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Exact solution of equations for proton localization in neutron star matter
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The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The
solution of proton wave function and neutron background distribution is found by the use of the extended
Thomas-Fermi approach. The minimum of energy is obtained in the Wigner-Seitz approximation of a spherically
symmetric cell. The analysis of four different nuclear models suggests that the proton localization is likely to
take place in the interior of a neutron star.
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I. INTRODUCTION

The interior of a neutron star contains the densest forms
of matter in the Universe. The central density is as high as 5
to 10 times the nuclear equilibrium density n0 = 0.16 fm−3.
Most of the mass of the star is placed in its liquid core
covered by a thin crust (<1 km for typical neutron star) whose
bottom edge is located at around 0.5n0. Above this density
the matter is well described by the Fermi liquid—a mixture
of nucleons and leptons. In comparison to the matter present
inside the stable nuclei, the matter in a neutron star is highly
asymmetric as a consequence of the β equilibrium taking place
between nucleons and leptons. It is convenient to express the
asymmetry by the proton fraction x = np/n, where np,n are
the proton and baryon number density. The proton fraction is
between 0.4 and 0.5 in nuclei, whereas in neutron star matter
at n0 it is equal to 4% what is exactly determined by the
saturation point properties. The proton abundance at higher
density is not well known and different nuclear interactions
models lead to very large discrepancies in the x(n) behavior.
There are models which predict that x does not exceed 10%
in a full range of densities. When the proton fraction is not
high, protons can be treated as the small admixture to the
neutron background, where direct proton-proton interaction is
negligible and hence protons can be regarded as impurities in
the neutron matter. Therefore, a description of this system
by single proton in neutron background is justified. The
attractive nature of the proton-neutron interaction may result
in an instability of homogeneously distributed protons [1–3].
In the paper [3] the polaron behavior of a proton impurity
in dense neutron matter was discussed. A single proton in
neutron matter can lower its energy by inducing the density
inhomogeneity around it. Instead of forming the Fermi sea,
protons occupy the ground state with zero momentum above
some critical density. It occurs when the localized proton with
properly distorted neutron background has smaller energy than
the system with the proton described by the plane waves.
Such a state of matter has intriguing magnetic properties that
have been shown in [1,6–8]. It exhibits, e.g., a crystallization
of proton impurities in the neutron star interior [9,10] and
affects the cooling process of neutron stars [11,12]. In the
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general discussion it is important to distinguish between proton
localization and other kinds of instabilities. In the exotic
matter, like kaon condensation [13], hyperonic and quark
matter [14], when the phase transition occurs, it is likely that
pasta phases are formed. However in normal nucleon-lepton
matter at high density such a phenomenon was not observed.

In the papers [2,3] the proton localization has been
analyzed in a simplified manner. A variational approach to
a cell containing one proton was proposed. However, the
minimization of the energy was achieved with respect to
Gaussian-type trial function with only one parameter for both
proton wave function and neutron background. Moreover, the
cell was treated as a system with infinite volume V → ∞
which means that the method is applicable to a very small (x
smaller than 1%) proton fraction.

The aim of this work is to solve exactly the Lagrange-Euler
equations corresponding to the variational approach proposed
in the original works. We also abandon the assumption of
infinitely large cell. This means we may take into account
higher proton fractions and thus, extend the class of nuclear
models in the analysis.

The equation of state of supranuclear density in the neutron
star core cannot be calculated unambiguously [19,20]. Instead,
there are many theoretical models with many different compo-
nents. From a theoretical point of view the hyperon presence
above density ∼3n0 seems to be very likely, however the most
typical for hyperon—soft equation of state—leads to a rather
low maximum mass of a neutron star, what is in contradiction
with the recent massive pulsars observations [15,16]. The
reconciliation of hyperons with those mass limits is a matter
of hot debate [17]. In the context of proton localization the
hyperon presence would be especially interesting. Typically,
the � hyperon production in dense matter simultaneously
diminishes the proton abundance [18] and could support, in
this manner, the proton localization. The other hyperons with
low abundances could also be candidates for the localization.
The hyperon localization would be of particular interest
as the localization usually blocks the conventional neutrino
processes (both direct and modified URCA) and would change
drastically the cooling story of the neutron star.

