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Interaction of the vector-meson octet with the baryon octet in effective field theory
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We analyze the constraint structure of the interaction of vector mesons with baryons using the classical
Dirac constraint analysis. We show that the standard interaction in terms of two independent SU(3) structures
is consistent at the classical level. We then require the self-consistency condition of the interacting system in
terms of perturbative renormalizability to obtain relations for the renormalized coupling constants at the one-loop
level. As a result we find a universal interaction with one coupling constant which is the same as in the massive
Yang-Mills Lagrangian of the vector-meson sector.
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I. INTRODUCTION

The ground-state baryon octet as well as the vector-meson
octet played a vital role in shaping our understanding of
the symmetries of the strong interactions (for an overview,
see, e.g., Ref. [1]). According to Coleman’s theorem [2],
the multiplet structure of the light hadrons is related to an
approximate SU(3) symmetry of the ground state of QCD. In
fact, in the limit of massless up, down, and strange quarks,
the QCD Lagrangian exhibits a chiral SU(3)L × SU(3)R
symmetry, which is assumed to be dynamically broken down
to SU(3)V in the ground state. As a result of this mechanism
one expects the appearance of eight massless Goldstone
bosons [3–5], which are identified with the members of the
pseudoscalar meson octet. The masses of the pseudoscalars
in the real world are attributed to an explicit chiral symmetry
breaking due to the finite quark masses. The masses of hadrons
other than the Goldstone bosons stay finite in the chiral limit.

Symmetry considerations not only affect the spectrum
of QCD but also put constraints on the interaction among
hadrons. The dynamics of hadrons may be described in terms
of an effective field theory [6]. To that end, one considers
the most general Lagrangian compatible with the symmetries
of the underlying theory. Given a power-counting scheme,
one may then calculate observables in terms of perturbation
theory or, alternatively, by applying nonperturbative methods
such as solving integral equations. While the interaction
of the pseudoscalar octet (π,K,η) with the baryon octet
is largely constrained by spontaneous symmetry breaking
(see, e.g., Ref. [7]), this is not the case for the coupling of
the vector-meson octet to the baryon octet. Moreover, when
describing the dynamics of vector mesons in a Lagrangian
framework, one inevitably faces the following challenge.
Effective Lagrangians for vector particles (spin S = 1, parity
P = −1) are constructed with Lorentz four-vector fields V μ

or antisymmetric tensor fields Wμν = −Wνμ with four and
six independent fields, respectively (see, e.g., Refs. [8,9]).
Therefore, one imposes constraints which, for an interacting
theory, may lead to relations among the coupling constants of
the Lagrangian. For example, by applying a Dirac constraint
analysis [10] to the interaction of the pion triplet with the
delta quadruplet, it was shown in Ref. [11] that the number
of independent coupling constants reduces from three at the

Lagrangian level to a single coupling. Additional constraints
beyond the consistency at the classical level may be obtained
if we require the theory to be perturbatively renormalizable
in the sense of effective field theory [12]. An investigation
of this type for the pure vector-meson sector results in a
massive Yang-Mills theory [13–15]. All case studies found
a reduction in the number of parameters which seemed to be
independent from the point of view of constructing the most
general Lagrangian. This is of particular importance when
working with purely phenomenological Lagrangians, because
one is likely to introduce more structures, and thus seemingly
free parameters, than allowed by a self-consistent treatment.

In the present article, we want to focus on the lowest-order
effective Lagrangian for the interaction of the vector-meson
octet with the ground-state baryon octet. For that purpose, in
Sec. II, we will summarize the idea of the Dirac constraint
analysis. In Sec. III, we define the relevant Lagrangians and
then apply the Dirac constraint analysis in Sec. IV. In Sec. V,
we investigate the constraints resulting from renormalizability
in the sense of effective field theory at the one-loop level. Our
results are summarized in Sec. VI. Some technical details are
relegated to the appendixes.

