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Preserving local gauge invariance with t-channel Regge exchange
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Considering single-meson photo- and electroproduction off a baryon, it is shown how to restore local gauge
invariance that was broken by replacing standard Feynman-type meson exchange in the t channel by exchange
of a Regge trajectory. This is achieved by constructing a contact current whose four-divergence cancels the
gauge-invariance-violating contributions resulting from all states above the base state on the Regge trajectory.
To illustrate the procedure, modifications necessary for the process γ + p → K+ + �∗0 are discussed in some
detail. We also provide the general expression for the contact current for an arbitrary reaction.
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I. INTRODUCTION

Photo- and electroproduction of mesons off baryons provide
arguably the most direct routes to information about hadronic
structure. At high energies, where multimeson production
abounds, such processes can be described economically in
terms of pomeron and Regge-trajectory exchanges [1–3]. At
lower energies, single-meson production provides a direct av-
enue for baryon spectroscopy [4], with theoretical descriptions
that attempt to model the contributing mechanisms as detailed
as possible in terms of Feynman-type exchange processes.

The present work is concerned with an intermediate-energy
transition region, where one starts within the Feynman-type
picture and replaces some exchanges by Regge trajectories in
an attempt to bring the economic features of the high-energy
Regge approach to bear in the more traditional Feynman frame-
work. Specifically, we will apply such a hybrid framework to
the generic electromagnetic production process depicted in
Fig. 1 of a meson (m) off an initial baryon (b) going over into
a final baryon (b′), i.e.,

γ (k) + b(p) → m(q) + b′(p′), (1)

where arguments denote the corresponding four-momenta.
For this single-meson production process, it is argued that

replacing the t-channel single-meson exchange (third diagram
in Fig. 1) by the exchange of an entire Regge trajectory
would lead to a better, simpler description of the dynamics
of the process in question, in particular, if it is dominated by
small-momentum transfers [5–19]. However, the good success
of such hybrid approaches notwithstanding, it is well known
that this replacement destroys gauge invariance even if the
underlying Feynman formulation was gauge invariant to start
with.

One widely used recipe for restoring gauge invariance is the
method of Ref. [5] which basically uses the residual function of
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the base state of the t-channel Regge trajectory as a common
suppression function for all terms of the tree-level current.
Current conservation—i.e., kμMμ = 0, where Mμ denotes
the current—is achieved in this method because one starts
from a conserved tree-level current, and multiplication by a
common suppression function does not destroy this property.
Even though the method is quite successful in providing good
descriptions of data in many applications (see, for example,
Refs. [5–7,11–19]), there is no dynamical foundation for it.

We point out in this context that the current-conservation
condition, kμMμ = 0, only implies global gauge invariance
which is little more than charge conservation. Local gauge
invariance, i.e., the requirement that the physical observables
are invariant under local U(1) transformations of the fields, on
the other hand, implies the very existence of the electromag-
netic field [20]. Because global gauge invariance follows from
local gauge invariance, but not the other way around, imposing
current conservation by itself to find ways of repairing a current
that was damaged by approximations, therefore, does not
imply that the damage done to the underlying electromagnetic
field is repaired as well.

We will show here how local gauge invariance can be re-
stored when the t-channel single-meson exchange is replaced
by the exchange of an entire mesonic Regge trajectory. The
method as such is not restricted to the t channel and could
also be applied to a u-channel description in terms of baryon
Regge trajectories in a straightforward manner.1 The proposed
mechanism is based on the necessary and sufficient condi-
tions for local gauge invariance formulated as generalized
Ward-Takahashi identities for the production current [21,22].
These are off-shell conditions that automatically reduce to the
familiar current-conservation relation, kμMμ = 0, when taken

1Technically, it could also be used for s-channel Reggeization,
but because the s-channel contribution for a given experiment is a
constant, without any angular dependence, it seems doubtful that
there would be much point in doing so, even if one ignores duality
issues between s- and t-channel processes [1–3].
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FIG. 1. Generic diagrams with external four-momenta of the
photoproduction process of Eq. (1) satisfying q + p′ = k + p. Labels
s, u, and t at the hadronic b → m + b′ vertices refer to Mandelstam
variables of the respective exchanged intermediate particles. Sum-
mations over all intermediate states compatible with initial and final
states are implied. The right-most diagram depicts the contact-type
interaction current. Time runs from right to left.

on shell. The implementation of these conditions results in
contact-type interaction currents [23–25] as minimal additions
to a given current to restore local gauge invariance. The method
is well established within the usual Feynman picture and it was
applied successfully to a variety of photoprocesses [26–36].
The extension given here to include exchanges of Regge
trajectories is straightforward.

