-gas phase transition of
normal nuclear matter. Indeed, this latter covers the whole
subsaturation density region. Moreover, we believe that this
residual phase transition might be an artifact of the present
model, which does not account for deformation degrees of
freedom. It is well known that in this density domain deformed
pasta structures have to be accounted for [6]. For this reason,
we do not perform any Gibbs construction and simply put
to zero the cluster mass at the transition point, assuming
that pasta would take over. The results of Fig. 6 show that
the thermodynamics of β− equilibrated matter is completely
different from that of nuclear matter.

As discussed in Refs. [84] within mean-field arguments, this
difference is attributable to the huge electron gas incompress-
ibility, which quenches the phase transition in stellar matter.
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FIG. 7. (Color online) Constrained energy density [Eq. (44)] in
the thermodynamic condition corresponding to the liquid-gas phase
transition of symmetric matter given by λB = −15.97 MeV and
λ3 = 0. The different curves represent different values of the total
proton density ρp . Solid (dashed) curves correspond to constrained
baryonic (baryonic + leptonic) energy density. The considered effec-
tive interaction is SLY4.

To demonstrate this point in the framework of the present
model, we turn to consider the behavior of the baryonic part of
the energy density εB = εWS − εtot

el in the full (ρB,ρp) plane.
To better spot convexities in the two-dimensional space, we

introduce again a constrained energy density,

ε̄λB ,λ3 (ρB,ρp) = εB(ρB,ρp) − λBρB − λ3(ρB − 2ρp), (44)

where λB and λ3 represent an isoscalar and isovector external
chemical potential field.

Again, phase transitions will be signaled by the existence of
one or more values (λB,λ3) such that two (or more) different
configurations correspond to the same value of the constrained
energy density.

In the case of uncharged nuclear matter, we know that
the dominant part of the (λB,λ3) plane is characterized by
concavities. It is therefore not surprising to see that this
is clearly the case for the εB function plotted in Fig. 7
corresponding to λB = −15.97 MeV and λ3 = 0.

This figure displays the energy density obtained solving
the variational equations (27)–(30), biased by an external
chemical potential field according to Eq. (44). The value of
the total proton density ρp is the same in each point of the
different curves plotted in the figure. Because of the neutrality
constraint ρp = ρel, each curve represents a given screening
factor to the cluster Coulomb energy according to Eq. (13).
The minimum of each curve then gives the ensemble of
optimal WS cells corresponding to the chosen λ3 value and to
different baryon density. The absolute minimum corresponds
to the equilibrium WS cell associated to the couple (λB,λ3).
The (N,Z) sequence of the corresponding cluster gives the
composition, as a function of baryonic density, of matter at
that λ3 chemical potential.

The choice λ3 = 0 selects the equilibrium solutions for
symmetric matter. A unique point is the absolute minimum for
all choices of λB except λB = −15.97 MeV, which is shown
in the figure. At that chemical potential, if the electron part of

the energy density is not taken into account (solid curves), two
different points correspond to the same constrained energy.
This corresponds to the well-known nuclear-matter phase
transition which at zero temperature takes place at a chemical
potential equal to the saturation energy, μB = −15.97 MeV
for the SLY4 functional chosen in Fig. 3. We can notice that the
low-density phase, which is predicted to be the vacuum phase
in mean-field calculations, is obtained here at a low but finite
density, corresponding to the most stable N = Z isotope 56Ni.
This is attributable to the limitation of mean-field calculations
that do not account for clusterization at low density.

In the stellar-matter case, because of the Coulomb coupling
between protons and electrons, the lepton part of the energy
density is not independent of the baryon part. This means that
the energy in the WS cell has to include the electron zero-point
energy as written in Eq. (8). The total energy densities are
given by dashed curves in Fig. 3. This contribution is a simple
constant shift of each curve because of the condition ρp = ρel

and therefore does not change the sequence of optimal com-
positions as a function of the density. From a thermodynamic
point of view, we can say [86] that the canonical solution is
the same as without the electron contribution. However, the
electron energy density is a monotonically increasing function
of ρel = ρp, and the optimal ρp monotonically increases with
ρB in this symmetric matter situation we are considering.
As a consequence, no value of λB can be found such that
two different WS cells can be put in equilibrium, and the
phase transition disappears. This can be easily understood
mathematically considering that the optimal energy density
gains an extra term as

εB → εWS = εB + εtot
el (ρp). (45)

The relations (43) between density and chemical potential are
shifted because of the electron contribution

λB → μ′
B = μB + 1

2μtot
el , λ3 → μ′

3 = μ3 − 1
2μtot

el , (46)

and the curvature of the constrained energy density becomes

∂2ε̄WS

∂ρ2
B

= ∂μB

∂ρB

+ 1

2

∂μtot
el

∂ρel
. (47)

Because of the very high electron incompressibility, the
convexity observed in the baryonic part of the energy density
is not present anymore in the total thermodynamic potential.
This is known in the literature as the quenching of the phase
transition owing to Coulomb frustration [84,85] and shows
[86] that convexities in the (free) energy density do not
necessarily correspond to instabilities in the physical system.

This shows that if one wants to formulate the equilibrium
problem in the grand-canonical ensemble, one has to account
for the electron zero-point motion. This is a triviality for the
zero-temperature problem, because the WS cell is naturally
defined in the canonical ensemble. However, in the finite-
temperature NSE problem, which is typically treated grand
canonically, this kinetic contribution is usually disregarded
with the argument that, the electrons being an ideal gas, the
corresponding partition sum is factorized [50,51]. It is then
important to stress that a negative eigenvalue in the baryonic
energy curvature matrix should not be taken as a sign of a first-
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order phase transition: Stellar matter inside the convex region
is clusterized but perfectly stable, and no Maxwell or Gibbs
constructions should be performed to get the equation of state.

We come back on this point in the second part of this paper.
To summarize the results of this section, first-order phase

transitions could be possible in zero-temperature stellar matter
only if the function εWS = EWS/VWS, with EWS defined
in Eq. (10) and the values of A,I,ρg,VWS obtained from
Eqs. (27)–(30), presents a convexity anomaly as a function
of ρB for fixed values of ρp. As can be seen in Figs. 6 and
7, except the narrow density domain where deformation
degrees of freedom have to be accounted for, this is not the
case even using energy functionals for the nuclear masses
which include shell effects. In particular, the minimum of
the constrained energy density for a given set of chemical
potential is systematically associated with a single WS cell,
characterized by a unique composition in terms of cluster
and gas mass and composition. This means that the SNA is
perfectly adequate to deal with the zero-temperature problem.

III. FINITE-TEMPERATURE STELLAR MATTER

In the second part of this paper we extend to the finite-
temperature regime the modeling of the WS cell with cluster
degrees of freedom, presented in the first part. We start by
deriving the classical equations corresponding to the SNA.
This approach is at the origin of most extensively used
equations of state for supernova matter [39,40,58]. Then the
main part of the paper is devoted to the derivation of an
extended NSE model, which by construction reproduces the
results of SNA if only the most probable cluster is considered,
and the same chemical potentials are considered. Because the
SNA naturally converges at T = 0 to the standard modeling
of the neutron-star crust, the consistency between the theo-
retical treatment of neutron-star crust and finite-temperature
supernova matter will thus be guaranteed.

