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Theoretical corrections and world data for the superallowed f t
values in the β decays of 42Ti , 46Cr , 50Fe, and 54Ni
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Prompted by recent measurements, we surveyed world data and calculated radiative and isospin-symmetry-
breaking corrections for the superallowed 0+ → 0+ Fermi transitions from 42Ti , 46Cr , 50Fe, and 54Ni. This
increases the number of such transition with a complete set of calculated corrections from 20 to 23. The results
are compared with their equivalents for the mirror superallowed transitions from 42Sc , 46V , 50Mn, and 54Co. The
predicted f t-value asymmetries of these mirror pairs are sensitive to the correction terms and provide motivation
for improving measurement precision so as to be able to test the corrections. To aid in that endeavor, we present
a parametrization for calculating the f values for the new transitions to ±0.01%.
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I. INTRODUCTION

At regular intervals over more than four decades, we have
published critical surveys of world data on superallowed
0+ → 0+ Fermi β transitions and their impact on weak-
interaction physics, with the last survey appearing in February
2015 [1]. In all, 20 transitions were included in this most recent
survey, of which 18 had a complete set of data, comprising
in each case the QEC value, half-life, and branching ratio.
Of those 18, all but 4 had been measured to high precision.
Our justification for including 20 cases, some of which were
incomplete or poorly known, was that we deemed these 20
cases to encompass all those that were likely to be accessible
to precision measurements in the near future.

By the time the survey was published, our prediction had
already been proven wrong: In January 2015, Molina et al. [2]
reported a measurement of the half-lives and Gamow–Teller
branching ratios for the β decays of 42Ti , 46Cr , 50Fe, and
54Ni. Although the 42Ti transition was included in our survey,
those of 46Cr , 50Fe, and 54Ni were not. In fact, the QEC values
for the three latter transitions are still poorly known and even
the new measurements of the half-lives and branching ratios
have yet to reach the precision required to contribute mean-
ingfully to any standard-model tests. Nevertheless, Molina
et al. have convincingly demonstrated that these nuclei are
indeed accessible and potentially amenable to more precise
measurements.

This report is intended as an addendum to our 2015
survey [1], in which we extend the same evaluation of world
data to the three new superallowed transitions and, more
importantly, evaluate all the correction terms that are required
to understand the results. At the same time, we take the
opportunity to update results for 42Ti to incorporate the new
information.

A β transition is characterized by its f t value, where f is
the statistical rate function and t is its partial half-life. Three
experimental quantities are required to establish the f t value:
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The total decay energy QEC is required to calculate f ; and the
half-life t1/2, and the branching ratio R combine as follows to
produce the partial half-life:

t = t1/2

R
(1 + PEC). (1)

Here PEC is a small correction to account for competition from
electron capture.

To the f t value, two theoretical corrections are applied to
produce a corrected F t value, which is defined as

F t = f t(1 + δR)(1 − δC)

= f t(1 + δ′
R)(1 − δC + δNS). (2)

Here δR is the nucleus-dependent part of the radiative cor-
rection, also called the “outer” radiative correction, and δC is
an isospin-symmetry-breaking correction. It is convenient to
subdivide δR further as δR = δ′

R + δNS (see Sec. III A) and,
since these quantities are small, rearrange the equation to
the form displayed on the second line of Eq. (2), which is
correct to first order in these corrections. This rearrangement
places the nuclear-structure-dependent corrections together in
the combination δC − δNS .

In what follows, we begin with a survey of world data for
the superallowed β-decay branches of the Tz = −1 nuclei,
42Ti , 46Cr , 50Fe, and 54Ni, from which the f t values are
obtained. Next we calculate the correction terms δ′

R, δNS , and
δC , and hence obtain F t values for these four cases. These are
then compared with results for the well-known superallowed
decay branches from the Tz = 0 nuclei 42Sc , 46V , 50Mn, and
54Co, which are their mirror transitions. Finally, we use the
calculated correction terms to predict the ratio of f t values for
each of the four pairs of mirror transitions. When the precision
of world data is improved for the Tz = −1 cases, this will
provide a stringent test of the correction terms [3].

Our focus here is on providing information that will be
useful to experimenters when such improvements have been
achieved. In that context, we also tabulate the parameters
needed to calculate easily the f values for the three new
transitions—from 46Cr , 50Fe, and 54Ni—to high precision
(±0.01%), which will be important once more precise QEC
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TABLE I. Measured results from which the decay transition energies QEC have been
derived for the superallowed β decays of four Tz = −1 nuclei. In all cases only a single useful
measurement has been made of each quantity. The lines giving the superallowed QEC values
themselves are in bold print. Where no reference is given, the QEC value was determined from
the difference between the measured parent and daughter mass excesses. (See Table V for the
correlation between the alphanumeric reference code used in this table and the actual reference
numbers.)