II. REVIEW OF THE DIRAC CONSTRAINT ANALYSIS

A common procedure for the quantization of a classical sys-
tem with given symmetries is to first construct the Lagrangian
of the system, which is assumed to be invariant under the
corresponding transformation of the dynamical variables, and
then to perform the transition to the Hamiltonian in terms of
a Legendre transformation. On the one hand, the Lagrangian
formalism is suitable for satisfying Lorentz invariance and
other symmetries, on the other hand, the Hamiltonian formal-
ism is needed to calculate the S matrix [12]. For a system
including constraints, we perform the transition from the
Lagrangian to the Hamiltonian by applying Dirac’s constraint
analysis to be discussed below [10,16,17]. The quantization
of the constrained system is performed using path-integral
methods [13,16,17].

In the following, we will summarize Dirac’s constraint
analysis in terms of a classical system with a finite number
N of degrees of freedom (DOF). To start with, we consider a
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Lagrange function L(q,q̇) which depends on N coordinates qi

and the corresponding velocities q̇i = dqi

dt
, collectively denoted

by q and q̇, respectively. We assume that L does not explicitly
depend on time and that the q̇i appear in monomials of maximal
degree 2 in L:

L(q,q̇) = 1
2Aij (q)q̇i q̇j + bi(q)q̇i + c(q), (1)

where Aij = Aji , i.e., A = (Aij ) is a symmetric N × N
matrix, A = AT . To perform the transition to the Hamilton
formalism, one needs to introduce the momenta pi conjugate
to the coordinates qi ,

pi = ∂L(q,q̇)

∂q̇i

= Aij (q)q̇j + bi(q), (2)

or

p(q,q̇) = A(q)q̇ + b(q). (3)

Because the Hamiltonian is a function of (q,p), one needs to
be able to invert Eq. (2) to go over from the set of dynamical
variables (q,q̇) to (q,p). To uniquely solve Eq. (3) for the
velocities, the existence of the inverse matrix A−1 is required,

q̇ = A−1(p − b), (4)

where

Aij = ∂

∂q̇j

pi = ∂

∂q̇j

∂L

∂q̇i

= ∂2L

∂q̇j ∂q̇i

= ∂2L

∂q̇i∂q̇j

= Aji. (5)

In other words, for a unique description of the velocities in
terms of the momenta, the Jacobian matrix ∂(q,p)/∂(q,q̇)
cannot be singular, i.e.,

det

(
∂2L

∂q̇i∂q̇j

)
(6)

cannot vanish. However, in the case that the determinant
vanishes, the theory is singular and one cannot pass from
the Lagrange function to the Hamiltonian formulation in the
standard manner. In this case, we make use of a method
originally proposed by Dirac [10].

In a singular system, we are not able to determine all
velocities as functions of the coordinates and the independent
momenta. Let the unsolvable q̇i be the first M velocities
q̇1, . . . ,q̇M . The so-called primary constraints occur as follows.
The Lagrange function L can be written as

L(q,q̇) =
M∑
i=1

Fi(q)q̇i + G(q,q̇M+1, . . . ,q̇N ), (7)

from which we obtain as the canonical momenta

pi =
{

Fi(q) for i = 1, . . . ,M,
∂G(q,q̇M+1,...,q̇N )

∂q̇i
for i = M + 1, . . . ,N.

(8)

The first part of Eq. (8) can be reexpressed in terms of the
relations

φi(q,p) = pi − Fi(q) ≈ 0, i = 1, . . . ,M, (9)

which are referred to as the primary constraints. Here, φi ≈ 0
denotes a weak equation in Dirac’s sense, namely, that one

must not use one of these constraints before working out a
Poisson bracket [10]. Using

H (q,p) =
N∑

i=1

piq̇i − L(q,q̇), (10)

we consider the so-called total or extended Hamilton func-
tion [10]

HT (q,p) =
N∑

j=M+1

pj q̇j (p,q)−G(q,q̇M+1(p,q), . . . ,q̇N (p,q))

+
M∑
i=1

λiφi(q,p)

= H (q,p) +
M∑
i=1

λiφi(q,p), (11)

where the λi , i = 1, . . . M , are Lagrange multipliers taking
care of the primary constraints and the q̇i (p,q) are the solutions
to Eq. (8) for i = M + 1, . . . ,N .