A. Single-nucleus approximation

The natural extension at finite temperature of the model
presented in the first part of this paper consists of keeping
the SNA approach and replacing the variational problem of
the energy-density minimization with the variational problem
of the free energy-density minimization. In the e-cluster
representation Eq. (8) the energy is additive and we can write
for a given configuration k = {V (k)

WS,A
(k),δ(k),ρ(k)

g ,y(k)
g }

FWS(A,Z,ρg,yg,ρp)

= Fe
β − T VWS ln zHM

β − T VWS ln zel
β + δFsurf, (48)

where β = T −1 is the inverse temperature, zHM
β (ρg,yg) is the

mean-field partition sum for homogeneous matter, and Fe
β

represents the cluster free energy in the WS cell (defined
below).

The electron contribution is independent of the different
configurations and the associated partition sum zel

β (ρp) is
factorized out. Similar to the previous section, we neglect the
surface in-medium corrections to the free energy, though they
might turn out to be important in the situations where the gas

contribution is not negligible. We note that in this section, at
variance with the notations used in Sec. II, thermodynamical
quantities corresponding to homogeneous matter component
and electron gas bare the HM and el labels as superscripts.

If we consider temperatures higher than the solid-gas phase
transition temperature, the free energy of a cluster defined by
the variable couple (A,Z) or equivalently (A,δ) is different
from its ground-state energy because at finite temperature
the cluster can be found in different translational and internal
states.

To calculate this term, one has to consider that within the
AWS total number of particles, a number Ag = ρgVWS belongs
to the gas part. The entropy associated with these particles
is already contained in the term ln zHM

β . To avoid a double
counting of the number of states, the canonical partition sum
of the cluster must thus be defined summing up the statistical
weight of the different energy states associated with this
reduced particle number [see Eqs. (3) and (4)]:

Zcl
WS(A,δ,ρg,yg) ≡ exp

( − βF e
β

)
=

∑
	p

∑
E∗

exp

[
−β

(
p2

2mAe

+ Ee + E∗
)]

.

(49)

The cluster center-of-mass motion is a plane wave. The first
sum is thus given by the plane-wave density of states, with
periodic boundary conditions at the cell borders. This is simply∑

	p
= VWS

(2π�)3

∫
d3p. (50)

Notice that the available volume for the center of mass is the
whole WS volume, and there is no excluded-volume effect.
The center-of-mass momentum integral is a Gaussian integral,∫

d3p exp

(
−β

p2

2mAe

)
=

(
2πmAe

β

)3/2

. (51)

The sum over the cluster excited states has to be cut at the
average particle separation energy to avoid double counting
with the gas states. This leads to a temperature-dependent
degeneracy factor defined by

∑
E∗

exp(−βE∗) =
∫ 〈S〉

0
dE∗ρA,δ(E∗) exp(−βE∗)

= gβ(A,δ,ρg,yg), (52)

where 〈S〉 = min(〈Sn〉,〈Sp〉) is the average particle sep-
aration energy. For the numerical applications of this
paper, we use for simplicity a different higher-energy
cutoff for each cluster species 〈S〉 ≈ 〈S〉(A,δ,ρel) =
min[〈Sn〉(A,Z,ρel),〈Sp〉(A,Z,ρel)], with separation energies
calculated from the smooth part of the cluster energy func-
tional, given by Evac

LDM + δECoulomb. In the zero-temperature
limit gβ → gGS = 2JGS + 1 gives the spin degeneracy of the
cluster ground state.

For the numerical applications of this section, to be able to
study the whole subsaturation density domain in β equilibrium
without any mismatch in the cluster energy functional, we have
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systematically used the Skyrme-LDM model for nuclear mass
[68] and considered gGS = 1. The level density ρA,δ(E) is here
taken for simplicity with a simple Fermi gas formula [51]. A
more realistic choice is presented in Sec. III C.

The cluster free energy in the WS cell then reads

Fe
β = F nuc

β + T ln zHM
β (ρg,yg)

A

ρ0

= Ee(A,δ,ρg,yg,ρp) − T ln VWS − T ln cβ − 3

2
T ln Ae,

(53)

with F nuc
β = F vac

β + δFCoulomb [the equivalent of Eq. (11)],
cβ = gβ[mT/(2π�

2)]3/2, and m the nucleon mass.
The auxiliary function to be minimized is the extension of

Eq. (22) including the entropy terms:

Dβ(A,δ,ρg,yg,VWS)

= FWS(A,δ,ρg,yg,ρp)

VWS
− αρg(ρ0 − A/VWS)

+αρ0(ρB − A/VWS) − βyg(ρ0 − A/VWS)

+βρ0ρB(1 − 2yp) − βρ0Aδ/VWS. (54)

The variational equations result:

∂Ee

∂A

∣∣∣∣
δ,ρg,yg

= μB

ρ0 − ρg

ρ0
+ μ3

ρ0δ − yg

ρ0

+ 3T

2A

ρ0VWS

ρ0VWS − A
+ T

∂ ln cβ

∂A

∣∣∣∣
δ,ρg,yg

, (55)

∂Ee

∂δ

∣∣∣∣
A,ρg,yg

= μ3A + dρ0

dδ

A

ρ0

(
μB

ρg

ρ0
+ μ3

yg

ρ0

)

+ 3

2
T

dρ0

dδ

ρgVWS

(ρ0 − ρg)(ρ0VWS − A)

+ T
∂ ln cβ

∂δ

∣∣∣∣
A,ρg,yg

, (56)

∂
(
F 0

β

/
A

)
∂A

∣∣∣∣
δ,VWS

= 0, (57)

μB ≡ −T
∂ ln zHM

β

∂ρg

, (58)

μ3 ≡ −T
∂ ln zHM

β

∂yg

. (59)

The finite-temperature predictions of SNA are plotted in
Figs. 8 and 9 along with predictions of zero-temperature SNA
of Sec. II, results of Lattimer-Swesty model [39] as available in
Ref. [90], and NSE results (see Sec. III C). Different density,
temperature, and proton fraction conditions are considered.
The considered effective interactions is SKMs [79].

Figure 8 corresponds to the case where the proton fraction
is kept constant and equal to 0.2. It shows, as expected,
a monotonic decrease of the cluster size as a function of
temperature. More interesting, the results converge for T → 0
to our zero-temperature results in the WS cell, which we know
to be exact at the thermodynamic limit and model independent
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FIG. 8. (Color online) Mass (a) and atomic (b) numbers of the
unique nucleus of the WS cell as a function of baryonic density for
Yp = 0.2 and different temperatures T = 0,1,2.5,5 MeV. Predictions
of present SNA model (solid lines) are compared with the LS results
[39] corresponding to LS220 as calculated in Ref. [90] (dotted lines)
as well as with the NSE prediction for the most probable cluster
(dashed lines). The LDM-SKMs model of Ref. [68] is used for the
cluster energy functional.

below neutron drip. Figure 9 illustrates cluster mass and
charge numbers as a function of baryonic density for different
temperatures at β equilibrium. The observed nonmonotonic
behavior is attributable to the strong decrease of proton
fraction. Indeed, with increasing density, the proton fraction
becomes so low that loosely bound hydrogen and helium
resonances dominate over heavy clusters which dissolve into
homogeneous matter. At constant proton fraction this effect is
not apparent, meaning that the in-medium bulk energy shift is
not enough to suppress the cluster binding. In that case, the
preferential cluster size monotonically increases with density
up to the point where homogeneous matter is energetically
preferred. As in the previous section, we have indicated that
point by putting to zero the A(ρB) and Z(ρB) curves. We
cannot exclude that the inclusion of surface in-medium effects,
neglected in this paper, could change this behavior. However,
preliminary results [52] indicate that this effect is small.