The paper is organized as follows. In the subsequent Sec. II,
we will recapitulate basic details of meson photoproduction
within the general field-theory approach of Haberzettl [22]
and discuss, in particular, how the set of generalized Ward-
Takahashi identities ensures the local gauge invariance of
the production current. The Regge treatment of t-channel
meson exchanges considered in Sec. III is then immediately
seen to violate these conditions thus leading to a current
that is not conserved. The reason for this violation can be
traced to the fact that higher-lying mass states above the base
state of the Regge trajectory have the wrong coupling to the
electromagnetic field. Using the residual function from the
pole at the base state of the Regge trajectory, we show then how
to construct a contact current that restores validity of the full set
of generalized Ward-Takahashi identities and therefore ensures
local gauge invariance. As an illustration of the relevant details,
we treat in Sec. IV the example of the strangeness-production
reaction γ + p → K+ + �∗0. In Sec. V, we will provide a
summarizing discussion of the present approach. Finally, in
the Appendix, we write out the generic expressions applicable
to any single-meson production process that allow one to
construct the minimal contact currents necessary to maintain
local gauge invariance.

II. PHOTOPRODUCTION BASICS

The following description is based on the field-theoretical
approach of Haberzettl [22] originally developed for pion
photoproduction off the nucleon. This formalism, however, is
quite generic and can be readily applied to meson-production
processes off any baryon.

The basic topological structure of the single-pion produc-
tion current Mμ was given a long time ago [37] as arising from
how the photon can couple to the underlying hadronic πNN
vertex. The resulting structure depicted in Fig. 1 is generic
and applies to all photo- and electroproduction processes of a
single meson off a baryon. The full current Mμ, therefore, can
be written generically as

Mμ = Mμ
s + Mμ

u + M
μ
t + M

μ
int, (2)

as indicated in Fig. 1, where the indices s, u, and t here
refer to the Mandelstam variables of the respective exchanged
intermediate off-shell particle. This structure is based on
topology alone and therefore independent of the details of
the individual current contributions. The first three (polar)
contributions are relatively simple; the real complication of
the problem lies in how complex the reaction mechanisms
are that are taken into account in the interaction current M

μ
int

because in principle M
μ
int subsumes all mechanisms that do not

have s-, u-, or t-channel poles, and this comprises all final-state
interactions and therefore necessarily all effects that arise from
the coupling of various reaction channels [22,25,36].

Here, we will ignore all of these reaction-dynamical compli-
cations and treat the interaction current Mμ

int simply as a “black
box” that must satisfy certain four-divergence constraints [22].
If needed, one may add the manifestly transverse contributions
of the more complete treatment [24,25] to the minimal explicit
structure discussed here.

We emphasize that the particles explicitly entering all
expressions here must be physical particles. In other words,
the Regge-specific implementation of the formalism does not
apply to bare particles. The corresponding propagators here
must describe physical particles, with poles at the respective
physical masses, but their structure is not limited otherwise,
i.e., they may contain explicit dressing functions or they can
be simple Feynman-type propagators, however, with physical
masses, with the dressing mechanisms that gave them their
physical masses hidden in form factors. In other words, the
diagrams of Fig. 1 must be taken as representing the solution
of the meson-production problem and not as the Born-type bare
input for a Bethe-Salpeter- or Dyson-Schwinger-type reaction
equation.

Also, for the purpose of gauge invariance, the only relevant
intermediate states in the s-, u-, and t-channel diagrams of
Fig. 1 are those where the photon does not initiate a transition
(because transition currents are transverse), i.e., where the
states before and after the photon interacts are the same particle
with nonzero charge. Thus, for the present purpose, without
lack of generality, we may ignore all diagrams and intermediate
states that do not contribute to the four-divergence of the
production current Mμ.

As a consequence, with this understanding, all three
hadronic vertices in Fig. 1 describe the same three-point vertex
b → m + b′, for which we will use the notation F (pb′ ,pb),
where the arguments here are the incoming and outgoing
baryon momenta, as depicted in Fig. 2. The vertex notation
F subsumes all coupling operators and isospin dependence,

pbpb′

qm

FIG. 2. Generic vertex F (pb′ ,pb) for b → m + b′ with associated
momenta. The meson momentum qm = pb − pb′ is given by four-
momentum conservation across the vertex.
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etc., and depending on the specific reaction, it may also carry
Lorentz indices [see Eq. (11) below, and also the example
in Sec. IV.] The three kinematic situations in which this
vertex appears in Fig. 1 are then uniquely identified by the
Mandelstam variables of the exchanged intermediate hadron,

s = (p + k)2 = (p′ + q)2, (3a)

u = (p′ − k)2 = (p − q)2, (3b)

t = (q − k)2 = (p − p′)2, (3c)

and we will use

Ft = F (p′,p), Fu = F (p′ − k,p), Fs = F (p′,p + k)
(4)

to abbreviate the corresponding vertices, and generically write
Fx for x = s,u,t .

A. Generalized Ward-Takahashi identities

First, to set the stage for the Regge treatment, we will
recapitulate how the local gauge-invariance requirements
differ from mere current conservation, i.e., global gauge
invariance.