Parent-daughter Propertya Measured energies used
nuclei to determine QEC (keV)

42Ti 42Sc Q EC (sa) 7016.83 ± 0.25 [Ku09]
46Cr 46V ME(p) −29474 ± 20 [Zi72]

ME(d) −37074.55 ± 0.32b

Q EC (sa) 7600 ± 20
50Fe 50Mn ME(p) −34489 ± 60 [Tr77]

ME(d) −42627.25 ± 0.90b

Q EC (sa) 8139 ± 60
54Ni 54Co ME(p) −39223 ± 50 [Tr77]

ME(d) −48009.52 ± 0.56b

Q EC (sa) 8787 ± 50

aAbbreviations used in this column are as follows: “sa”means superallowed transition, “p”
means parent, “d” means daughter, and “ME” means mass excess. Thus, for example,
“QEC(sa)” signifies the QEC value for the superallowed transition, and “ME(d)” signifies
the mass excess of the daughter nucleus.
bResult obtained from the QEC value for the superallowed decay of the daughter d , which
appears in Ref. [1], combined with the mass of the granddaughter taken from [Wa12].

values are known. These parameters supplement those given
in Ref. [4] for the 20 previously surveyed transitions.

II. EXPERIMENTAL DATA

We surveyed world data using exactly the same methods
as in our 2015 survey [1] and, for consistency, we present the
results here in a similar tabular format, even though relatively
few references are involved. The QEC values appear in Table I,
the half-lives in Table II, and the branching ratios in Table III.
Since the branching ratios for the decay of a Tz = −1 nucleus
depend on a complete analysis of its spectrum of β-delayed γ
rays, we give in Table IV the relative intensities of the γ rays
for all four cases. As in the survey, each datum appearing in
the tables is attributed to its original journal reference via an
alphanumeric code made up of the two initial letters of the first
author’s name and the two last digits of the publication date.
These codes are correlated with the actual reference numbers,
Refs. [5–12], in Table V.

Several remarks can be made concerning the contents of the
tables. Table I shows that the QEC value for 42Ti decay has

been directly measured quite recently; as reported in Ku09 [7],
this was done with a Penning trap and is rather precisely
known. The other three QEC values in the table had to be
derived as differences between separately measured parent and
daughter masses. Furthermore, all three parent masses were
measured about 40 years ago, either from a reaction excitation
function (see Zi72 [12]) or from the Q values of ( 4He , 8He)
reactions (see Tr77 [10]) and have large uncertainties by
today’s standards. Note also that the result for 42Ti is the
same as appeared in our 2015 survey [1].

In Tables II–IV the survey results for 42Ti have been
updated for new data from Mo15 [2]. In particular, the
branching-ratio result has been changed significantly since
Mo15 did not observe a β-delayed γ ray that had been
attributed to 42Ti. This is explained fully in footnote b of
Table IV.

With the input data now settled, we can derive the f t
values for the four superallowed transitions from the Tz = −1
nuclei, 42Ti , 46Cr , 50Fe, and 54Ni. The results appear in the
top four rows of Table VI, where we give the statistical rate

TABLE II. Half-lives t1/2 of four Tz = −1 superallowed β emitters. (See Table V for the correlation between the alphabetical reference
code used in this table and the actual reference numbers.)

Parent nucleus Measured half-lives t1/2 (ms) Average value

1 2 3 4 t1/2 (ms) Scale

42Ti 202 ± 5 [Ga69] 208.14 ± 0.45 [Ku09] 211.7 ± 1.9 [Mo15] 209.5 ± 5.2 [Mo15] 208.29 ± 0.79 1.8
46Cr 224.3 ± 1.3 [Mo15] 223.9 ± 9.9 [Mo15] 224.3 ± 1.3 1.0
50Fe 152.1 ± 0.6 [Mo15] 150.1 ± 2.9 [Mo15] 152.02 ± 0.59 1.0
54Ni 114.2 ± 0.3 [Mo15] 114.3 ± 1.8 [Mo15] 114.20 ± 0.30 1.0
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TABLE III. Measured results from which the branching ratios R have been derived for superallowed β transitions
from four Tz = −1 nuclei. The lines giving the average superallowed branching ratios themselves are in bold print.
(See Table V for the correlation between the alphabetical reference code used in this table and the actual reference
numbers.)

Parent-daughter nuclei Daughter state Measured branching ratio R (%) Average value
Ex (MeV) 1 2 R (%) Scale

42Ti 42Sc 0.611 51.1 ± 1.1 [Ku09] 55.9 ± 3.6 [Mo15] 51.5 ± 1.3 1.3
g.s. 48.1 ± 1.4a

46Cr 46V 0.994 21.6 ± 5.0 [On05] 13.9 ± 1.0 [Mo15] 14.2 ± 1.4 1.5
g.s. 76.7 ± 2.3a

50Fe 50Mn 0.651 22.5 ± 1.4 [Mo15] 22.5 ± 1.4
g.s. 74.3 ± 1.6a

54Ni 54Co 0.937 22.4 ± 4.4 [Re99] 19.8 ± 1.2 [Mo15] 19.9 ± 1.2 1.0
g.s. 78.9 ± 1.2a

aResult also incorporates data from Table IV.

functions f , the electron-capture fractions PEC , the partial
half-lives t obtained with Eq. (1) and, finally, the f t values.
To facilitate later mirror comparisons, we also give the same
information for the four mirror transitions from the Tz = 0
nuclei: 42Sc , 46V , 50Mn, and 54Co. These are identical to the
results that appear in Table IX of Ref. [1].