The constraints φi , i = 1, . . . ,M , have to be zero through-
out all time. For consistency, φ̇i must also be zero. According
to this statement, the time evolution of the primary constraints
φi is given by the Poisson bracket with the total Hamilton
function, leading to the consistency conditions

{φi,HT } = {φi,H } +
M∑

j=1

λj {φi,φj } ≈ 0, i = 1, . . . ,M.

(12)

The “weak” equality sign refers to the fact that the conditions
hold only after the evaluation of Poisson brackets. Either
all the λi can be determined from these equations, or new
constraints arise. The number of these secondary constraints
corresponds to the number of λ’s (or linear combinations
thereof) which could not be determined. Again one demands
the conservation in time of these (new) constraints and tries to
solve the remaining λ’s from these equations, etc. The number
of physical degrees of freedom is given by the initial number
of degrees of freedom (coordinates plus momenta) minus the
number of constraints. For a theory to be consistent, the chain
of new constraints has to terminate such that at the end of the
procedure the correct number of degrees of freedom has been
generated. Using this consistency condition, we could have
some restrictions on the possible interactions terms.

III. LAGRANGIAN

The vector mesons are described by eight real vector fields
V

μ
a , and the spin- 1

2 baryons by eight complex Dirac fields

�a (and adjoint fields �
†
a). Let us consider an SU(3) group

element infinitesimally near to the identity element, U = (1 −
iεbλb/2), where εb are the parameters of the group element and
λb the Gell-Mann matrices. The behaviors of the fields under
the corresponding infinitesimal global SU(3) transformation
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are given by

V μ
a �→ V μ

a + fabcεbV
μ
c , (13a)

�a �→ �a + fabcεb�c, (13b)

�†
a �→ �†

a + fabcεb�
†
c , (13c)

where fabc denotes the structure constants of SU(3). Equa-
tions (13a)–(13c) express the fact that the corresponding fields
in each case transform according to the adjoint representation
as SU(3) octets.

The most general effective Lagrangian for a system of a
massive vector-meson octet interacting with a massive baryon
octet can be written as

L = L1 + L1/2 + Lint + · · · . (14)

Let us first comment on the terms which are not explicitly
shown in Eq. (14). The ellipses stand for an infinite string of
“nonrenormalizable” higher-order interactions as well as for
interactions with other hadrons. We make the assumption that
the nonrenormalizable interactions are suppressed by powers
of some large scale and concentrate, at the present time, on the
leading-order Lagrangians L1, L1/2, and Lint given by1

L1 = −1

4
VaμνV

μν
a + M2

V

2
VaμV μ

a − gfabc(∂μVaν)V μ
b V ν

c

− g2

4
fabcfadeVbμVcνV

μ
d V ν

e , (15a)

L1/2 = i

2
�̄aγ

μ∂μ�a − i

2
(∂μ�̄a)γ μ�a − MB�̄a�a, (15b)

Lint =−iGF fabc�̄aγ
μ�bVcμ+ GDdabc�̄aγ

μ�bVcμ. (15c)

We have taken these Lagrangians to be invariant under the
infinitesimal global SU(3) transformations of Eqs. (13a)–
(13c). As a result, the members of the vector-meson octet
have a common mass MV , and the mass of the baryon
octet is denoted by MB . In Eq. (15a), the field-strength
tensor is defined as Vaμν = ∂μVaν − ∂νVaμ. Moreover, for
the vector-meson self-interaction, the constraint analysis of
Refs. [14,15] has already been incorporated, leading to a
reduction from originally five independent couplings to one
single coupling g. The Lagrangian L1 is hence nothing else
but the massive Yang-Mills model. Owing to the assumed
SU(3) symmetry, the interaction between the vector-meson
octet and the baryon octet, Eq. (15c), can be parametrized
in terms of two couplings GF and GD , where dabc denotes
the d symbols of SU(3). Note that in SU(2) a structure
proportional to d symbols does not exist. The interaction
Lagrangian of Eq. (15c) represents the analog of the D and
F terms in the interaction of the Goldstone-boson octet with
the baryon octet [18]. To summarize, at the Lagrangian level
we start with a massive Yang-Mills Lagrangian for the vector

1For the sake of simplicity, we suppress subscripts 0 denoting the
bare parameters and the bare fields.

mesons involving one dimensionless coupling g as justified
in Refs. [13–15]. The interaction between the vector-meson
octet and the baryon octet contains two SU(3) structures with
couplings GF and GD .