To preserve local gauge invariance for the photoprocess (1)
the following set of off-shell four-divergence relations need
to be satisfied [22,24,25]. At the very base are the Ward-
Takahashi identities (WTI) [38,39] for the individual elec-
tromagnetic currents Jμ of mesons (index m) and baryons
(indices b′ or b),

kμJμ
m (q,q − k) = �−1

m (q)Qm − Qm�−1
m (q − k), (5a)

kμJ
μ
b′ (p′,p′ − k) = S−1

b′ (p′)Qb′ − Qb′S−1
b′ (p′ − k), (5b)

kμJ
μ
b (p + k,p) = S−1

b (p + k)Qb − QbS
−1
b (p), (5c)

where �m(q), Sb′ (p′), and Sb(p) are the respective propagators
for the meson and baryons, with arguments providing their
four-momenta, and Qm, Qb′ , and Qb denoting their associated
charge operators. The photoproducton current Mμ of Eq. (1)
must satisfy the generalized WTI (gWTI) [21,22],

kμMμ = �−1
m (q)Qm�m(q − k) Ft

+ S−1
b′ (p′)Qb′Sb′ (p′ − k)Fu

−Fs Sb(p + k)QbS
−1
b (p), (6)

and, finally, the interaction current M
μ
int needs to satisfy the

condition,

kμM
μ
int = Qm Ft + Qb′ Fu − Fs Qb. (7)

In view of the isospin dependence of the vertices, charge opera-
tors and vertices do not commute. Note that the right-hand side
vanishes here identically if all vertices are replaced by simple
coupling constants for we have then Fx → gτ , where g is
the coupling constant and τ generically denotes the isospin
operator of the vertex, and hence Qmτ + Qb′τ − τQb ≡ 0
provides charge conservation across the photoprocess [22].
In a manner of speaking, therefore, Eq. (7) amounts to
the formulation of the effective charge difference across the
reaction in the presence of hadronic vertices with structure.

It is of paramount importance here that all three four-
divergence equations are off-shell relations, and that the
off-shellness is a necessary requirement for local gauge
invariance [22] because it ensures that the (off-shell) current
Mμ provides the correct, consistent contributions to gauge
invariance even if it is embedded as an off-shell subprocess in
a larger process (for example, electromagnetic production of
two or more mesons [28,40]).

With the off-shell WTIs (5) and (6) given, global gauge
invariance follows trivially by taking the respective on-shell
matrix elements, with the inverse propagators in the four-
divergences (5) and (6) then ensuring that the four-divergences
vanish; in particular,

kμMμ = 0 (on shell). (8)

To be sure, this is a necessary condition the physical production
current needs to satisfy that follows trivially from local gauge
invariance, however, this on-shell restriction by itself contains
no information that allows one to meaningfully “guess” at a
nontrivial structure for Mμ. Thus, it is ill-suited to be used
as a starting point for restoring gauge invariance destroyed by
approximations.

The proper starting point should be the set of off-shell
equations (5), (6), and (7). One easily sees here that only
two—any two—of these conditions are necessary to ensure
the validity of the respective third equation. For the practical
purpose of restoring gauge invariance, it is easiest to work
with Eqs. (5) and (7). In any microscopic formulation of
photoprocesses, the single-hadron WTIs (5) are a given from
the start. Therefore, to obtain the gWTI (6) for the full
production current Mμ and thus ensure the preservation of
local gauge invariance, one needs to construct an interaction
current M

μ
int that satisfies Eq. (7). Note, in particular, that

the structure of this equation does not change even if the
external hadrons are on shell, and thus—quite in contrast to
the current-conservation condition (8)—even its on-shell limit
provides a nontrivial constraint that ensures that the on-shell
result (8) is a consequence of local gauge invariance and not
just mere global gauge invariance.

1. t-Channel contribution

To see what needs to be done to restore gauge invariance
in the Regge case, let us first look at how the usual t-channel
term as depicted by the third diagram in Fig. 1 contributes to
upholding local gauge invariance.

Using the momenta of the diagram and stripped of all
unnecessary factors, it reads

M
μ
t = Jμ

m (q,q − k)�m(q − k)Ft , (9)

and its four-divergence is given by

kμM
μ
t = �−1

m (q)Qm�m(q − k)Ft − QmFt . (10)

The first term on the right-hand side is precisely the first
term appearing on the right-hand side of the gWTI (6); the
second term involving only the vertex, but no propagator,
is canceled by the first term on the right-hand side of the
interaction-current condition (7). Similar cancellations happen
for the respective contributions from all three polar current
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contributions and this cancellation mechanism ensures the
validity of the full gWTI—and thus of local gauge invariance—
once Eqs. (5) and (7) are satisfied.

It is this cancellation mechanism that will be exploited in
the subsequent Regge treatment.

III. GAUGE-INVARIANT REGGE TREATMENT

First, let us write the hadronic b → m + b′ vertex (see
Fig. 2) as2

F (pb′ ,pb) = G(qm)τ f
(
q2

m,p2
b′ ,p

2
b

)
, (11)

where the outgoing meson four-momentum qm is given by
qm = pb − pb′ in terms of the incoming and outgoing baryon
momenta. The operator G describing the coupling structure
of the vertex subsumes as necessary all strength parameters,
masses, signs, gamma matrices, etc.; in the simplest case it
is just a constant, but in more complicated cases it contains
derivatives of the outgoing meson field which lead to the qm

dependence. The extended structure of the vertex is given by
the scalar form factor f normalized as

f
(
M2

m,M2
b′ ,M

2
b

) = 1, (12)

where the squared momenta of (11) sit on there respective
mass shells. The operator τ summarily describes the isospin
dependence of the vertex, with relevant indices suppressed.
Combined with the respective charge operators Q for the three
legs of the vertex, one obtains [22]

Qmτ = em, Qb′τ = eb′ , τQb = eb, (13)

where

em + eb′ − eb = 0 (14)

provides charge conservation across the reaction. Taken in an
appropriate isospin basis, the charge-isospin operators em, eb′ ,
and eb are equal to the respective charges of the individual
legs.