In this work, however, we limit ourselves to the pure
nucleonic matter as first we are going to examine in more
rigorous detail the past ideas and avoid a complication coming
from the inclusion the exotic components. We choose four
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FIG. 1. The proton fraction for different models used in the
calculation: APR, SLy4, AV14+UVII and UV14+TNI. The squares
indicate the proton localization threshold and the full dots indicate
the central density of a star with maximum mass.

representatives of EoS for nucleonic matter. Two of them, APR
(in original work called A18+δv+UIX*) [21] and SLy4 [22],
are very common in the description of neutron star structure.
However one must remember that SLy4 is based on the low
energy expansion of the Skyrme potential and extrapolation to
high density is doubtful. We decided to include two other mod-
els AV14+UVII and UV14+TNI [23]. Although being out of
date, they were used in previous calculations for proton local-
ization and it was important to compare our present results with
the past ones. The inclusion of the last model (UV14+TNI) is
the most dubious as it does not fulfill the 2M� [15,16] criterion
for maximum neutron star mass, however it is interesting,
because of complete vanishing of proton fraction at density
around 5n0. In Fig. 1 the proton fraction in β-equilibrated
matter is shown for the four selected nuclear models.

The present paper is organized as follows. A short review
of the variational method for a finite-size Wigner-Seitz cell
is presented in Sec. II. In Sec. III the numerical method for
solving the equations is explained. The results are shown and
discussed for various nuclear models in Sec. IV.

II. A PROTON IN NEUTRON BACKGROUND

In order to calculate the energy of nuclear matter with
localized protons we treat the proton as a quantum particle
described by its wave function �(r) whereas the neutrons are
represented by a density distribution function nn(r). As in
the work [3] we assume that one proton occupies a spherical
Wigner-Seitz (W-S) cell filled with a large number of neutrons.
Neutrons are treated in the local density approximation
according to differential Thomas-Fermi scheme [24]. The
energy of the cell is expressed by the integral over the whole
cell volume VWS = 1/n̄p,

E[ψ,nn] =
∫

VWS

[
�∗

(
− ∇2

2mp

+μp

)
�+ε+BN (∇nn)2

]
d3r.

(1)

The nuclear matter energy density ε is the thermodynamical
function which depends directly on nucleon densities ε(nn,np).

Its functional form is completely determined by the adopted
nuclear model. The chemical potentials are defined as usual:

μp =
(

∂ε

∂np

)
nn, μn =

(
∂ε

∂nn

)
np. (2)

In the energy functional Eq. (1) the energy density ε and the
proton chemical potential μp get the space dependence by the
local neutron density: ε(r) = ε(nn(r),0) and in the same way
μp(r) = μp(nn(r),0). The constant coefficient BN describes
the gradient contribution and it is fitted to the surface properties
of nuclei, here we adopt the value BN = 31.6 MeV fm5

[2]. The W-S cell radius is given by the proton density for
homogeneous system RWS = (3/4πn̄p)1/3, where n̄p = xn
and n is the mean baryon number.

The cell energy should be minimized under constraints of
fixed proton and neutron number:∫

VWS

�∗�d3r = 1, (3)

∫
VWS

nnd
3r = VWSn̄n, (4)

where n̄n = (1 − x)n is the mean neutron number in the case
of the homogeneous system. The constraints expressed by
Eqs. (3), (4) require the following Lagrange multipliers λp,λn:

Ẽ = E − λp

∫
(�∗� − 1/VWS)d3r − λn

∫
(nn − n̄n)d3r.

(5)

For the isolated, spherically symmetric W-S cell we impose
the following boundary conditions:

∂�

∂r
(0) = 0 �(RWS) = 0,

(6)
∂nn

∂r
(0) = 0

∂nn

∂r
(RWS) = 0.