IV. CLASSICAL CONSTRAINT ANALYSIS

The Lagrangian description of spin-1 particles in terms
of vector fields V μ contains too many degrees of freedom,
namely, four instead of three fields. In other words, we need
constraints to eliminate the redundant degrees of freedom.
We perform the transition to the Hamiltonian formulation
and investigate whether the Lagrangians of Eqs. (15a)–(15c)
lead to a consistent interaction with the correct number of
degrees of freedom. This is the case as soon as one has
obtained the appropriate number of constraint equations and
simultaneously can solve for all the Lagrange multipliers.
Moreover, to include the fermionic degrees of freedom at
a “classical” level, we treat the fields �αa and �∗

αa as
independent Grassmann fields related by formal complex
conjugation [19]. The indices α and a refer to the Dirac-spinor
components and the SU(3)-flavor components, respectively.
We will also need the corresponding generalization of the
Poisson bracket which is given in Appendix A.

Before performing the Dirac constraint analysis, let us
count the number of DOF in the Hamiltonian framework,
where the fields and the momentum fields are regarded as
independent variables. Starting from the vector fields V

μ
a

together with the conjugate momentum fields π
μ
a , we have

8 × 4 + 8 × 4 = 64 fields, whereas for 8 spin-1 fields we only
need 8 × 3 + 8 × 3 = 48 independent fields. This means that
we need to produce 16 constraints. For the spin-1/2 fields
we start with 8 × 4 + 8 × 4 = 64 fields �αa and �∗

αa and 64
conjugate momentum fields ��αa and ��∗αa . Indeed, we ex-
pect 8 × 2 × 2 (fields) plus 8 × 2 × 2 (conjugate momentum
fields) independent DOF. In other words, we need to produce
64 constraints.

In the canonical formalism the momentum field variables
conjugate to the field variables are given by

πaμ = ∂L
∂V̇

μ
a

= ∂L1

∂V̇
μ
a

, (16a)

��αa = ∂LL
∂�̇αa

= ∂LL1/2

∂�̇αa

= − i

2
�∗

αa, (16b)

��∗αa = ∂LL
∂�̇∗

αa

= ∂LL1/2

∂�̇∗
αa

= − i

2
�αa. (16c)

Here, we follow the convention of Ref. [17] and define both
conjugate momentum fields ��αa and ��∗αa in terms of
left derivatives. As a result, ��∗αa = −�∗

�αa . Using these
relations, we immediately see that the “velocities” cannot
be expressed in terms of the “momenta.” In this case, we
cannot immediately pass over from the Lagrangian description
in terms of fields and velocity fields to the Hamiltonian
description in terms of fields and momentum fields. To define
the Hamiltonian of the system, we introduce three equations
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for the so-called primary constraints [10],

θV a = πa0 + gfabcVb0Vc0 ≈ 0, (17a)

χ1αa = ��αa + i

2
�∗

αa ≈ 0, (17b)

χ2αa = ��∗αa + i

2
�αa ≈ 0, (17c)

where a = 1, . . . ,8 and α = 0,1,2,3. In these equations, a
relation such as θV a ≈ 0 denotes a weak equation in Dirac’s
sense [10], namely, that one must not use one of these
constraints before working out a Poisson bracket. In total,
Eqs. (17a)–(17c) result in 8 constraints for the vector mesons
and 8 × 4 + 8 × 4 = 64 constraints for the baryons. We
introduce a set of unknown Lagrange multiplier functions, i.e.,
{λ1αa,λ2αa,λV a}, for each constraint one Lagrange multiplier,
and define a constraint Hamiltonian (density) Hc through

Hc = λ1αaχ1αa + λ2αaχ2αa + λV aθV a. (18)

We make use of χ∗
1αa = −χ2αa and θ∗

V a = θV a , and require
Hc to be real. Noting that λ1αa , λ2αa , χ1αa , and χ2αa are all
odd functions (see Appendix A), this implies for the Lagrange
multipliers λ∗

1αa = λ2αa and λ∗
V a = λV a . The so-called total

or extended Hamiltonian (density) is constructed in terms
of a Legendre transformation and the constraint Hamiltonian
(density) Hc as

HT = H1 + H1/2 + Hint + Hc. (19)

The explicit expressions for the Hamiltonian densities are
given in Appendix B.