The qualitative behavior of the cluster size and charge with
density is similar to the one of the LS220 Lattimer-Swesty
equation of state, plotted with dotted lines in Figs. 8 and 9.
Quantitative differences exist nevertheless. On one hand, they
could be attributable to the (slightly) different equation of
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FIG. 9. (Color online) The same as in Fig. 8 for β equilibrium
and different temperatures T = 0,0.5,2.5 MeV. Predictions of the
present SNA model (solid lines) are compared with the LS results
[39] corresponding to LS220 as calculated in Ref. [90] (dotted lines),
as well as with the NSE predictions for the most probable cluster
(dashed lines). The LDM-SKMs model of Ref. [68] is used for the
cluster energy functional.

state parameters and cluster surface tension model. Effects
of employed effective interaction on clusters have been seen
in Fig. 4, where SKMs and SLY4 have been considered.
Probably more important, the SNA model of Lattimer-Swesty
additionally accounts for α particles that can be present in
the WS cell together with heavier clusters. The presence of
an isospin-symmetric bound component in the gas obviously
modifies the cluster size and composition. Finally, to obtain the
emergence (at low density) and dissolution (at high density) of
clusters, first-order phase transitions to an α-particle gas and to
homogeneous matter respectively, are implemented in the LS
model [39]. We also note that at the highest temperatures, our
SNA clusters tend to be smaller than in LS. This is probably
attributable to the high-energy cut in the density-of-state
integral Eq. (52) implemented to avoid double counting of
the continuum states, which reduces the statistical weight of
heavy clusters. We discuss in Sec. III C that the inclusion of the
proper statistical weight of clusters of all sizes naturally leads
to the emergence of an important fraction of light particles
and to the disappearance of heavy nuclei in the dense medium,
without invoking any phase transition.

In the treatment of finite temperature we have presented
in this section we have assumed that, similar to the zero-
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FIG. 10. (Color online) Contours of cluster constrained free en-
ergy F e

β − λBA − λ3(A − 2Z) (in MeV). The considered thermo-
dynamical conditions are ρB = 10−3 fm−3, Yp = 0.39, and T =
0.5 MeV (a) and, respectively, 2.4 MeV (b). The values of the external
isovector and isoscalar chemical potentials (λ, λ3) are (−10.06 MeV,
3.98 MeV) and, respectively, (−11.03 MeV, 5.86 MeV). Experimental
values [67] and predictions of the ten-parameter mass model of
Duflo-Zuker [91] have been used for the binding energies.

temperature case, stellar matter in a given thermodynamic
condition (ρB,yp,T ) is characterized by a single well-defined
WS cell. This is, of course, an approximation, because what
has to be minimized at equilibrium is the total free-energy
density, and not the single-cell free-energy density. The two
variational approaches will give approximately the same result
if the free-energy landscape has a single deep minimum. If,
on the contrary, different WS cells correspond to comparable
free energies, they will all be present in the equilibrium
configuration, even if with different probabilities. As we could
have anticipated from an inspection of Fig. 1, the free-energy
landscape is highly degenerate for stellar matter. This is
confirmed by Fig. 10, where, for two arbitrary representative
thermodynamic conditions, ρB = 10−3 fm−3, Yp = 0.39, T =
0.5 MeV and T = 2.4 MeV, the constrained cluster free
energies Fe

β − λBA − λ3(A − 2Z) with conveniently chosen
values for (λB,λ3) are depicted. In each of these plots the
different nuclei are immersed in the same neutron, proton, and
electron gas. At the lowest considered temperature we can see
that, though a single minimum exists, which corresponds to the
solution of the SNA variational coupled equations (55)–(59)
for this given set of constraints, different (heavy as well as
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light) nuclei might lead to comparable free-energy densities
and will therefore be present at equilibrium. The higher
considered temperature shows a different pattern. Indeed,
a plethora of nuclei with masses and isospin symmetries
spanning important ranges have close values of the constrained
free energies. It is easy to anticipate that if pairing and shell
effects were ignored, the minimum of the constrained free
energy would have been even flatter.

B. Thermodynamic limit in the canonical ensemble

The very principle of statistical mechanics tells us that at
nonzero temperature different realizations of the WS cell will
be possible within the same constraint of total density and
proton fraction.

If we consider a very large volume V which contains a
number n → ∞ of different WS cells for a total number of
particles Atot and a total isospin asymmetry Itot, a possible
realization of the system is now characterized by k = {n(k)

i ,i =
1, . . . ,∞}, where n

(k)
i is the number of realizations, within

the volume V , of an arbitrary WS cell constituted of a
cluster with particle numbers A(i)

e ,I (i)
e = A(i)

e − 2Z(i)
e and a

gas with particle numbers A(i,k)
g = V

(i)
WSρ

(k)
g ,I (i,k)

g = V
(i)

WSy
(k)
g .

Notice that the gas density and isospin can, in principle, depend
on the realization (k) but do not depend on the cell (i). Indeed,
the nucleon gas density is uniform over the volume because we
have divided it in cells only for convenience, and the variation
of gas particle numbers is just attributable to the variation of
WS volumes.

The total number of particles in the cell A
(i)
WS,I

(i)
WS varies

from one cell to the other, but the total number of particles in
the volume V is the same for each realization (k):

Atot =
∑

i

n
(k)
i

(
A(i)

e + V
(i)

WSρ
(k)
g

)
, (60)

Itot =
∑

i

n
(k)
i

(
I (i)
e + V

(i)
WSy

(k)
g

)
, (61)

V =
∑

i

n
(k)
i V

(i)
WS. (62)

Because we are at the thermodynamic limit, these three
conditions are, in reality, only two:

ρB = Atot

V
=

∑
i n

(k)
i (A(i)

e + V
(i)

WSρ
(k)
g )∑

i n
(k)
i V

(i)
WS

, (63)

yB = Itot

V
=

∑
i n

(k)
i (I (i)

e + V
(i)

WSy
(k)
g )∑

i n
(k)
i V

(i)
WS

. (64)

We can then characterize a realization (k) by the fragment
distribution and the gas isoscalar and isovector densities k =
{n(k)

i ,i = 1, . . . ,∞,ρ(k)
g ,y(k)

g }, where now n
(k)
i is the number of

occurrences of the WS cell (i) constituted of a gas ρ(k)
g ,y(k)

g ,

a cluster A(i)
e ,I (i)

e , and a volume V
(i)

WS uniquely defined by the
neutrality condition which has to be fulfilled in each cell,

Z(i)
e + V

(i)
WSρ

(k)
pg

V
(i)

WS

= ρp = ypρB. (65)