We will need only on-shell kinematics here where all
external hadron legs of Fig. 1 sit on their respective mass shells.
The form factors associated with the vertices Fx , x = s,u,t ,
for these cases are

fs(s) = f
(
M2

m,M2
b′ ,s

)
, (15a)

fu(u) = f
(
M2

m,u,M2
b

)
, (15b)

ft (t) = f
(
t,M2

b′ ,M
2
b

)
, (15c)

where the Mandelstam variables (3) are used. The t-channel
vertex, in particular, then reads

Ft = F (p′,p) = G(q − k) τ ft (t), (16)

and for the corresponding meson-exchange propagator, we
may write without lack of generality,

�m(q − k) = Nm(q − k)

t − M2
m

, (17)

2For a more general description of the vertex, see discussion in the
Appendix.

where the pole at t = M2
m was pulled out explicitly and the

residual numerator Nm(q − k) defined by this relation may
describe dressing effects and/or the coupling structure of
the propagator. In the simplest cases, Nm equals unity for
pseudoscalar mesons and −gβα for vector mesons (in Feynman
gauge), for example.

Standard Reggeization of the t-channel meson exchange
corresponds to the replacement [5–12],

1

t − M2
m

ft (t) → Pm(t), (18)

wherePm(t) is the Regge-trajectory propagator appropriate for
this particular meson exchange. By construction (see details
Sec. III A), it contains poles at higher-lying meson masses
along this particular trajectory, in addition to the primary pole
at the base of the trajectory at t = M2

m of (17). Moreover, the
residue at this primary pole,

lim
t→M2

m

(
t − M2

m

)Pm(t) = 1, (19)

is exactly the same as that of the left-hand side of (18). The
residual function,3

Ft (t) = (
t − M2

m

)Pm(t), (20)

thus, is finite and normalized to unity at t = M2
m, just like the

usual t-channel form factor ft (t). Details of Ft will be given
in the subsequent Sec. III A.

The Reggeized t-channel current now reads

M
μ
t → Mμ

t = Jμ
m (q,q − k) �m(q − k) FR,t (p

′,p), (21)

where

FR,t (p
′,p) = G(q − k) τ Ft (t) (22)

describes the Reggeized vertex, with the corresponding four-
divergence given by

kμMμ
t = �−1

m (q)Qm �m(q − k) FR,t − Qm FR,t . (23)

The first term on the right-hand side with the inverse meson
propagator depending on the external (outgoing) meson
momentum vanishes on-shell and thus provides an acceptable
contribution for gWTI in analogy to Eq. (6). The second term,
however, has no counterpart in the four-divergence (7) and
thus violates local gauge invariance (and therefore obviously
also global gauge invariance).

This violation comes about because in the Regge treatment
all particles on the trajectory are taken to couple to the
electromagnetic field with the same current J

μ
m as the primary

base state, whereas if one were to incorporate these contri-
butions via Feynman-type exchange mechanisms, each of the
higher-lying states would couple transversely to the photon
because the corresponding currents are transition currents
for the transition from intermediate higher-mass states to the
lower-mass primary base state, which is the final meson state
of the reaction, and such transverse transition currents would
not contribute to the four-divergence.

3It is this residual function that was used in Ref. [5] as an overall
multiplicative function for their gauge-invariance-restoring recipe.
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Clearly, to restore local gauge invariance, Regge treatment
of the t channel by itself is not enough—one must also
Reggeize the interaction current Mμ

int so that its four-divergence
will provide the necessary cancellation of the offending
contribution in (23), thus in essence restoring the transversality
of these contributions with higher mass. In other words, to
preserve local gauge invariance, one must apply the Reggeiza-
tion process consistently across all elements of the production
current Mμ. Because t-channel-type exchanges also contribute
(as off-shell processes) to the internal mechanisms of M

μ
int, an

appropriate Reggeization of such internal exchanges will then
provide the cancellation for the offending term in Eq. (23).

Obviously then, treating Regge consistently with local
gauge invariance simply entails consistently replacing the
usual t-channel vertex Ft by the Reggeized vertex FR,t ev-
erywhere. In addition to the Reggeized t-channel current (21),
this also requires modification of the contact current,

Ft → FR,t : M
μ
int → Mμ

int, (24)

such that the Reggeized contribution from the corresponding
four-divergence,

kμMμ
int = Qm FR,t + Qb′ Fu − Fs Qb, (25)

now cancels the previously gauge-invariance-violating term
from (23).