The requirement that Eqs. (17a)–(17c) have to be zero
throughout all time results in

{θV a,HT } = ∂iπ
i
a + M2

V Va0 − gfabcπ
i
bVci + · · ·

≡ ϑV a ≈ 0, (20a)

{χ1αa,HT } = i(∂i�
∗
βa)(γ 0γ i)βα + MB�∗

βaγ
0
βα + · · ·

+ iλ2αa = 0, (20b)

{χ2αa,HT } = i(γ 0γ i)αβ∂i�βa − MBγ 0
αβ�βa + · · ·

+ iλ1αa = 0, (20c)

where HT = ∫
d3x HT is the total Hamilton function. The

full expressions for the Poisson brackets are displayed in
Appendix C.

From Eqs. (20b) and (20c) we can solve for the Lagrange
multipliers λ2αa and λ1αa , respectively. In other words, in
the fermionic sector, we have produced the correct number
of constraints, namely, 64, and have also determined the 64
Lagrange multipliers, without any conditions for the coupling
constants GF and GD . Equation (20a) is a so-called secondary
constraint, and, therefore, we obtain 8 additional constraints.
Also these constraints have to remain conserved with time. In
fact, evaluating the Poisson bracket of ϑV a and HT results in
an equation for the Lagrange multiplier λV a [see Eq. (C2)]. By
inserting the results for the fermionic Lagrange multipliers
λ1αa and λ2αa , at this stage, we have solved for all the
Lagrange multipliers and have generated the correct number of

TABLE I. Counting the DOF for the free vector, Dirac, and
interacting theories, respectively.

Case Total DOF Constraints Physical DOF

Free vector fields 64 16 48
Free Dirac fields 128 64 64
Interacting theory 192 80 112

constraints. The results for the number of DOF are summarized
in Table I.

As a result of Dirac’s constraint analysis, at the classical
level we have a self-consistent theory with the correct number
of constraints and thus the correct number of physical DOF
without any relation among the couplings. In other words,
at the classical level, the constants g, GF , and GD may be
regarded as independent parameters.

V. RENORMALIZABILITY

We have seen in Sec. IV that, at the classical level,
the leading-order Lagrangians of Eqs. (15a)–(15c) provide
consistent interactions with the correct number of DOF. In
particular, at this stage, the coupling constants g, GF , and GD

are independent parameters of the theory. When using these
Lagrangians in perturbative calculations beyond the tree level,
we will encounter ultraviolet divergences which need to be
compensated in the process of renormalization [20]. At the
one-loop level, the perturbative renormalizability condition
states that all the divergent parts of the one-loop diagrams
must be canceled by the tree-level diagrams originating from
the corresponding counter-term Lagrangian. Since we are
working with the most general effective Lagrangian satisfying
the underlying symmetries, perturbative renormalizability in
the sense of EFT requires that the ultraviolet divergences
of loop diagrams can be absorbed in the redefinition of
the masses, coupling constants, and fields of the effective
Lagrangian [6,12]. However, it may turn out that this is
only possible if certain additional relations exist among the
coupling constants.

A. Counter-term Lagrangian

To see whether the couplings g, GF , and GD are related
through renormalizability, we investigate the vector-meson
self-energy as well as the V V V and V V V V vertex functions
at the one-loop level. To identify the counter-term Lagrangian,
we relate the bare fields �0 and V

μ
0 to the renormalized fields

� and V μ,

�0 =
√

Z��, V
μ

0 =
√

ZV V μ, (21)

and express the bare parameters and the wave-function renor-
malization constants in terms of the renormalized parameters,

g0 = g + δg, (22a)

GF0 = GF + δGF , (22b)

GD0 = GD + δGD, (22c)

MB0 = MB + δMB, (22d)
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+ + + 1 permutation

+ + 5 permutations

(b)(a)

(c)

FIG. 1. (a) Nucleon-loop contribution to the vector-meson self-
energy diagram, (b) one-loop contributions to the three-vector vertex
function, and (c) four-vector vertex function. Single and double lines
correspond to fermions and bosons, respectively.