We can further simplify the problem considering that, for a
given macroscopic set of constraints (T ,ρB,yp) we have a
unique partitioning in the macroscopic volume between the
cluster fraction and the gas fraction, which is the one that
minimizes the total free energy. It is very easy to improve on
this approximation, if necessary, by considering the canonical
probability associated with each partitioning. We do not do it
because it comes out that there are very few combinations of
ρcl = ∑

i niA
(i)
e /V and ρg which lead to the same ρB . This

means that we consider that ρg and yg do not depend on (k)
but only on the macroscopic constraints. Then the conservation
law simplifies to

ρB = Atot

V
= 1

V

∑
i

n
(k)
i A(i)

e + ρg = ρcl + ρg, (66)

yB = Itot

V
= 1

V

∑
i

n
(k)
i I (i)

e + yg = ycl + yg, (67)

and the different realizations of the set of constraints
(T ,ρB,yp,ρg,yg) are defined by k = {n(k)

i ,i = A(i)
e ,I (i)

e }.
The probability pβ(k) of this realization is determined by

the usual maximization of the information entropy under the
constraint of the average energy and a sharp constraint on
the mass Atot and isospin Itot [Eqs. (66) and (67)]. We define
the total1 free energy of each realization (k) as

Ftot(k) = Fcl(k) − T V ln
[
zHM
β (k)zel

β

]
, (68)

with

Fcl(k) =
∑

i

n
(k)
i F e

β (i), (69)

Fe
β (i) = Ee − T ln V − T ln cβ − 3

2T ln Ae. (70)

It is interesting to remark that the cluster free energy at
the thermodynamic limit Eq. (70) differs from the cluster free
energy in the WS cell Eq. (53). Indeed, the number of states
for the center-of-mass motion has to be calculated over the
whole volume:

∑
	p

exp

[
− β

p2

2mAe

]
= V

(2π�)3

(
2πmAe

β

)3/2

. (71)

This is well known from solid-state physics and leads to the
Bloch theorem: Even if the ions are localized at fixed positions
in the Coulomb lattice, their center-of-mass motion is a plane
wave over the whole volume [92,93].

Thanks to the thermodynamic limit, the partition sums are
now factorized,

Zβ(ρB,yp) =
∑

k

exp[−βFcl(k)]
(
zHM
β zel

β

)V
. (72)

The probability of realization (k) is then simply given by

pβ(k) = 1

Zcl
β

exp [−βFcl(k)], (73)

1Note that here “total” has another meaning than in Eq. (1).
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with

Zcl
β (ρB,yp,ρg,yg) =

∑
k

exp [−βFcl(k)]. (74)

Zcl
β is the canonical partition sum of an ensemble of fully

independent clusters, for a total mass number Acl = Vρcl and
isospin Icl = Vycl. We note by passing that we can easily
extend this result to the case where we allow mixing of different
ρg,yg by considering Eq. (72) as a constrained partition sum.
In that case, the total partition sum has to be defined as

Zβ(ρB,yp) =
∑

I

Zcl
β

(
ρB,yp,ρI

g ,yI
g

)[
zHM
β

(
ρI

g ,yI
g

)]V (
zel
β

)V
.

(75)
The explicit calculation of Zcl

β is a classical problem [51,94],
and its solution is given by

Zcl
β =

∑
(k)

∏
A,Z

[
ωe

β(A,Z)
]n

(k)
A,Z

n
(k)
A,Z!

, (76)

where

ωe
β(A,Z) = exp

[−βF e
β (A,δ,ρg,yg)

]
, (77)

the sum runs over all possible realizations of the system such
that the total number of particles is Acl, n

(k)
A,Z is the number of

occurrences of cluster A,Z in the realization k, and the product
runs over r clusters A,Z or e cluster Ae,Ze equivalently,
because the two are scaled by a factor which is constant if
ρg and yg are constant. This partition sum can be calculated
with a Monte Carlo technique [51] or also analytically via a
recursive relation [86,94].

Notice that for a finite system the total volume Vtot =∑
i n

(k)
i Vi is a fluctuating quantity, and only Acl is the same

event by event. However, this is a not problem, because the
conservation law is applied to the total density.

It is instructive to consider the SNA limit of a representative
cluster. Let us suppose that the average multiplicity density
〈nAZ〉/V ≈ 1/〈VWS(A,Z,ρB,yB,ρg,yg)〉 for a given A = Ā,
Z = Z̄, and 〈nAZ〉 ≈ 0, ∀ A �= Ā, Z �= Z̄, or, equivalently, let
us suppose that we consider only the most probable cluster
in the partition sum. Because Acl = nĀ, Icl = n(Ā − 2Z̄), we
immediately get

Zcl
β (nĀ,nZ̄) =

[
ωe

β(Ā,Z̄)
]n

n!
, (78)

and

ln zcl
β (nĀ/V,nZ̄/V ) = 1

VWS
ln

[
ωe

β(Ā,Z̄)

n

]n

, (79)

where we have used the Stirling approximation neglecting the
−n term: ln(n!) ≈ n ln n − n ≈ n ln n, and we have introduced
the free-energy densities as −T ln zβ = −T ln Zβ/V . Using
Eqs. (72) and (48) the partition sum becomes

−T ln zβ(ρB,yp) = 1

VWS
FWS(Ā,Z̄,ρg,yg,ρp). (80)

We can see that we recover a SNA expression which we
have already shown converges towards the exact result at zero
temperature.

The value of Ā,Z̄ can be deduced from the equations of
state

μB = −T
∂ ln zβ

∂ρB

∣∣∣∣
yB

, (81)

μ3 = −T
∂ ln zβ

∂yB

∣∣∣∣
ρB

, (82)

which can also be written as

0 = ∂(−T ln zβ − μBρB)

∂ρB

∣∣∣∣
yB

, (83)

0 = ∂(−T ln zβ − μ3yB)

∂yB

∣∣∣∣
ρB

. (84)

Integrating these equations leads to

d[−T ln zβ − μBρB − k(yB)] = 0, (85)

d[−T ln zβ − μ3yB − h(ρB)] = 0, (86)

or also

d(−T ln zβ − μBρB − μ3yB) = 0. (87)

This is exactly the same minimization problem as in Sec. III A,
with the difference that now the variables are A,δ,VWS

because ρg,yg are fixed. This physically means that the fact
of considering a large number of WS cell has eliminated the
conservation constraint between A,δ and ρg,yg: Density and
isospin fluctuations are allowed in each WS cell because the
conservation law applies only to the macroscopic system.

As a consequence, the equilibrium sharing equations are
slightly modified,

∂Ee

∂A

∣∣∣∣
δ,ρg,yg

= μB

ρ0 − ρg

ρ0
+ μ3

ρ0δ − yg

ρ0
+ 3T

2A

+ T
∂ ln cβ

∂A

∣∣∣∣
δ,ρg,yg

, (88)

∂Ee

∂δ

∣∣∣∣
A,ρg,yg

= μ3A + dρ0

dδ

A

ρ0

(
μB

ρg

ρ0
+ μ3

yg

ρ0

)

+ 3

2
T

ρg

ρ0(ρ0 − ρg)

dρ

dδ
+ T

∂ ln cβ

∂δ

∣∣∣∣
A,ρg,yg

,

(89)

with

μB ≡ −T
∂ ln zHM

β

∂ρg

, (90)

μ3 ≡ −T
∂ ln zHM

β

∂yg

. (91)

We can also notice that in the limit T → 0 the sharing
equations at T = 0 that we have obtained, by imposing exact
conservation laws within the cells, are recovered as they should
be. Indeed, in this limit the system is periodic and the global
conservation law is equivalent to a local (within the cell)
conservation law.
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C. The grand-canonical NSE

The canonical treatment of the previous section is formally
correct, but has the disadvantage of being extremely expensive
from the computational point of view. For this reason, a
grand-canonical formulation appears more appealing and
has been preferentially invoked in the star-matter literature
[45–47,49,50,52,53].