The resulting Reggeized photoamplitude,

Mμ → Mμ = Mμ
s + Mμ

u + Mμ
t + Mμ

int, (26)

then, by construction, satisfies the appropriate gWTI,

kμMμ = �−1
m (q)Qm�m(q − k) FR,t

+ S−1
b′ (p′)Qb′Sb′ (p′ − k)Fu

−Fs Sb(p + k)QbS
−1
b (p), (27)

and thus is fully consistent with local gauge invariance.
The construction of the Reggeized contact currentMμ

int that
produces the correct four-divergence (25) from the Reggeized
vertex FR,t follows exactly along the same lines as those given
for un-Reggeized contact currents M

μ
int [24]. The procedure is

straightforward, and we provide the corresponding generic ex-
pressions for the minimal interaction current that restores local
gauge invariance in the Appendix. However, to understand how
it works, it might be more illuminating to consider an example.
To this end, we discuss in Sec. IV a strangeness-production
process with a Kroll-Ruderman-type [41] bare contact current.

A. Regge residual function

To provide explicit expressions for the residual func-
tion (20), it is convenient to rewrite the standard expressions
for positive- and negative-signature Regge propagators given
in Refs. [1,5] to obtain the unified form,

Ft (t) =
(

s

ssc

)αλ(t)
N [αλ(t); η]


(1 + αλ(t))

παλ(t)

sin(παλ(t))
, (28)

where the functions,

αλ(t) = α′
λ

(
t − M2

λ

)
, for λ = 0,1, (29)

are related to the usual Regge trajectories by

αζ (t) =
{

α0(t), for ζ = +1,

1 + α1(t), for ζ = −1.
(30)

Here, the signature for pseudoscalar mesons is ζ = +1 (corre-
sponding to λ = 0) and ζ = −1 (corresponding to λ = 1) for
vector mesons. The masses Mλ here are the lowest masses at
the bases of the respective trajectories, with their slopes given
by α′

λ. For these base states, at t = M2
λ , the residual function

thus is given by a manageable 0/0 situation.
Even though Ft is also s dependent analytically through

the scale factor (s/ssc)αλ(t), this is irrelevant for our purposes
because for a given experiment, s is fixed, and we may consider
Ft as a function of t for fixed s. The exponential scale factor
suppresses the Regge contribution for s > ssc for (negative)
physical values of t ; the scale parameter ssc usually is chosen
as ssc = 1 GeV2.

The signature function N appears here as

N [αλ(t); η] = η + (1 − η)e−iπαλ(t), (31)

where η is a real parameter whose three standard values are

η =

⎧⎪⎨
⎪⎩

1
2 , pure-signature trajectories,

0, add trajectories: rotating phase,

1, subtract trajectories: constant phase.

(32)

In the pure-signature case (η = 1/2), N vanishes for every
odd integer value of αλ(t), thus leaving only the even integer
values to produce poles in (28). This corresponds to even and
odd angular momenta,

α+ = 0,2,4, . . . and α− = 1,3,5, . . . , (33)

associated with the states along the respective positive- or
negative-signature trajectories. Equation (31) also subsumes
treatment of strongly degenerate trajectories [1,5], where
the rotating phase (η = 0) results from adding degenerate
trajectories and the constant phase (η = 1) arises from
subtracting them. Which case applies is largely determined
semiphenomenologically by G-parity arguments [5].

Going beyond these standard cases, because the signa-
ture function is largely phenomenological anyway, one may
consider η as a convenient interpolating fit parameter for
optimizing the description of data for the value range 0 �
η � 1. Note that exp(−iπαλ) in (31) is +1 at the poles of
the primary trajectory and −1 at the poles of the added or
subtracted secondary (degenerate) trajectory. Hence, taking
into account the minus sign arising from the negative slope
of the denominator sine function in (28) at those secondary
poles, this effectively changes the coupling strength for the
latter exchange by the factor (1 − 2η) that can vary between
+1 and −1; it is positive or negative depending on whether its
degeneracy effect is more additive or subtractive, respectively.
The coupling strength of the primary trajectory remains
unchanged. Clearly, if the strong-degeneracy hypothesis is
warranted for a particular application, fitted values of η should
come out close to either 0 or 1.

At the base of the trajectories, one has

N
[
αλ

(
M2

λ

)
; η

] = 1, (34)
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for any value of η, thus ensuring the validity of the necessary
condition,

Ft

(
M2

λ

) = 1, (35)

for both λ = 0,1 for the residue of the corresponding Regge
propagators. The fact that the Regge residue function Ft thus
preserves the normalization of the standard form factor ft is
crucial for the construction of the gauge-invariance-preserving
contact current, as will be seen explicitly in the following
example.

IV. EXAMPLE: γ + p → K+ + �∗0

In this reaction only the incoming proton and the outgoing
kaon carry charge. Hence, extracting the isospin operators
from the respective vertices, the relevant charge parameters
are (in an appropriate isospin basis)

Qb′τ → e� = 0, Qmτ → eK = e, τQb → ep = e,
(36)

where e is the fundamental charge unit, and charge conserva-
tion obviously reads

e� + eK = ep or eK = ep. (37)

Hence, as far as gauge invariance is concerned, only s
and t channels and a contact term contribute. It suffices to
consider this as an on-shell process if the corresponding
un-Reggeized amplitude is constructed already such that it
obeys the appropriate gWTI. Moreover, we can ignore all
possible resonance contributions and other meson exchanges
because they do not contribute to the four-divergence (for a
more complete discussion; see Ref. [17]). The only relevant
exchange particles are the proton (with mass MN ) in the s
channel and the kaon K+ (with mass MK ) in the t channel.