The next step is to determine the theoretical correction
terms δ′

R, δNS , and δC . Their derivation is described in the next
section.

III. THEORETICAL CORRECTIONS

A. Outer radiative correction δR

As noted already, the nucleus-dependent outer radiative
correction δR is conveniently divided into two components,

δR = δ′
R + δNS. (3)

The first comprises the bremsstrahlung and low-energy part
of the γW -box graphs and is a standard QED calculation that

TABLE IV. Relative intensities of β-delayed γ rays in the
superallowed β-decay daughters. These data are used to determine
the branching ratios presented in Table III. (See Table V for the
correlation between the alphabetical reference code used in this table
and the actual reference numbers.)

Parent-daughter Daughter Measured
nuclei ratiosa γ -ray ratio

42Ti 42Sc γtotal/γ611 0.0073 ± 0.0011b [Mo15]
46Cr 46V γtotal/γ994 0.642 ± 0.026 [Mo15]
50Fe 50Mn γtotal/γ651 0.158 ± 0.015 [Mo15]
54Ni 54Co γtotal/γ937 0.0576 ± 0.0043 [Mo15]

aγ -ray intensities are denoted by γE , where E is the γ -ray energy in
keV. The notation γtotal appearing in a numerator denotes the sum of
all β-delayed γ rays feeding the daughter ground state, excluding the
strongest γ ray, which is identified in the denominator.
bThis result replaces the result appearing in our 2015 survey [1],
which came from [Ga69] and [En90]. The 2223 keV γ ray identified
in [Ga69] as originating from the 42Ti decay evidently originated
from a contaminant since it was not observed in [Mo15].

depends only on the electron’s energy and the charge Z of the
daughter nucleus.

The calculation of δ′
R can be further broken down into four

contributions [13]:

δ′
R = α

2π
[g(Em) + δ2 + δ3 + δα2 ]. (4)

The leading-order-α term contains the function g(Em): It is the
average over the β energy spectrum of the function g(E,Em),
originally defined by Sirlin [14]. Here E is the total electron
energy in the β-decay transition and Em is its maximum value.
The next two terms in Eq. (4), δ2 and δ3, represent corrections
to order Zα2 and Z2α3, respectively. The last term is a recently
added contribution [13] that gives a correction to order α2.

Results for all four terms and their sums are recorded in
Table VII for the superallowed decays of 42Ti , 46Cr , 50Fe,
and 54Ni, as well as for their mirror superallowed transitions.
The differences in the radiative corrections for each pair of
mirror transitions are given in the last four lines of the table.
They are very small.

No uncertainties on δ′
R are listed in Table VII. This issue has

been discussed in our recent survey [1], where it is argued that
the uncertainty on δ′

R should be treated as a systematic, rather
than a statistical one. We take the magnitude of the uncertainty
to be one-third the contribution of the Z2α3 term but apply it
only to the final average F t value, so that its influence is not
reduced by statistical averaging.

The second component of the outer radiative correction,
δNS , recognizes that the γW -box graph includes situations
in which the γ -nucleon interaction in the nucleus does not
involve the same nucleon as that participating in the W -nucleon

TABLE V. Reference key, relating alphabetical reference codes
used in Tables I–IV to the actual reference numbers.

Table Reference Table Reference Table Reference
code number code number code number

En90 [5] Ga69 [6] Ku09 [7]
Mo15 [2] On05 [8] Re99 [9]
Tr77 [10] Wa12 [11] Zi72 [12]
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TABLE VI. Results derived from Tables I–IV for the four superallowed Fermi β decays from Tz = −1 nuclei. Also shown for comparison
are the equivalent results for their mirror transitions from Tz = 0 nuclei; these are taken from Ref. [1].

Parent f PEC Partial half-life f t (s) δ′
R(%) δC − δNS(%) F t (s)

nucleus (%) t (ms)

Tz = −1
42Ti 7130.5 ± 1.4 0.087 433 ± 12 3090 ± 88 1.427 1.195 ± 0.066 3096 ± 88
46Cr 10660 ± 150 0.092 292.6 ± 9.1 3120 ± 110 1.420 0.935 ± 0.090 3130 ± 110
50Fe 14950 ± 600 0.100 204.8 ± 4.5 3060 ± 140 1.439 0.815 ± 0.053 3080 ± 140
54Ni 21850 ± 670 0.104 144.9 ± 2.3 3170 ± 110 1.430 0.955 ± 0.070 3180 ± 110

Tz = 0
42Sc 4472.23 ± 1.15 0.099 681.44 ± 0.26 3047.5 ± 1.4 1.453 0.655 ± 0.050 3071.6 ± 2.1
46V 7209.25 ± 0.54 0.101 423.113+0.053

−0.056 3050.32+0.44
−0.46 1.445 0.655 ± 0.063 3074.1 ± 2.0

50Mn 10745.97 ± 0.50 0.107 283.68 ± 0.11 3048.4 ± 1.2 1.444 0.705 ± 0.034 3070.6 ± 1.6
54Co 15766.7 ± 2.9 0.111 193.493+0.063