M2
V 0 = M2

V + δM2
V , (22e)

Z� = 1 + δZ�, (22f)

ZV = 1 + δZV . (22g)

The functions δg, etc., depend on all the renormalized param-
eters and on the renormalization condition. The counter-term
Lagrangian is then given by

Lct = − 1
4δZV VaμνV

μν
a + 1

2δ{M2
V }VaμV μ

a − 1
4δ{g2}

× fabcfadeVbμVcνV
μ
d V ν

e −δ{g}fabc(∂μVaν)V μ
b V ν

c

+ i
2δZ� [�̄aγ

μ∂μ�a − (∂μ�̄a)γ μ�a] − δ{MB}�̄a�a

− iδ{GF }fabc�̄aγ
μ�bVcμ + δ{GD}dabc�̄aγ

μ�bVcμ,

(23)

where we display only those terms generated from the
Lagrangians in Eqs. (15a)–(15c). The expressions for the
counter-term functions δ{M2

V }, etc., are given in Appendix D.

B. Derivation of the conditions

We now investigate the divergent parts of all one-loop
contributions to the self-energies and the vertex functions
shown in Fig. 1.2 Omitting for simplicity both flavor and
Lorentz indices, the relations between the unrenormalized (or
bare) and renormalized proper vertex functions involving three
and four vector fields, respectively, read [21]

�R
3V = Z

3
2
V �0

3V , (24a)

�R
4V = Z2

V �0
4V , (24b)

where �0
3V and �0

4V are unrenormalized vertex functions
and ZV is the wave-function renormalization constant of
the vector field. The vertex functions and the wave-function
renormalization constant may be expanded in powers of �,

�0 = �tree + � �1 loop + O(�2), (25a)

ZV = 1 + � δZ
1 loop
V + O(�2). (25b)

2The one-loop contributions involving internal vector-meson lines
generate expressions of orders g3 and g4 which need to be canceled
by separate counter-term contributions.

Substituting Eqs. (25a) and (25b) into Eqs. (24a) and (24b),
we obtain the expansions

�R
3V = �tree

3V + �
(
�

1 loop
3V + 3

2δZ
1 loop
V �tree

3V

) + O(�2), (26a)

�R
4V = �tree

4V + �
(
�

1 loop
4V + 2δZ

1 loop
V �tree

4V

) + O(�2). (26b)

The tree-level diagrams have the following form,

�tree
3V = g0S3V , (27a)

�tree
4V = g2

0S4V , (27b)

where S3V and S4V denote both Lorentz and flavor structures.
The corresponding divergent parts of the loop diagrams in
Fig. 1 contain the same Lorentz structures. In terms of the
renormalized coupling g, the bare coupling g0 can be written
as

g0 = g + �δg1 loop + O(�2), (28)

where δg1 loop is the one-loop counter term. Using Eq. (28) in
Eqs. (27a) and (27b), we obtain from Eqs. (26a) and (26b) the
expressions

�R
3V = gS3V + �δg1 loop S3V

+ �
(
�

1 loop
3V + 3

2δZ
1 loop
V gS3V

) + O(�2), (29a)

�R
4V = g2S4V + 2�gδg1 loop S4V

+ �
(
�

1 loop
4V + 2δZ

1 loop
V g2S4V

) + O(�2). (29b)

The left-hand sides of Eqs. (29a) and (29b), i.e., �R
3V and

�R
4V , are finite. On the right-hand sides, the tree contributions,

i.e., gS3V and g2S4V , are also finite. In Eq. (29a), δg1 loop

must cancel the divergent parts of the expression inside
the parentheses, which depend on the coupling constants.
Otherwise, the theory would not be renormalizable (in the
sense of effective field theory). On the other hand, for the
same reason the same δg1 loop has to cancel the divergences
inside the parentheses of Eq. (29b), which also depend on the
coupling constants, but with a different functional form. These
two conditions for δg1 loop ultimately lead to relations among
the coupling constants. From Eqs. (29a) and (29b) we obtain
for the terms linear in � the conditions