The p → K+�∗0 vertices for the s- and t-channel terms
are given by [17]

Fs → Fν
s = gτ qνfs(s), (38a)

Ft → Fν
t = gτ (q − k)νft (t), (38b)

with scalar form factors fx (x = s,t) normalized as

fs

(
M2

N

) = 1 and ft

(
M2

K

) = 1. (39)

The constant g subsumes all coupling constants, mass factors,
signs, etc., τ generically describes the isospin dependence, and
qν and (q − k)ν are the operators for s and t channels, respec-
tively, providing coupling to the spin-3/2 Rarita-Schwinger
spinor of the outgoing �∗0 baryon.

The resulting current reads

Mνμ = Mνμ
s + M

νμ
t + M

νμ
int , (40)

where the Lorentz indices μ and ν connect to the incoming
photon state and the outgoing Rarita-Schwinger spinor, re-
spectively. Assuming validity of the single-particle WTI for
the proton and the kaon (which are trivially true), Mνμ is
locally gauge invariant, according to (7), if the interaction
current satisfies

kμM
νμ
int = QKFν

t − Fν
s Qp = eKg (q − k)νft − epg qνfs.

(41)

Then, explicitly writing out the t-channel contribution,

M
νμ
t = (2q − k)μQK

t − M2
K

F ν
t

= eKg
(2q − k)μ

t − M2
K

(q − k)νft , (42)

we see that its (on-shell) four-divergence contribution,

kμM
νμ
t = −QKFν

t = −eKg (q − k)νft , (43)

is canceled by the t-channel term in (41). A similar finding
for the s channel shows that the validity of (41) is both
necessary and sufficient for making the current Mνμ locally
gauge invariant.

In the structureless limit, when all form factors are unity,
the bare interaction current m

νμ
c also must satisfy the analog

of (41), i.e.,

kμmνμ
c = eKg (q − k)ν − epg qν = kμ(−eKg gνμ), (44)

which shows that the minimal interaction current is given by

mνμ
c = −eKg gνμ. (45)

This is precisely the contact current resulting from the usual
four-point contact Lagrangian for the present process. This
result is seen here to be an immediate consequence of local
gauge invariance.

To construct the corresponding minimal interaction current,
we adapt the generic expression (A1) provided in the Appendix
to the present case and obtain

M
νμ
int = −eKg gνμft (t) + g qνCμ. (46)

The auxiliary contact current,

Cμ = −eK (2q − k)μ
ft − 1

t − M2
K

fs − ep(2p + k)μ
fs − 1

s − M2
N

ft

+ Â(s,t)(1 − ft )(1 − fs)

×
[
eK

(2q − k)μ

t − M2
K

+ ep

(2p + k)μ

s − M2
N

]
, (47)

follows from Eq. (A2). It was derived from imposing local
gauge-invariance requirements in the presence of vertices with
structure [22,24]. In view of the normalizations (39), this
current is manifestly nonsingular. The function Â(s,t) in front
of the manifestly transverse term here is a phenomenological
(complex) function that must vanish at high energies, but
otherwise can be freely chosen to improve fits to the data.

It is now a trivial exercise to show that

kμCμ = eKft − epfs, (48)

and thus the interaction current (46) indeed provides the correct
four-divergence (41) to ensure local gauge invariance.

We emphasize in this context that the contact-type inter-
action current constructed here provides only the minimal
structure necessary for maintaining local gauge invariance.
If the physics of the problem should make it necessary to
consider additional current contributions, they can only arise
from additional manifestly transverse currents and thus do not
contribute when taking the four-divergence of the current.
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1. Regge-trajectory exchange

To Reggeize the K+ exchange of the present example, the
explicit expression in analogy to (18) reads [5]

ft

t − M2
K

→ Ft

t − M2
K

, (49)

with the residual function given by (28) for λ = 0, where

α0(t) = t − M2
K

�tK
(50)

is the kaonic Regge trajectory, with slope

α′
0 = 1

�tK
= 0.7 GeV−2, (51)

which puts the Regge states at

t → tn = M2
K + n�tK, for n = 0,1,2, . . . (52)

For pure pseudoscalar signature (ζ = +1 ⇒ η = 1/2), only
even values are realized on the trajectory; for all other values
of η, all states contribute.