To formulate this problem, we consider a very large volume
V → ∞ which contains a number n → ∞ of a priori different
WS cells and introduce two external Lagrange multipliers to
impose the average isoscalar and isovector densities over the
whole volume. As in the previous section, a possible realization
of the system is noted by an index k = {n(k)

i ,i = 1, . . . ,∞},
where ni is the number of occurrences, within the volume
V , of an arbitrary WS cell constituted of a cluster with
particle numbers A(i),I (i) and a gas with particle numbers
A(i)

g = V
(i,k)

WS ρ(k)
g ,I (i)

g = V
(i,k)

WS y(k)
g . The total number of particles

in the cell A
(i)
WS,I

(i)
WS varies from one cell to the other, but the

total number of particles in the volume V (or more precisely,
the total density and proton fraction, because we are at the
thermodynamic limit V → ∞) is fixed by the externally
imposed chemical potentials μ and μ3. These densities, as
well as the average cluster multiplicities 〈ni〉βμμ3

and the gas
densities 〈ρg〉,〈yg〉, are what we want to calculate.

As we have already discussed, the gas density and isospin
could, in principle, depend on the realization (k) but do not
depend on the cell (i). The WS volume is uniquely defined by
the neutrality condition Eq. (65) in the cell

V
(i,k)

WS = Z(i)

ρp − ρ
(k)
pg

. (92)

The total Helmholtz free energy of each realization (k) is given
by Eq. (68):

Ftot(k) =
∑

i

n
(k)
i

{
Fe

β (i) − T V
(i,k)

WS ln
[
zHM
β (k)zel

β

]}
. (93)

We can see that, because of the dependence on ρp of the
electron free energy, this equation defines a self-consistency
problem. Indeed, we have

ρp =
∑

i

n
(k)
i

Z(i)
e + ρ(k)

pgV
(i,k)

WS

V
, (94)

showing that our variational variables {n(k)
i } are not inde-

pendent variables. As it is well known in the framework
of the self-consistent mean-field theory [95], an equivalent
one-body problem can be formulated corresponding to the
same information entropy, therefore to the same set of
occupations as in the self-consistent problem, but with a
different free energy corresponding to independent particles,
which contains rearrangement terms. These rearrangement
terms will explicitly appear in the one-body occupations of
the self-consistent problem. The free energy of the equivalent
one-body problem is given by

F 1b
tot (k) = −T V ln zel

β (ρp) +
∑

i

n
(k)
i F 1b

β (i), (95)

with

F 1b
β (i) = ∂Ftot

∂n
(k)
i

= Fe
β (i)−T V

(i,k)
WS ln zHM

β (k)+μel
(
Z(i)

e +ρ(k)
pgV

(i,k)
WS

)
,

(96)

where the derivation is taken at constant ρg,yg,n
(k)
j ,j �= i. The

grand-canonical occupations n
(k)
i are determined by the free

energy of the equivalent one-body problem, meaning that they
directly depend on the electron chemical potential. Notice that,
in principle, also Fe

β (i) depends on the total proton density
through the Coulomb screening term; therefore, it should
also give rise to extra rearrangement terms. However, this
extra term, ∂F e

β/∂ρp · ∂ρp/∂ni ∝ V −1, is negligible in the
thermodynamic limit. The total Gibbs one-body free energy
of each realization (k) is obtained by Legendre transformation
with respect to the total baryon number and isospin. This
amounts to introducing as usual two chemical potentials μ′

B,μ′
3

according to

G1b
tot(k) = F 1b

tot (k) −
∑

i

n
(k)
i

(
μ′

BA
(i)
WS + μ′

3I
(i)
WS

)
. (97)

We can see that we can define auxiliary chemical potentials as

μB = μ′
B − μel/2, μ3 = μ′

3 + μel/2, (98)

such as to make formally disappear the electron contribution
in the cluster free energy:

G1b
tot(k) = −T V ln zel

β +
∑

i

n
(k)
i

[
Fe

β (i) − T V
(i,k)

WS ln zHM
β (k)

]

−
∑

i

n
(k)
i

[
μB

(
A(i)

e + V
(i,k)

WS ρ(k)
g

)
+μ3

(
I (i)
e + V

(i,k)
WS y(k)

g

)]
. (99)

Using the mean-field relations of uniform nuclear matter,

ln zHM
βμBμ3

= ln zHM
β (ρg,yg) + βμBρg + βμ3yg, (100)

we can see that the gas densities are uniquely determined
by the external chemical potentials and independent of the
realization, as we could expect:

ρg = T
∂ ln zHM

βμBμ3

∂μB

∣∣∣∣
μ3

, (101)

yg = T
∂ ln zHM

βμBμ3

∂μ3

∣∣∣∣
μB

. (102)

We can then write V
(i,k)

WS = V
(i)

WS, ρ(k)
g = ρg , y(k)

g = yg , and

G1b
tot(k) = −T V ln zel

β +
∑

i

n
(k)
i

× [
Ge

βμBμ3

(
A(i)

e ,I (i)
e

) − T V
(i,k)

WS ln zHM
βμBμ3

]
, (103)

where we have defined the in-medium modified cluster Gibbs
energy:

Ge
βμBμ3

(A,δ,ρg,yg,ρp) = Fe
β − μBAe − μ3Ie. (104)
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The thermodynamic limit implies that all the realizations
correspond to the same (infinite) volume,

V =
∑

i

n
(k)
i V

(i,k)
WS , (105)

meaning that the gas contribution becomes completely inde-
pendent of the cluster contribution and fully determined by the
chemical potentials,

G1b
tot(k) = −T V ln

(
zel
β zHM

βμBμ3

) +
∑

i

n
(k)
i Ge

βμBμ3

(
A(i)

e ,I (i)
e

)
.

(106)
We are ready to calculate the one-body equivalent grand-
canonical partition sum

Z1b =
∑

k

exp
[ − βG1b

tot(k)
] = (

zel
β zHM

βμBμ3

)V
Zcl

βμBμ3
, (107)

with

Zcl
βμBμ3

=
∑

k

exp

[
−β

∑
i

n
(k)
i Ge

βμBμ3
(i)

]
(108)

=
∏

i

∞∑
n=0

{
exp

[ − βGe
βμBμ3

(i)
]}n

n!
(109)

=
∏

i

exp ωβμBμ3 (i). (110)

With Eq. (110) have recovered a NSE-like expression for
the cluster multiplicities

〈ni〉β,μB,μ3 = ωβμBμ3 (i) (111)

= exp
{−β

[
Fe

β (A,δ,ρg,yg,ρp) − μBAe − μ3Ie

]}
,

(112)

where the electron energy density and entropy density are
known.