−0.086 3050.7+1.1
−1.5 1.443 0.805 ± 0.068 3069.8+2.4

−2.6

interaction. When this happens, two distinct nucleons are
actively involved and a detailed shell-model calculation is
required to evaluate δNS . Being nuclear-structure dependent,
there is some uncertainty in the result, but fortunately δNS

is smaller in magnitude than δ′
R so this is not a serious

impediment. Our strategy has always been to mount several
shell-model calculations with different effective interactions
from the literature, adopt an average value of δNS from
the results for each transition, and assign an uncertainty
that embraces the range of results obtained. We follow that
approach here, too. We also use exactly the same sets of
effective interactions that we used in Ref. [13], where they
are described in more detail and fully referenced.

TABLE VII. Calculated transition-dependent radiative correc-
tions δ′

R in percent units, and their component contributions. As
explained in the text, no uncertainty is given. The results for
46Cr , 50Fe, and 54Ni are presented here for the first time; the results
for the other cases are the same as those appearing in Ref. [13]. The
last four lines give the differences in radiative-correction terms for
the designated mirror transitions.

Parent α
2π

g(Em) α
2π

δ2
α

2π
δ3

α
2π

δα2 δ′
R

nucleus

Tz = −1
42Ti 0.9051 0.4556 0.0501 0.0160 1.4269
46Cr 0.8745 0.4734 0.0567 0.0154 1.4200
50Fe 0.8489 0.5077 0.0675 0.0148 1.4390
54Ni 0.8203 0.5205 0.0747 0.0144 1.4299

Tz = 0
42Sc 0.9392 0.4507 0.0467 0.0166 1.4533
46V 0.9031 0.4720 0.0539 0.0159 1.4448
50Mn 0.8728 0.4942 0.0620 0.0153 1.4444
54Co 0.8440 0.5134 0.0707 0.0147 1.4427

42Sc – 42Ti 0.0341 −0.0049 −0.0034 0.0006 0.0264
46V – 46Cr 0.0286 −0.0014 −0.0028 0.0005 0.0248
50Mn – 50Fe 0.0239 −0.0135 −0.0055 0.0005 0.0054
54Co – 54Ni 0.0237 −0.0071 −0.0040 0.0003 0.0128

The calculation of δNS is based on the formula

δNS = α

π

[
C

quenched
NS + (q − 1)Cfree

Born

]
, (5)

where the component terms are defined and discussed in
Ref. [15]. We use quenched electroweak vertices in the
nucleus [16], so q represents the quenching factor by which
the product of the weak and electromagnetic coupling con-
stants is reduced in the medium relative to its free-nucleon
value. Detailed results are given in columns two–five of
Table VIII, where we show contributions to C

quenched
NS from the

various components of the electromagnetic interaction: orbital
isoscalar (os), spin isoscalar (ss), orbital isovector (ov), and
spin isovector (sv). Note that the spin contributions are larger
than the orbital contributions.

An even more interesting observation from Table VIII is
that the isoscalar and isovector contributions to δNS are in
phase when the decaying nucleus has Tz = −1 and out of
phase when it has Tz = 0. This leads to larger corrections for
transitions from the Tz = −1 nuclei than for those from the
Tz = 0 ones. As is made clear by the differences in mirror δNS

values shown in the bottom-four lines of the last column in
Table VIII, this effect creates an asymmetry of between 0.1%
and 0.3%. This asymmetry would of course contribute to the
expected mirror asymmetry in the experimental f t values and,
since current experiments aim at 0.1% precision, this effect is
just at the edge of detectability.

B. Isospin-symmetry-breaking correction δC

The isospin-symmetry-breaking correction is defined as the
reduction in the square of the Fermi matrix element, |MF |2,
from its symmetry-limit value, |M0

F |2. Thus,

|MF |2 = ∣∣M0
F

∣∣2
(1 − δC). (6)

For calculational convenience, we separate δC into two
components [1,13],

δC = δC1 + δC2. (7)

The idea is that δC1 follows from a tractable shell-model
calculation that does not include significant nodal mixing,
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TABLE VIII. Calculated nuclear-structure-dependent radiative correction δNS . The four components that are summed to give C
quenched
NS

characterize the four electromagnetic couplings: os = orbital isoscalar, ss = spin isoscalar, ov = orbital isovector, and sv = spin isovector.
The table gives one sample shell-model result, while the adopted value gives an average over several different shell-model calculations,
with an uncertainty that embraces the range. The last four lines give the difference in radiative corrections for mirror transitions. Note that
the uncertainties of the mirror differences in δNS were not determined from the uncertainties on the two contributing δNS values but were
independently evaluated to cover the spread in the calculated differences.