The Reggeized t-channel current reads now

M
νμ
t → Mνμ

t = eKg
(2q − k)μ

t − M2
K

(q − k)νFt , (53)

with the associated modified interaction current,

M
νμ
int → Mνμ

int = −eKg gνμFt + g qνCμ, (54)

and modified auxiliary current,

Cμ → Cμ = −eK (2q − k)μ
Ft − 1

t − M2
K

fs

− ep(2p + k)μ
fs − 1

s − M2
N

Ft

+ Â(s,t)(1 − ft )(1 − fs)

×
[
eK

(2q − k)μ

t − M2
K

+ ep

(2p + k)μ

s − M2
N

]
. (55)

Despite the Reggeization of the t-channel form factor, because
of the limit (35), this current is still nonsingular as far as the
primary propagator singularities here are concerned. Note in
this respect that there is no reason to replace ft by Ft in the
last term because this current piece is manifestly transverse
and does not contribute to the four-divergence. However, no
harm would result if one did replace it because the difference
can be absorbed in redefining Â.

The auxiliary current Cμ now does have higher-mass
singularities at unphysical t > 0 from the Regge trajectory
but those are necessary to compensate the corresponding
higher-mass contributions from the t-channel exchange which
have the wrong electromagnetic coupling that led to the
violation of gauge invariance.

It is obvious now that the Reggeized production current for
this process,

Mνμ → Mνμ = Mνμ
s + Mνμ

t + Mνμ
int , (56)

by construction does indeed satisfy the generalized Ward-
Takahashi identity for this process and thus provides a

conserved current,

kμMνμ = 0 (on shell), (57)

as a matter of course.

V. SUMMARY AND DISCUSSION

We have considered here a mechanism to repair gauge
invariance broken by Reggeization of t-channel meson
exchanges in single-meson photoproduction off a baryon.
Consistent with the underlying field-theoretical foundations
of such processes [22], we have argued that this must be
done by constructing contact-type interaction currents whose
four-divergence compensates for the wrong coupling to the
electromagnetic field of higher-mass contributions of the
Regge trajectory that is responsible for the violation of
gauge invariance. The construction principle was based on
the underlying generalized Ward-Takahashi identities whose
validity ensure local gauge invariance.

We emphasize once more in this respect that mere (on-
shell) current conservation, kμMμ = 0, is not very helpful
as a starting point for repairing gauge-invariance violations.
As argued, the goal of any repair mechanism must be
the construction of an interaction current M

μ
int that satisfies

the crucial four-divergence condition (7) for this interaction
current. The resulting local gauge-invariance property will
then automatically ensure a conserved on-shell current Mμ.

The present way of maintaining local gauge invariance in
terms of a Regge form factor Ft to replace the usual t-channel
cutoff function ft shows that when viewed from the Feynman
perspective, the Regge approach basically can be understood
as a prescription for the functional form of the t-channel form
factor. Numerical tests show that at (negative) physical t (and
fixed s), the main features ofFt that survive are the exponential
scale factor and the phase function,

St (t) =
(

s

ssc

)αλ(t)

N [αλ(t); η]. (58)

This exponential function falls off faster than any power-law
form factor and thus compared to a conventional phenomeno-
logical form factor drastically cuts out the high-|t | (i.e.,
backward-angle) scattering contributions.

The onset of the “Regge regime” is oftentimes very much
under debate in practical applications, in particular, if Regge
exchanges are employed at intermediate-energy ranges within
hybrid approaches as discussed here that mix Regge with
the traditional Feynman picture. In this situation, it seems
natural to consider mechanisms for smooth transitions into
that regime [10]. An interpolating mechanism like FR,t =
Ft R + ft (1 − R), for example, that determines an effective
t-channel form factor FR,t somewhere between its non-
Regge (ft ) and Regge (Ft ) limits in terms of an (s- and
t-dependent) interpolating function R can be fine-tuned to the
requirements of particular applications [10,13]. Hence, fitting
the interpolation parameters to experimental data lets the data
“decide” to what extent Regge exchanges should be necessary
for a particular process at a particular photon energy. Because
this would take much of the contention out of the debate, we
strongly advocate employing such interpolation schemes. This
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may be especially advisable for energy ranges where details of
baryon-resonance structure may still play a role. Clearly, the
procedure outlined here is not affected by such an interpolation
scheme because FR,t is normalized to unity by construction
and may thus be used for building a contact current, just like
ft or Ft .

A similarly useful interpolation procedure is provided
by the η dependence of the signature function N [αλ(t); η]
of Eq. (31) that allows for the smooth transition from the
pure-signature case to the two limiting cases of adding or
subtracting degenerate trajectories and thus, again, lets the
data decide which description is better suited for a given
application.

One should point out that fixing local gauge invariance as
presented here does not imply that the resulting expressions
will automatically provide good results for the problem at
hand. It merely means that whatever is missing for a good
description will not be because of a violation of local gauge
invariance. In other words, anything that should be found
lacking in this respect would necessarily be resulting from
manifestly transverse current mechanisms not relevant for
local gauge invariance.

The locally gauge-invariant Reggeization procedure out-
lined here is currently being applied to describe Jefferson
Lab data [42] for γ + n → K+ + �∗(1385)− at photon
energies between 1.5 and 2.5 GeV. The preliminary results are
encouraging; the full report will be published elsewhere [43].