It is interesting to notice that the baryonic component
(clusters as well as gas) only depends on the baryonic part
of the total chemical potentials, that is μB,μ3. These chemical
potentials are not the thermodynamic potentials conjugated
to the densities, μ′

B,μ′
3, and which determine the thermody-

namics; indeed, they are shifted to the electron contribution.
This explains why the phase transition is quenched in stellar
matter even if the baryonic chemical potential μB has a
backbending behavior as a function of the baryonic density.
This point is further discussed in Sec. III E. The backbending
behavior of μB was observed in Refs. [81,86], but it was
interpreted as a sign of ensemble inequivalence [86] or of
instability [81], because the rearrangement terms coming
from the electron contribution were not discussed in those
papers.

From a practical point of view, the numerical implementa-
tion of the NSE model is simpler than the one of its approx-
imation, namely the SNA. Indeed, the variational character
of the approach is fully exhausted by the construction of the
partition sum, and no extra variation of the energy functional
has to be performed. This means that we can easily use fully
realistic functionals for the cluster free energies with no extra
numerical cost. For the applications shown in this section,

we use the tables of experimental masses of Audi et al. [67]
and, to extend the pool of nuclei for which pairing and shell
effects are accounted for, evaluated masses of Duflo-Zuker [91]
for the vacuum energies, the full list of low-lying resonances
for light nuclei for the degeneracy factor gβ , and realistic
level densities fitted from experimental data from Ref. [96] in
Eq. (52). Only when this information is not available (or to
make the quantitative comparisons with SNA as in Sec. III D)
do we switch to the Skyrme-LDM mass model. Moreover,
we explicitly consider isospin inhomogeneities in the spatial
distribution of clusters owing to Coulomb and skin effects. This
is done considering that the bulk asymmetry δ entering in the
in-medium correction to the cluster energies does not coincide
with the global asymmetry I/A = 1 − 2Z/A, as proposed
in Ref. [65] [see Eq. (6)]. This equation is consistently
solved with Eq. (5), which gives the isospin dependence of
the saturation density [59]. It was shown in Refs. [59,66]
that accounting for the difference between bulk and global
asymmetry is a crucial point to obtain, within a cluster model,
energy functionals compatible with microscopic calculations.
Again, the difference between δ and I/A is neglected in the
numerical applications of Sec. III D to compare the NSE and
SNA approaches within the same definitions for the physical
ingredients.

Our final result, Eqs. (101), (102), and (112), is formally
very close to the different existing versions of grand canonical
extended NSE [45–47,49,50,52,53]. This is not surprising,
because these equations simply state that all the different
baryonic species are quasi-ideal gases of independent particles.
However, some specificity of the proposed approach should be
stressed.

It is clear from the microscopic treatments of the WS
cell at zero temperature that any realistic finite-temperature
model has to include in some way interactions between
the clusters. The way of implementing these in-medium
effects is not unique, and the different treatments lead to a
considerable spread in the predictions of extended NSE models
[60].

The viewpoint we have taken in this paper is that the
very definition of a WS cell implies that WS cells are the
correct variables that can be treated as independent degrees
of freedom. This fully fixes the in-medium effect under the
unique hypothesis that each cell contains only one bound
cluster. As we discussed in the Introduction, this hypothesis,
which is employed by all the existing models in the literature,
is certainly not completely correct in general and some
cluster-cluster interaction should be taken into account [64]
to improve the present description.

The result of building a model on independent WS cells
is that a NSE-like expression can be recovered for the cluster
abundances, but with some specific features which ensure that
the zero-temperature limit is properly obtained. Specifically,
we can see from Eq. (112) that the variable conjugated
to the chemical potentials is not the physical cluster size
(A,Z) but the reduced value (Ae,Ze) [Eqs. (3) and (4)],
which represents its bound part. Moreover, the cluster free
energy has to be modified according to Eq. (53) if one wants
in-medium effects to be limited to a modification of the surface
tension.
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D. NSE versus SNA

To compare in greater detail the SNA to the NSE results,
we can evaluate the most probable cluster mass and isospin
Ā,Ī predicted by the NSE. This is obtained by maximizing the
argument of the exponential in Eq. (111):

dGe
β,μB,μ3

= d
(
Fe

β − μBAe − μ3Ie

) = 0. (113)

Because ρg,yg are fixed, we can equivalently put to zero the
partial derivatives with respect to Ae, Ie, or with respect to A,
δ. The first choice leads to

μ3 = ∂F e
β

∂Ie

∣∣∣∣
Ae,ρg,yg

, (114)

μB = ∂F e
β

∂Ae

∣∣∣∣
Ie,ρg,yg

. (115)

These equations look very different from the equilibrium
equations (55) and (56) corresponding to the SNA. However,
they are far from being in a closed form. Indeed, the
dependence on Ae,Ie of Ge is highly nontrivial,

Fe
β (A,δ) = Fe

β (A(Ae,δ(Ae,Ie)),δ(Ae,Ie)), (116)

where the dependence of δ on Ae,Ie is obtained from the
solution of the two coupled equations

Ie

Ae

= ρ0(δ)

ρ0(δ) − ρg

[
δ − yg

ρ0(δ)

]
, (117)

Ae = A
ρ0(δ) − ρg

ρ0(δ)
. (118)

This coupling will induce an effective coupling between the
isoscalar and isovector chemical potential. After some algebra
we get

∂Ee

∂A

∣∣∣∣
δ

= μB

ρ0 − ρg

ρ0
+ μ3

ρ0δ − yg

ρ0

+ 3T

2A
+ T

∂ ln cβ

∂A

∣∣∣∣
δ,ρg,yg

, (119)

∂Ee

∂δ

∣∣∣∣
A

= μ3A

(
1 + yg

ρ2
0

dρ0

dδ

)
+ μBA

ρg

ρ2
0

dρ0

dδ

+ 3

2
T

ρg

ρ0

1

ρ0 − ρg

dρ0

dδ
+ T

∂ ln cβ

∂δ

∣∣∣∣
A,ρg,yg

. (120)

These equations are similar, but not identical, to the SNA
equations (55) and (56). The difference arises from the fact that
the WS volume as a variational variable in the SNA approach
induces a complex coupling between the different equations.
In the NSE, the most probable WS volume is trivially defined
by the condition

V̄WS = Z̄e

ρp − ρpg

. (121)

Conversely, we have seen that the same result as in
this grand-canonical approach is obtained if we consider a
canonical problem with a large number of WS cells. This is not
surprising because the neighboring cells act as a particle bath.
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FIG. 11. (Color online) Constrained cluster free energy for ρB =
10−3 fm−3, T = 1.5 MeV in β equilibrium with chemical potentials
corresponding to the NSE (solid line) and SNA (dashed line) models
for a fixed cluster proton fraction corresponding to the minimum of
the constrained free energy. The arrow gives the SNA solution. The
dotted line gives the NSE multiplicity distribution in arbitrary units.

This result implies that we do not necessarily expect that
the most probable cluster obtained in the complete NSE model
exactly coincides with the result of the SNA approximation.
This effect, however, turns out to be very small. A much
more important source of difference between SNA and NSE
is expected when the NSE distribution has multiple peaks of
comparable height. In that case the (ρB,yp) of the total distribu-
tion for a given set of chemical potentials is not the same as the
one of the most probable cluster. This induces a non-negligible
shift between SNA and NSE even at very low temperatures.