Parent C
quenched
NS (q − 1)Cfree

Born δNS(%) δNS(%)
nucleus os ss ov sv Total adopted

Tz = −1
42Ti −0.019 −0.160 −0.207 −0.388 −0.774 −0.241 −0.236 −0.235 (20)
46Cr −0.004 −0.197 −0.099 −0.198 −0.498 −0.248 −0.173 −0.175 (20)
50Fe −0.009 −0.185 −0.104 −0.153 −0.451 −0.254 −0.164 −0.155 (20)
54Ni −0.012 −0.180 −0.133 −0.203 −0.528 −0.261 −0.183 −0.165 (20)

Tz = 0
42Sc −0.019 −0.160 0.207 0.388 0.416 −0.241 0.041 0.035 (20)
46V −0.004 −0.197 0.099 0.198 0.096 −0.248 −0.035 −0.035 (10)
50Mn −0.009 −0.185 0.104 0.153 0.063 −0.254 −0.044 −0.040 (10)
54Co −0.012 −0.180 0.133 0.203 0.144 −0.261 −0.027 −0.035 (10)

42Sc – 42Ti 0.000 0.000 0.414 0.776 1.190 0.000 0.276 0.270 (30)
46V – 46Cr 0.000 0.000 0.198 0.396 0.594 0.000 0.138 0.140 (10)
50Mn – 50Fe 0.000 0.000 0.208 0.306 0.514 0.000 0.119 0.115 (20)
54Co – 54Ni 0.000 0.000 0.266 0.406 0.672 0.000 0.156 0.130 (30)

while δC2 corrects for the nodal mixing that would be present
if the shell-model space were much larger.

For δC1, a modest shell-model space (usually one major
oscillator shell) is employed, in which Coulomb and other
charge-dependent terms have been added to the charge-
independent effective Hamiltonian customarily used for the
shell model. However, the most-important Coulomb force is
long range and its influence in configuration space extends
much further than a single major oscillator shell. The principal
impact of multishell mixing is to change the radial wave
function of the proton through mixing with radial functions
that have more nodes. In the β-decay matrix element MF there
is an overlap between the radial functions of the proton and
neutron that participate in the transition, and it is the reduction
from unity of the overlap integral that leads to the correction
δC2.

The details of the calculations for δC1 are described in
Ref. [13]. If isospin were an exact symmetry then the decay
of the parent 0+,T = 1 state would proceed exclusively to
its 0+ analog state in the daughter nucleus. Fermi transitions
to all other 0+ states in the daughter would be expressly
forbidden. But when charge-dependent terms are added to
the shell-model Hamiltonian there is some depletion of the
analog transition strength, with the missing strength appearing
in weak transitions to excited 0+ states. Significantly, in many
cases the bulk of the analog-state depletion shows up in
feeding a single excited 0+ state, usually (but not always)
the lowest-excited one. In the limit of two-state mixing,
perturbation theory would indicate that

δC1 ∝ 1

(�E)2 , (8)

where �E is the energy separation of the analog and
nonanalog 0+ states. Since the calculated energy sepa-
ration in the shell model, (�E)theor, does not exactly
match the experimental value, (�E)expt, we refine our
model calculation of δC1 by scaling its value by a factor
(�E)2

theor/(�E)2
expt.

Our δC1 results for the decays of 42Ti , 46Cr , 50Fe, and 54Ni
are found in Table IX, where they can be compared with the
mirror decays of 42Sc , 46V , 50Mn, and 54Co. In each case,
columns two and three give the experimental and calculated
excitation energies of the nonanalog 0+ state that takes the
bulk of the Fermi strength depleted from the analog states.
Columns four and five give δC1 without and with scaling by
(�E)2

theor/(�E)2
expt.

For each nucleus, we performed several shell-model cal-
culations with several different charge-independent effective
Hamiltonians—the same as those described and referenced
in Ref. [13]. Only one of these calculations is recorded
in the table but the adopted value, which appears in the
sixth column, represents an average over all calculations,
with an uncertainty assigned to span the range of results
obtained.

Next, we consider δC2. For its computation, the radial
functions we use in the overlap integral are eigenfunctions of
a Woods–Saxon potential, as justified in our survey article [1].
The methods of calculation have been described in detail
in Refs. [13,15]. Much benefit is gained from a very strong
constraint: The asymptotic forms of all radial functions must
match the measured separation energies Sp and Sn, where Sp

is the proton separation energy in the decaying nucleus and Sn

is the neutron separation energy in the daughter nucleus. The
Woods–Saxon potential for a nucleus of mass A and charge
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TABLE IX. Shell-model calculation of the isospin-symmetry-
breaking correction δC1. The table gives one sample shell-model
result, while the adopted value gives an average over several different
shell-model calculations, with an uncertainty that embraces the range.
The results for 46Cr , 50Fe, and 54Ni are presented here for the
first time; the results for the other cases are the same as those
appearing in Ref. [13]. The last four lines give the difference in
isospin-symmetry-breaking corrections for mirror transitions. Note
that the uncertainties of the mirror differences in δC1 were not
determined from the uncertainties on the two contributing δC1 values
but were independently evaluated to cover the spread in the calculated
differences.