Finally, we mention once more that the procedure given
here can also be used for the Reggeization of the u channel
in terms of baryonic Regge trajectories. With the details given
here, it should be quite obvious how to implement this for
the u channel in a locally gauge-invariant manner (see also
footnote 1).
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APPENDIX: GENERIC MINIMAL INTERACTION
CURRENT

To make the present paper self-contained, we provide in this
Appendix the generic expression for the minimal interaction
current necessary for preserving local gauge invariance in the
process (1). We largely follow here Ref. [24], but we provide
additional clarification about constraints on the parameter ĥ
introduced in Ref. [24]. Also, as it is sufficient for the present
purpose, we assume on-shell kinematics (for the off-shell case;
see Ref. [24]). The variables used in the following are those of
Fig. 1.

The minimal interaction current appropriate for the
hadronic vertex of the form (11) reads [24]

M
μ
int = mμ

c ft (t) + G(q) Cμ, (A1)

where m
μ
c is a Kroll-Ruderman-type bare contact current re-

sulting from an elementary four-point Lagrangian appropriate
for the reaction under consideration. The effect of this current
is to make the photoprocess of Fig. 1 locally gauge invariant if
all scalar form factors fx are put to unity. The auxiliary current
Cμ is given by [24]

Cμ = −em(2q − k)μ
ft − 1

t − M2
m

(δsfs + δufu − δsδufsfu)

− eb′ (2p′ − k)μ
fu − 1

u − M2
b′

(δtft + δsfs − δt δsftfs)

− eb(2p + k)μ
fs − 1

s − M2
b

(δufu + δtft − δuδtfuft )

+ Â(s,u,t)(1 − δsfs)(1 − δufu)(1 − δtft )

×
[
em

(2q − k)μ

t − M2
m

+ eb′
(2p′ − k)μ

u − M2
b′

+ eb

(2p + k)μ

s − M2
b

]
,

(A2)

where the factors δx (x = s,u,t) are unity if the corresponding
channel contributes to the reaction in question, and zero
otherwise. This contact current is manifestly nonsingular
because the form factors become unity at the respective
poles thus providing well-defined 0/0 situations. The function
Â(s,u,t) is an arbitrary (complex) phenomenological function,
possibly subject to crossing symmetry constraints, that must
vanish at high energies. The expression here follows from
Eq. (31) of Ref. [24] choosing the function ĥ appearing there as
ĥ = 1 − Â. The vanishing high-energy limit of Â is necessary
to prevent the “violation of scaling behavior” noted in Ref. [44]
if ĥ is different from unity at high energies.

The Â-dependent term in Eq. (A2) is easily seen to be
manifestly transverse in view of the charge-conservation rela-
tion (14) and therefore not necessary for preserving local gauge
invariance. However, it provides added flexibility when fitting
data. In principle, of course, any transverse (nonsingular)
current may be added to the right-hand side of (A1) without
affecting gauge invariance.

The four-divergence of Cμ evaluates to

kμCμ = em ft + eb′ fu − eb fs. (A3)

In deriving this result repeated use was made of the charge-
conservation relation (14). This is the scalar form of the
generalized Ward-Takahashi identity (7) for the interaction
current. The right-hand side here vanishes for structureless
particles where all form factors are replaced by unity.

For the entire interaction current (A1) one then finds

kμM
μ
int = [

kμmμ
c + em G(q)

]
ft + eb′ G(q)fu − eb G(q)fs.

(A4)

Because the structureless contact current m
μ
c also must satisfy

the gWTI (7) with all form factors replaced by unity, we have

kμmμ
c = emG(q − k) + eb′ G(q) − ebG(q)

= emG(q − k) − emG(q). (A5)

Equation (A4) then reads

kμM
μ
int = em G(q − k)ft + eb′ G(q)fu − eb G(q)fs, (A6)
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which is the full gWTI (7) with structure for the vertex of the
form (11).

1. Beyond model treatment

We mention without going into much detail here that one
may generalize the vertex (11) by employing an expansion of
the form,

F (pb′ ,pb) = τ
∑

i

λi Gi(qm)fi

(
q2

m,p2
b′ ,p

2
b

)
, (A7)

where the sum extends over all possible coupling operators
Gi , each with its own (normalized) form factor fi such
that the mixing parameters λi add up to unity,

∑
i λi = 1.

In principle, one may even consider a formulation where
the scalar functions fi are no longer phenomenological
suppression functions, but are determined within a consistent
dynamical framework. Depending on the sophistication of this

framework, the expansion (A7) then may be made arbitrarily
close to a complete dynamical description for the three-point
vertex b → m + b′.

To accommodate the combination vertex (A7) with more
than one coupling operators Gi , one needs bare currents m

μ
c,i

for each one satisfying a separate gWTI like (A5) and leading
to, in particular,

kμm
μ
c,i = emGi(q − k) − emGi(q). (A8)

The analog of the interaction current ansatz (A1) then is

M
μ
int =

∑
i

λi

[
m

μ
c,ifi,t + Gi(q)Cμ

i

]
, (A9)

where fi,t is the form factor fi in the t channel and C
μ
i is

like (A2) using fi alone. Everything then goes through as
before, and so this current obviously satisfies the correct gWTI
for the vertex (A7) and thus preserves local gauge invariance
by construction.
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