This point is explained in Fig. 11, which shows the in-
medium modified cluster free energy Eq. (53) as a function
of the cluster size. The free energy has been constrained
with two Lagrange multipliers, corresponding to the chemical
potentials obtained in the SNA and NSE model at an arbitrarily
chosen thermodynamic point belonging to the β-equilibrium
trajectory, ρB = 10−3 fm−3, T = 1.5 MeV, yp = 0.085 03. To
allow a one-dimensional representation, a cut has been done
with a plane whose (1 − 2 · Z̄/Ā) value is as close as possible
to the corresponding value of the constrained free-energy
minimum. The observed staggering stems from discrete values
of (1 − 2 · Z̄/Ā) and, for A � 16, structure effects accounted
for in the experimental binding energy. The NSE abundances
are also represented in arbitrary units. We can see that the NSE
abundances correctly follow the shape of the constrained free
energy, as implied by Eq. (112). This means that for identical
values of the chemical potentials in the two models, the optimal
SNA cluster (indicated by an arrow in the example shown in
the figure) should exactly coincide with the most probable
NSE cluster. However, allowing clusters of any arbitrary size
and composition obviously alters the mapping between density
and chemical potential. The deviation of chemical potentials is
typically very small [for the example shown in the figure, we
have μB = −12.929(−12.889) MeV, μ3 = 13.547(13.507)
MeV for NSE (SNA)], but it is sufficient to modify the position
of the constrained energy minimum. As a consequence, a SNA
treatment cannot correctly identify the most probable cluster.
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FIG. 12. (Color online) Structure of the (P)NS crust at β equilibrium as a function of temperature for different values of the baryonic
density ρB = 10−6,10−4,10−3,10−2 fm−3. Solid and dashed lines correspond to predictions of SNA and, respectively, the most probable (mp)
cluster in NSE. Dotted lines correspond to the average (av.) heavy (A � 20) cluster atomic mass in NSE. Standard NSE predictions are plotted
against predictions of a modified NSE (NSEm), where no cluster lighter than A = 20 is allowed to exist. In SNA Skyrme-LDM [68] binding
energies have been used. In NSE, experimental data [67] have been used for the binding energies of nuclides with A < 16 and Skyrme-LDM
[68] predictions otherwise. The considered effective interaction is SLY4.

NSE predictions were already compared to the SNA ap-
proximation, both at fixed proton fraction and in β equilibrium,
in Figs. 8 and 9 above. We have seen that, except for the
very low densities, where light cluster degrees of freedom
are important, at low temperature the NSE model is very
close to SNA. However, the consideration of clusters of all
sizes naturally leads to a reduction of the cluster size at high
density and high temperature, similar to the LS equation of
state because of the particular treatment of α particles in
that model. It is, however, important to notice that in the
complete NSE α particles are abundant only for matter close
to isospin symmetry, while more neutron-rich hydrogen and
helium isotopes prevail in neutron-rich matter. This aspect,
which by construction cannot be addressed in the LS model,
is discussed in greater detail later.

At higher temperature the NSE distribution is spread over
a large domain of cluster sizes and isospin [see panel (b)
of Fig. 10], and the deviation both with SNA and with the
LS equation of state becomes very large. In particular, the
abundances are dominated by light resonances and the heavy
cluster yield becomes increasingly negligible with increasing
temperature.

A more detailed comparison between SNA and NSE is
given by Figs. 12 and 13 in terms of the unique and most

probable cluster mass and, respectively, relative mass fraction
of unbound nucleons. For NSE, the most abundant cluster mass
is plotted against the average mass of heavy clusters arbitrarily
defined as clusters with A � 20.

As in the previous figure, Fig. 12 shows that, whatever
the density, increasing temperature leads to an increased
deviation between the average SNA composition and the most
probable NSE cluster. A huge part of this difference can be
explained by the importance of accounting for (a variety of)
light clusters which are entropically favored at increasing
temperature. This is confirmed by red curves that correspond
to a “modified” NSE obtained by artificially switching to zero
the statistical weight of all clusters lighter than A = 20. We
can see that neglecting light clusters considerably approaches
SNA to NSE, even if residual differences still persist partially
because of the shift in chemical potentials discussed above.
A complementary view is offered Fig. 13. At intermediate
densities (ρB = 10−4,10−3 fm−3) and T > 0.5 MeV, SNA and
NSE predictions agree in the percentage of unbound nucleons,
thus indicating that the chemical potentials of the two models
have close values (recall that at a given temperature the gas
density only depends on the chemical potential).

At variance with this, the extreme densities show a
strong reduction of the nucleon gas in NSE with increasing

055803-21



F. GULMINELLI AND AD. R. RADUTA PHYSICAL REVIEW C 92, 055803 (2015)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

SNA
NSE
NSEm

T (MeV)

ρ g/
ρ B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T (MeV)

ρ g/
ρ B

0.6

0.65

0.7

0.75

0.8

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T (MeV)

ρ g/
ρ B

0.7

0.75

0.8

0.85

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T (MeV)

ρ g/
ρ B

FIG. 13. (Color online) The same as in Fig. 12 for the unbound nucleons mass fraction.

temperature. At the lowest density displayed, ρB = 10−6

fm−3, where matter as a whole is close to isospin symmetry,
this comes from the enhanced production of 2H and 4He
at the cost of unbound nucleons. At the highest density,
ρB = 10−2 fm−3, the opposite holds. The extreme neutron
enrichment of β-equilibrated matter favors copious production
of isospin asymmetric hydrogen and helium isotopes leaving
thus less unbound nucleons. The suppression of clusters with
A < 20 (red curves) confirms the above reasoning by showing
a perfect agreement between SNA and NSE everywhere except
ρB = 10−6 fm−3 and T � 1.3 MeV, where ρcl/ρB → 0.

The global behavior of the β-equilibrated-matter composi-
tion in the NSE model is shown in Figs. 14 and 15. In Fig. 14
average mass, charge, and mass fraction of heavy (A � 20)
nuclei are plotted as a function of density for temperatures
ranging from 0.4 to 2 MeV. Figure 15 presents, for the
same temperatures, the mass fractions of unbound neutrons
and protons together with the mass fraction of different
light species (2H, 3H, 4He, A�4H, A�5He ) as a function of
density. As mentioned in the figure captions, in these cases
experimental values [67] and DZ10 [91] predictions have been
used for nuclear masses. The unbound nucleon component is
treated according to SLY4.

We can again observe the nice convergence towards the
zero-temperature composition of the WS cell, as well as the
complex behavior as a function of density for all temperatures,
leading to a melting of the clusters in the nuclear medium at a
density of the order of ρB = 0.01 fm−3. As is well known in
the literature, the exact value of the transition density depends
on the effective interaction. We do not try to make such a

study here because the presence of deformation degrees of
freedom in the form of pasta phases, here neglected, would
most probably modify the value of the transition density.
Inspection of Fig. 15 reveals the importance of accounting
for all the different light nuclear species and not limiting to
deuteron and α particles. This is true for any proton fraction,
but particularly clear in the very neutron-rich matter implied
by β equilibrium, where light unbound resonances completely
dominate, together with unbound neutrons, the matter compo-
sition at high temperature. The consideration of light particles
of all species, including heavy hydrogens and helions, is
natural and easy in the context of a NSE model. However,
to our knowledge no SNA approach includes such particles in
the description of the average WS cell, even if a very promising
step in this direction was recently undertaken in Refs. [63,64].
This underlines again the importance of going beyond the SNA
approximation in the finite-temperature stellar problem.