Parent Ex(0+) Ex(0+) δC1(%) δC1(%) δC1(%)
nucleus expt SM unscaled scaled adopted

Tz = −1
42Ti 1.84 3.16 0.038 0.113 0.105 (20)
46Cr 3.57a 4.86 0.012 0.023 0.045 (20)
50Fe 3.69 3.62 0.021 0.020 0.025 (20)
54Ni 2.56 2.26 0.030 0.023 0.065 (30)

Tz = 0
42Sc 3.30a 5.05 0.007 0.017 0.020 (10)
46V 3.57a 4.86 0.040 0.075 0.075 (30)
50Mn 3.69 3.62 0.057 0.054 0.035 (20)
54Co 2.56 2.26 0.058 0.045 0.050 (30)

42Sc − 42Ti −0.031 −0.096 −0.080 (15)
46V − 46Cr 0.028 0.052 0.030 (20)
50Mn − 50Fe 0.036 0.035 0.010 (15)
54Co − 54Ni 0.028 0.022 −0.015 (60)

aSecond excited 0+state; shell-model calculations indicate that this
state takes up most of the depletion from the analog state.

Z + 1 is taken to be

V (r) = −V0f (r) − Vsg(r)l · σ + VC(r) − Vgg(r) − Vhh(r),

(9)

where

f (r) =
{

1 + exp

(
r − R

a

)}−1

,

g(r)=
(

�

mπc

)2 1

asr
exp

(
r − Rs

as

){
1+exp

(
r − Rs

as

)}−2

,

h(r) = a2

(
df

dr

)2

,

VC(r) =
{

Ze2/r for r � Rc

Ze2

2Rc

(
3 − r2

R2
c

)
for r < Rc,

(10)

with R = r0(A − 1)1/3 and Rs = rs(A − 1)1/3. The first three
terms in Eq. (9) are the central, spin-orbit and Coulomb terms,
respectively. The fourth and fifth are additional surface terms
whose role we discuss shortly.

Most of the parameters are fixed at standard values, Vs =
7 MeV, rs = 1.1 fm, and a = as = 0.65 fm, and the radius
of the Coulomb potential, Rc, is determined from the root-
mean-square charge radius, 〈r2〉1/2, of the decaying nucleus.

Likewise, the radius parameter of the central potential, r0, is
determined by requiring that the charge density constructed
from the proton eigenfunctions of the potential yields a
root-mean-square charge radius 〈r2〉1/2 in agreement with the
known experimental value. The radius parameters used in our
calculations of δC2 appear in the second and third columns of
Table X.

Our results for δC2 itself, calculated with three different
methodologies, are given in columns four to six of Table X,
with the ultimately adopted values in column seven. The
shell model enters these computations because the initial
and final A-particle states are expanded in a complete set
of (A − 1)-particle states and single-particle states. The shell
model provides the expansion coefficients. For a state in the
(A − 1) system at an excitation energy Ex , the proton and
neutron separation energies assigned to the single particle for
this term in the expansion are Sp + Ex and Sn + Ex . For the
methodology labeled II , the strength of the central potential
V0 was continually readjusted for each term in the parentage
expansion to reproduce these separation energies. With the
radial overlap integral obtained from these eigenfunctions,
the isospin-symmetry-breaking correction is labeled δII

C2.
Alternatively, the adjustment to the Woods–Saxon potential
can be accomplished with the surface terms: For δIII

C2 we
adjusted Vg and for δIV

C2 it was Vh that was adjusted. Further
details of this approach are given in Refs. [13,15].

In Table X, the δC2 results for the three different method-
ologies are given for one sample shell-model interaction. The
adopted value is an average over the different shell-model
calculations and different methodologies with an uncertainty
that covers the spread in the results and the uncertainty
associated with the experimental root-mean-square charge
radius.

The question of what is the appropriate root-mean-square
charge radius had to be revisited for these calculations
following the recent compilation of experimental results by
Angeli and Marinova [17], which were not incorporated into
our 2015 survey [1]. Considering first the Tz = 0 parent nuclei,
we find that for two of them, 46V and 54Co, there have been no
updates in charge radii, so the results given in Table X for these
nuclei are identical to those published in 2008 [13] and used in
2015. However, for 42Sc and 50Mn, new experimental charge
radii have appeared so the δC2 values for these nuclei have had
to be recomputed. Their new δC2 results, shown in Table X,
are slightly higher than before and have smaller uncertainties
compared with those assigned in 2008, reflecting the greater
precision of the new charge radii. The reduction is limited,
though, by contributions from uncertainties arising from the
spread in results among the different methodologies and
different shell-model interactions, which remains unchanged
from before. Reassuringly, the new results for δC2 agree well
with those published in 2008 [13] within the latter’s stated
uncertainties.

As for the Tz = −1 parents, charge radii are not known
for 42Ti , 46Cr , 50Fe, and 54Ni, although they are for heavier
isotopes of each element, typically for those with masses A +
4, A + 6, and A + 8. In each case, we have done a quadratic fit
to the known charge radii and then extrapolated four mass units
back to the isotope of interest. A generous error is assigned
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TABLE X. Calculations of δC2 with Woods–Saxon radial functions for three methodologies (δII
C2,δ

III
C2 ,δIV

C2 ) for one sample shell-model
interaction. The adopted values and uncertainties reflect the spread in results for several shell-model interactions, different methodologies, and
the uncertainty in the radius parameter r0. The last four lines give the differences in isospin-symmetry-breaking corrections for the four mirror
transitions. Note that the uncertainties of the mirror differences in δC2 were not determined from the uncertainties on the two contributing δC2

values but were independently evaluated to cover the spread in the calculated differences.