From the Lagrange-Euler equations for the minimum of Ẽ
one may remark that the Lagrange multipliers λp and λn

correspond to the physical quantities such as the eigenvalue Ep

of the proton wave function and the neutron chemical potential
μn at the cell boundary:

λp = Ep , λn = μn|RWS
, (7)

and then, finally, one may write the Lagrange-Euler equations
in the form

−∇2

2mp

� + μp� = Ep�, (8)

∂μp

∂nn

�∗� + �μn − 2BN∇2nn = 0, (9)

where �μn = μn(nn(r),0) − μn|RWS
is the difference between

the local chemical potential and its boundary value. The
first equation (8) represents the Schrödinger equation for
the spherically symmetric proton wave function �(r) with
the eigenvalue Ep. The coupling to neutron density nn(r)
comes from the chemical potential μp(nn,0). The second
equation (9) is the nonlinear elliptic equation for the neutron
density distribution nn(r) coupled to the proton density �∗�.
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The proton localization occurs if at a given mean density n
there exists a proton wave function with a negative eigenvalue
Ep < 0 and when the energy of the homogeneous system of
nucleons is greater than the energy E[�,nn] of a system with
distorted densities, that means

�E = E[�,nn] − ε(n(1−x),nx)VWS < 0. (10)

In this way, by solving Eqs. (8), (9), we obtain a family of
solutions parametrized with the mean density of matter n.

III. THE METHOD

The mean baryon density n does not enter directly to
Eqs. (8), (9). The average density n is determined indirectly by
the second constraint, Eq. (4). Therefore, in numerical solving,
it is simpler to set the value at the boundary

n∞
n ≡ nn|RWS

, (11)

find the proton function and neutron background, and then
finally derive the mean density from the relation

n = 1

VWS

(
1 +

∫
VWS

nn(r)d3r

)
. (12)

The set of Eqs. (8), (9) was solved by the relaxation method
explained in the following.

As an initial approximation, the Gaussian-type function was
taken for the proton wave function and for the neutron density.
In the ith step, the iteration had two stages: in the first we found
the ground state solution �(i+1),E(i+1)

p of the Schrödinger
equation including n(i)

n . In the second step we solve Eq. (9) for
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FIG. 2. The subsequent steps in the relaxation method for proton
wave function ψ(r) (upper panel) and neutron density nn(r) (lower
panel) in the nuclear model AV14+UVII. The solid curve represents
the final results after 9 steps when the accuracy equal to 10−4 was
achieved for ground energy Ep .

n(i+1)
n including �(i+1). The iteration was continued up to the

point where the eigenvalue does not change more than a given
accuracy. The procedure appeared to converge quickly, usually
the accuracy equal to 10−4 was achieved in not more than 15
steps. Figure 2 represents the convergence of the iteration for
the chosen density n∞

n = 0.8 in the AV14+UVII model.

IV. RESULTS

The proton localization scheme described in the previous
sections was then analyzed for the accepted nuclear models:
APR, SLy4, AV14+UVII, and UV14+TNI. For all of them
the proton localization occurred. Comparing the localization
threshold obtained here with the results of previous works
based on the approximate variational method with Gaussian
proton profile (see Table I in [5]), one observes systematically
lower values resulting from the present method. A large change
in the proton radius was obtained as well. In our calculation
it is always much smaller. The comparison of our results with
those of [5] is presented in Table I.

As a conclusion one may say that the correction to
the threshold density is of the order of 10% whereas for
the proton radius reaches 30%. It seems natural that the
finite size of the W-S cell makes the proton radius smaller.
The new values of localization threshold n∞

n are also smaller
since in our calculations both proton wave function and neutron
background present exact solutions of assumed equations.

The three models (APR, SLy4, AV14+UVII) were analyzed
in the whole range of available density: from the threshold for
localization (see first row for the particular model in Table II)
to the maximum density which is determined by the maximum
neutron star mass (the last row the particular model). In the case
of the fourth one (UV14+TNI), the range of density relevant
for localization was between the threshold and the point where
the protons disappear that means x = 0. It occurs for n =
1.07 fm−3. In Fig. 3 the evolution with the baryon density of
proton wave function and neutron background distribution is
shown. The vertical lines indicate the W-S cell radius RWS .
For the APR model the RWS takes the smallest values, around
1 fm which means that the cell contains about five neutrons.
Such a small number of neutrons questions the local density
approximation in the case of the APR model. However for the
rest of the models, the RWS is greater and W-S cell contains
from 10 to several hundred of neutrons which justifies the
description of neutrons by its local density nn(r).