E. Thermodynamics and electrons

The problem of the grand canonical formulation which
has been recently observed [81,86] is that baryonic matter at
subsaturation densities presents a first-order liquid-gas phase
transition which is signaled by the fact that a huge part of
the phase diagram is jumped over if one imposes constant
chemical potentials [51,86].

As we have discussed in Sec. II E, this instability is not
physical and only comes from the fact that the electron
contribution is neglected in the instability analysis. If the
electron free energy is accounted for, the dependence of the
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FIG. 14. (Color online) NSE results at β equilibrium for different
densities and temperatures (expressed in MeV and listed in the
key legend). (a), (b) Average mass and atomic numbers of clusters
heavier than A = 20. (c) Corresponding mass fraction. Experimental
and DZ10 [91] nuclear masses have been considered for clusters.
The SLY4 effective interaction was used for the unbound nucleon
component.

free-energy density on the baryonic density reads

f (ρB,ρp) = fB(ρB,ρp) + fel(ρp), (122)

where fB denotes the baryonic part and the Coulomb interac-
tion part between protons and electrons, and fel = −T ln zel

β .
The relations (43) between density and chemical potential are
shifted because of the electron contribution

μB → μ′
B = μB + 1

2μel, μ3 → μ′
I = μ3 − 1

2μel, (123)

and the curvature of the constrained free-energy density is
augmented of a positive term as

∂2f

∂ρ2
B

= ∂μB

∂ρB

+ 1

2

∂μe

∂ρel
. (124)
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FIG. 15. (Color online) NSE mass fractions of unbound nucleons
and 2H, 3H, 3He, 4He, A�4H, and A�5He at β equilibrium for different
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legend. Experimental [67] and DZ10 [91] data have been used for
the binding energies. The SLY4 effective interaction was used for the
unbound nucleon component. Note that the x-axis range is not the
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This quenching of the phase transition has as a practical con-
sequence that a one-to-one correspondence between density
and chemical potential exists in stellar matter, meaning that it
is possible to describe all the possible density configurations in
a grand-canonical treatment, provided that the electron contri-
bution is accounted for. In that case, the ensemble equivalence
is recovered and the associated partitions are, by construction,
identical to the ones obtained in a canonical model, as we have
explicitly demonstrated in Secs. III B and III C.

In principle, however, it is perfectly possible that a residual
convexity persists in the constrained free energy (124). In that
case, a first-order phase transition reminiscent of liquid-gas
would survive in stellar matter. Such a phenomenology was
recently suggested in Ref. [81] and evidenced, for T = 0, in
Fig. 6(b).

To answer to this question, we show in Fig. 16 the
comparison between the constrained free-energy density of
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the clusterized WS cell, and the one corresponding to homo-
geneous matter, for different values of the baryonic chemical
potential (mentioned in the key legend), at a representative
temperature of 2 MeV. We can see that the clusterized phase
systematically presents a lower free-energy density than the
homogeneous system for all chemical potentials up to about
μB = 14 MeV. For the highest considered chemical potential,
15 MeV, the constrained energy minimum corresponds to
homogeneous matter. This means that the first-order phase
transition is restricted to a density domain between about
ρB = 0.07 and ρB = 0.09 fm−3. These values obviously
depend on the temperature and on the effective interaction,
but still the associated density discontinuity is too small to
have any observable effects. Moreover, we have to stress again
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FIG. 17. (Color online) Fragment mass distributions correspond-
ing to β equilibrium, T = 2 MeV, and different baryonic densities
(expressed in fm−3) as listed in the key legend. The numbers next
to the peaks specify the charge number of the most abundant
nucleus.

that we have disregarded deformation degrees of freedom in
this model. The inclusion of highly deformed pasta clusters
would lead to a lowering of the clusterized phase and an extra
shrinking of the possible transition domain.

Figure 17 shows the detailed matter composition in the
high-density region close to the transition to homogeneous
matter. Dominance of exotic light nuclei as 7H, 14He, 17Li,
20Be, 22Be is worthwhile to note, meaning that it is very
important to account for light clusters in that domain. It is
therefore possible that smoother transitions would be observed
between the different pasta phases, and between the pasta
phase and homogeneous matter if light clusters were accounted
for. We leave this point to future developments.

IV. CONCLUSIONS

In this paper we have presented a unified treatment of
the stellar-matter composition and equation of state in the
subsaturation regime, which can be applied at any temperature,
density, and proton fraction.

The basic idea of the model is to consider stellar matter as
a statistical mixing of independent WS cells. The individual
composition in terms of bound and unbound particles does
not minimize the free-energy density, but the combination of
different cells does.

The result is a set of NSE-like equations for the cluster
abundances, where both the bulk and the surface part of the
cluster self-energies are modified by the presence of free
nucleon scattering states, and a high-energy cut naturally
appears in the cluster internal state partition sum. The model
dependence of the finite-temperature model is thus limited
to the model dependence of the treatment of the WS cell,
which, in turn, is very well constrained by microscopic
calculations, with a residual uncertainty limited to the density
dependence of the symmetry energy in the underlying effective
interaction, and the detailed treatment of the isospin-dependent
surface tension. In the present applications, the in-medium
modifications are treated in the local density approximation,
but it will be extremely interesting to map them from a more
sophisticated microscopic, and possibly beyond mean-field,
treatment in the next future.

We have analytically shown that, for a given set of chemical
potentials, the most probable cell composition coincides with
the one which is obtained by the standard variational procedure
assuming one single representative cluster. This guarantees
that the model has the correct zero-temperature limit.

However, the simultaneous presence of many different
clusters in each thermodynamic condition modifies the relation
between density and chemical potential with respect to the
SNA. As a consequence, stellar-matter predictions of this
improved NSE model differ from the SNA approximation even
at the level of the most probable composition, and even at
temperatures lower than 1 MeV.

We have specifically shown quantitative applications in
β equilibrium. The dominant configuration is a mixture of
clusters of different mass and atomic numbers. This effect
is attributable at low density to the nonmonotonic behavior
of the cluster energies owing to shell and subshell closures,
and at high density to the flatness or multiminima of the
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free-energy landscape for very neutron-rich matter. None
of these features can be accounted in a SNA approach. In
addition to the multipeaked cluster distribution, we have seen
that very light clusters appear with a probability compared
to the one of heavier clusters. This feature is accounted in
the Lattimer-Swesty SNA model by including α particles
in the single representative WS cell. We can see that this
is physically correct at the lowest densities, which at β
equilibrium correspond to matter close to isospin symmetry.
Conversely, in very asymmetric matter as can be found at β
equilibrium at higher density, the most probable light cluster
is never a α particle, but rather the last bound isotope of
H and He. It is therefore clear that at finite temperature

other light particles than α have to be included in the
equilibrium.
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