Parent Radius parameters (fm) δII
C2(%) δIII

C2 (%) δIV
C2 (%) Adopted

nucleus 〈r2〉1/2 r0
δC2(%)

Tz = −1
42Ti 3.616(5) 1.323(2) 0.901 0.869 0.800 0.855 (60)
46Cr 3.70(10) 1.316(44) 0.764 0.723 0.658 0.715 (85)
50Fe 3.58(6) 1.206(24) 0.674 0.613 0.615 0.635 (45)
54Ni 3.68(5) 1.201(21) 0.784 0.684 0.710 0.725 (60)

Tz = 0
42Sc 3.570(24) 1.319(11) 0.704 0.681 0.632 0.670 (45)
46V 3.60(7) 1.285(31) 0.587 0.542 0.506 0.545 (55)
50Mn 3.712(20) 1.273(8) 0.657 0.621 0.615 0.630 (25)
54Co 3.83(7) 1.275(29) 0.760 0.688 0.706 0.720 (60)

42Sc – 42Ti −0.197 −0.188 −0.168 −0.185 (20)
46V – 46Cr −0.177 −0.181 −0.152 −0.170 (80)
50Mn – 50Fe −0.017 0.008 0.000 −0.005 (40)
54Co – 54Ni −0.024 0.004 −0.004 −0.005 (60)

to charge radii obtained in this manner. Table X lists the root-
mean-square charge radii we have used for these nuclei. For
42Ti, the new results here represent a modest update to those
published in 2008 [13], although the new adopted value of δC2

is well within the previous uncertainty.
The last four lines of Table X give the differences in δC2

values for the four mirror pairs of transitions. It is interesting
to observe that the differences for the mass-42 and -46 pairs
are about 0.2%, significantly larger than those for masses 50
and 54, which are nearly zero. This is something that could be
tested in future higher-precision experiments.

IV. F t VALUES

In Sec. II, world data were evaluated for transitions from
four Tz = −1 parent nuclei, and the results were entered into
Table VI, where the equivalent (previously evaluated [1])
information for their mirror transitions from Tz = 0 nuclei
also appear. The derived f t values for all eight transitions
are also given. With the theoretical corrections, δ′

R, δNS, δC1,
and δC2 that appear in Tables VII–X respectively, we are now
in a position to use Eq. (2) to obtain the F t values for all
eight transitions. Columns five and six of Table VI give the
theoretical corrections combined as they appear in Eq. (2), and
column seven lists the final F t values.

It is well known that the F t values for superallowed
transitions provide valuable tests of weak-interaction physics.
In accordance with conservation of the vector current (CVC),
all the F t values should be the same irrespective of the par-
ticular nuclei in which they are determined. Once consistency
is established among the measured F t values, the resulting
average F t value can then be used to determine Vud, the up-
down element of the Cabibbo–Kobayashi–Maskawa (CKM)
matrix. The Vud result is a key ingredient in the most-definitive

available test of CKM matrix unitarity, a fundamental principle
of the standard model.

The four F t values in Table VI for transitions from Tz = 0
parents have already been incorporated in the most recent
evaluation of Vud [1]. Their ∼0.06% precision is representative
of the 14 transitions used in that evaluation. Clearly the four
F t values for the Tz = −1 cases currently lack the precision
to contribute to this picture. However, that could change in the
future as experimental improvements are made, especially in
the measurement of QEC . For now, though, we can declare that
the F t values for the Tz = −1 cases are consistent with the
current best value for the average [1]: F t = 3072.27 ± 0.62 s.

V. MIRROR ASYMMETRY

The addition of three new proton-rich Tz = −1 β emitters
whose superallowed Fermi branches are the isospin mirrors of
already well-known Tz = 0 β emitters gives us the opportunity
to examine the ratio of f t values for these mirror transitions
and to discuss their asymmetry in terms of isospin-symmetry
breaking. This approach has already been advanced for the
mirror Fermi decays of 38Ca and 38mK by Park et al. [18,19].
If we accept the CVC requirement that all the T = 1
superallowed transitions must have the same F t values, then
obviously this requirement applies to each mirror pair and,
from Eq. (2), we can derive the following expression for the
ratio of experimental f t values for such a pair:

f ta

f tb
= 1 + (

δb
R − δa

R

) − (
δb
C − δa

C

)
, (11)

where superscript “a′′ denotes the decay of the Tz = −1
parent and “b′′ denotes the decay of the mirror Tz = 0 parent.
Here δR = δ′

R + δNS and δC = δC1 + δC2 and their mirror
differences are already listed in Tables VII, VIII, IX, and X.
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TABLE XI. Calculated ratios f ta/f tb for the four mirror doublets.