The behavior of the proton wave function and
neutron density is similar as in the previous approximate
calculations [2–4]. The proton mean radius 〈rp〉 decreases

TABLE I. Comparison of present results (new) with work [5]
(old) for the threshold density and proton mean radius.

n∞
n [fm−3] 〈rp〉 [fm]

old new old new

APR 0.819 0.784 0.878 0.562
AV14+UVII 0.789 0.745 0.971 0.747
UV14+TNI 0.731 0.610 1.209 1.023
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TABLE II. Various parameters above the threshold on the proton
localization.

n∞
n [fm−3] n[fm−3] �E/A[MeV] Ep [MeV] 〈rp〉[fm]

APR
0.784 0.854 0 −44.5 0.562
0.846 0.924 −5.23 −88.5 0.529
0.907 0.994 −11.42 −140.6 0.499
0.969 1.065 −18.89 −201.0 0.471
1.030 1.135 −27.61 −269.8 0.446

SLy4
0.785 0.805 0 −45.9 0.674
0.879 0.905 −1.55 −84.6 0.606
0.972 1.007 −3.73 −131.2 0.548
1.066 1.110 −6.75 −185.0 0.500
1.160 1.214 −10.81 −245.6 0.459

AV14+UVII
0.745 0.763 0 −34.0 0.747
0.861 0.885 −3.52 −114.5 0.624
0.978 1.005 −8.41 −230.1 0.528
1.094 1.123 −13.44 −376.1 0.456
1.210 1.239 −16.98 −550.7 0.404

UV14+TNI
0.610 0.608 0 −23.6 1.023
0.725 0.723 −0.22 −71.8 0.826
0.840 0.838 −0.50 −137.2 0.660
0.955 0.954 −0.80 −213.0 0.564
1.070 1.069 −1.08 −297.0 0.500

whereas the depth of the neutron well increases with the
mean density of matter. The particular values of quantities
relevant for the proton localization are shown in Table II. The
first two columns present the neutron density n∞

n at the W-S
boundary Eq. (11) and the mean baryon density n. The �E/A
is the energy difference between the homogeneous matter
and the state with localized proton Eq. (10) taken per total
number of baryons in the cell. The Ep presents the proton
energy eigenvalue. For all models the localization energy
�E/A increases with the density and the same happens to
the proton energy Ep, so one may conclude the proton is
stronger localized at higher densities. An interesting fact is
that, in the case of the UV14+TNI model, although the proton
fraction is very small, the strength of localization, measured
by the energy difference �E/A takes the smallest values in
comparison to the other models.

V. SUMMARY

In the present work we have solved the Lagrange-Euler
equations for a proton impurity with the extended Thomas-
Fermi approach for neutron background. The proton was
treated as quantum particle immersed in the quasiclassical
neutron sea. In a previous work the proton abundance was
assumed to be infinitely small, i.e., the Wigner-Seitz cell
was infinitely large, RWS → ∞. Here we kept finite RWS

determined by the proton fraction which is fixed by the
β-equilibrium occurring in neutron star matter. By minimizing
the energy in the finite-size Wigner-Seitz cell we found an
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FIG. 3. The evolution of proton wave function (solid) and neutron
background (dashed) with increasing mean baryon density n for the
two nuclear models. Vertical lines indicate the position of RWS . In the
case of UV14+TNI, the distribution is truncated because for densities
above 0.7 fm−3 the RWS was greater than 3 fm−3.

exact solution for the proton wave function and neutron
background. It turn out that proton localization still occurs for
all the presented models. The localization threshold is slightly
lower than in the previous work where the one-parameter
method for energy minimization was used [4]. In this work
we have investigated, in a rigorous way, the earlier ideas of
the proton localization and have shown the phenomenon is
plausible and worth further research. A required improvement
would be to perform the calculation in the W-S cell with
periodic boundary conditions. This issue was attacked in
Ref. [9] however in a very simplified manner. A desired
modification of the approach would be the inclusion of
hyperonic degrees of freedom, especially that both hyperons
presence and proton localization influence the neutron star
cooling [11,12].
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