Decay pairs a; b δb
R − δa

R(%) δb
C − δa

C(%) f ta/f tb

42Ti → 42Sc; 42Sc → 42Ca 0.296 (30) −0.265 (25) 1.00561 (39)
46Cr → 46V; 46V → 46Ti 0.165 (10) −0.140 (82) 1.00305 (83)
50Fe → 50Mn; 50Mn → 50Cr 0.120 (20) 0.005 (43) 1.00115 (47)
54Ni → 54Co; 54Co → 54Fe 0.143 (30) −0.020 (85) 1.00163 (90)

The advantage offered by Eq. (11) is that the theoretical
uncertainty on a difference like δb

C − δa
C is less than the

uncertainties on δb
C and δa

C individually.
In Table XI we list values of δb

R − δa
R and δb

C − δa
C and

hence values for f ta/f tb. These values differ from unity by
amounts ranging from 0.1% to 0.6% with radiative-correction
and isospin-symmetry-breaking differences contributing com-
parably. With future experimental precision at the ∼0.1% level,
it would become possible to test the corrections for these pairs
in the way first demonstrated by Park et al. [18] for the mirror
superallowed decays of 38Ca and 38mK. Particularly attractive
is the mass-42 mirror pair, for which the ratio of f t values is
expected to differ from unity by nearly 0.6%.

VI. PARAMETERIZATION OF f FOR 46Cr , 50Fe, AND 54Ni

To hone the F t values for the decays of 46Cr , 50Fe, and
54Ni to the precision required to compete effectively with
the currently well-known superallowed transitions, the QEC

values in particular will have to be improved considerably.
When this happens, the statistical rate function f will have
to be calculated with a precision to match. We recently
published [4] a parametrization of f that allows a user to easily
calculate the f value to high precision (±0.01%) for the 20
transitions included in our survey [1]. For completeness, we
give in Table XII the parameters required to calculate f for
the three transitions we have added here.

We follow the parametrization developed in Ref. [4], in
which

f = f0(1 + δS), (12)

where

f0 = a0W
4
0 p0 + a1W

2
0 p0 + a2p0 + a3W0 ln (W0 + p0),

(13)
and

δS = b0 + b1W0 + b2/W0 + b3W
2
0 , (14)

where W0 is the maximum total energy of the decay positron
in electron-rest-mass units and p0 = (W 2

0 − 1)1/2 is the corre-

sponding momentum. Two of these parameters are fixed: a2 =
−2/15 and a3 = 1/4. The other six are listed in Table XII.

Note that, as in Ref. [4], this parametrization is only valid
for the transitions identified and only for a limited range of
energies (±60 keV) around the currently accepted QEC values.

VII. CONCLUSIONS

Prompted by new measurements from Molina et al. [2],
we thoroughly examined the superallowed Fermi decays of
42Ti , 46Cr , 50Fe, and 54Ni; the latter three of which having
never before been included in our periodic surveys of world
data for such decays.

We began this report by assembling all pertinent references
and arriving at recommended results for the QEC values, half-
lives, and branching ratios for all four transitions; next, we
presented calculations of their radiative and isospin-symmetry-
breaking corrections. From this input we obtained their f t and
F t values.

The results have all been presented in such a way that these
four transitions from Tz = −1 nuclei could be compared with
their mirror superallowed transitions from the Tz = 0 nuclei
42Sc , 46V , 50Mn, and 54Co. This also gave us the opportunity
to update the δC values for 42Ti , 42Sc, and 50Mn in order to
incorporate an update in the recommended values for the root-
mean-square charge radii, 〈r2〉1/2, of these nuclei as tabulated
by Angeli and Marinova [17].

By presenting our results in terms of comparisons of
mirror pairs of transitions with A = 42, 46, 50, and 54,
we demonstrate the importance of measuring the Tz = −1
members of these mirror pairs with improved precision. The
difference in the f t values between the two members of each
mirror pair is sensitive to the calculated correction terms, and
can be used to test and possibly improve them.

Although the uncertainties in f t values for the decays of
42Ti , 46Cr , 50Fe, and 54Ni are still too large for this purpose,
we take the view that, with experimental accessibility now
demonstrated, there is sufficient motivation to proceed with
improving the precision. An obvious place to begin is with
modern remeasurements of the 40-year-old QEC values for

TABLE XII. Values of the coefficients a0 and a1 that yield the statistical rate function f0 from Eq. (13), and coefficients b0, b1, b2, and b3

that yield the correction δS from Eq. (14). Coefficients a2 and a3 are held fixed at the values a2 = −2/15 and a3 = 1/4.

Parent a0 a1 b0 (%) b1 (%) b2 (%) b3 (%)
nucleus

46Cr 0.0207203 −0.0797342 0.29193 0.17401 0.26989 −0.00219
50Fe 0.0200743 −0.0845341 0.34970 0.17589 0.27937 −0.00199
54Ni 0.0191989 −0.0398293 0.42003 0.20090 0.31418 −0.00216
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the decays of 46Cr , 50Fe, and 54Ni with a precision to match
the recent Penning-trap measurement of the 42Ti QEC value.

To aid in this endeavor, we have also provided the means to
easily calculate f values for the superallowed transitions from
46Cr , 50Fe, and 54Ni to the required ±0.01% precision.
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