δg1 loop S3V + (
�

1 loop
3V + 3

2δZ
1 loop
V gS3V

) = 0, (30a)

2gδg1 loop S4V + (
�

1 loop
4V + 2δZ

1 loop
V g2S4V

) = 0. (30b)

C. SU(2)

Before addressing the universality principle in SU(3), we
first want to reproduce the case of SU(2) [22]. To that end,
we consider the diagrams of Fig. 1. Introducing Lorentz
and isospin indices, the vector-meson self-energy may be
parametrized as [23]

�
μν
ij (p) = δij [gμν�1(p2) + pμpν�2(p2)]. (31)
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Using dimensional regularization, the result for the divergent
part of the self-energy diagram reads

�div
1 (p2) = − λ

12π2
g2

V NNp2, (32a)

�div
2 (p2) = λ

12π2
g2

V NN, (32b)

where λ is given by

λ = 1

16π2

{
1

D − 4
− 1

2
[ln(4π ) + �′(1) + 1]

}
, (33)

with D the number of space-time dimensions. The wave-
function renormalization constant is related to the residue
of the propagator at the pole, p2 = M2

V . In terms of the
self-energy function �1(p2) it is given by

ZV = 1

1 − �′
1

(
M2

V

) . (34)

Since we are working at one-loop order, ZV can be written as

ZV = 1 + �′
1

(
M2

V

) + O(�2), (35)

where O(�2) stands for two-loop corrections. Inserting
Eq. (32a) into Eq. (35), we have for the part proportional
to λ,

δZλ
V = − λ

12π2
g2

V NN . (36)

The divergent parts of the one-loop contributions to the three-
and four-vector vertex functions read, respectively,

�
μνρ div
ijk (p1,p2,p3)

= εijk

λ

12π2
g3

V NN [gμν(p1 − p2)ρ

+ gμρ(p2 − p3)ν + gνρ(p3 − p1)μ], (37a)

�
μνρσ div
ijkl (p1,p2,p3,p4)

= − iλ

12π2
g4

V NN [(2δij δkl − δikδjl − δjkδil)g
μνgρσ

+ (2δikδjl − δilδjk − δij δkl)g
μρgνσ

+ (2δilδjk − δikδjl − δij δkl)g
μσgνρ]. (37b)

Substituting Eq. (36) and Eqs. (37a) and (37b) in Eqs. (30a)
and (30b), we obtain the following two expressions for δgλ,

δgλ = λ

8π2
gg2

V NN − λ

12π2
g3

V NN, (38a)

δgλ = λ

12π2
gg2

V NN − λ

24π2

g4
V NN

g
. (38b)

In a self-consistent theory the two expressions for δgλ must
coincide. This is true for the trivial case gV NN = 0, i.e., for
a theory without lowest-order interaction between the vector
mesons and the nucleon. The nontrivial solution is given by

gV NN = g, (39)

which corresponds to the universality principle in SU(2). Con-
sequently, from the EFT perspective, the universal coupling

gV NN = g is a result of the consistency conditions imposed
by the requirement of perturbative renormalizability (see also
Ref. [22]).

D. SU(3)

In this section, we look for relations among the renor-
malized coupling constants GF , GD , and g of the SU(3)
Lagrangian of Eq. (14). The method is similar to the case
of SU(2), but this time we need to consider different SU(3)
flavor combinations in order to disentangle the conditions for
GF and GD .

The divergent part of the self-energy diagram in Fig. 1 is
given by

�
μν div
ab (p) = − λ

6π2

(
5G2

D + 9G2
F

)
δab(gμνp2 − pμpν), (40)

from which we obtain by using Eq. (35)

δZλ
V = − λ

6π2

(
5G2

D + 9G2
F

)
. (41)

In contrast to the SU(2) case, we will calculate the four-
vector vertex function for two different combinations of
flavor indices to obtain two expressions for δgλ. To be
specific, we consider the combinations (a,b,c,d) = (1,3,1,3)
and (a,b,c,d) = (1,6,1,6), respectively, and obtain

�
μνρσ div
1313 = iλ

54π2

(
11G4

D + 90G2
DG2

F + 27G4
F

)
× (gμρgνσ + gρσ gμν − 2gνρgμσ ), (42a)

�
μνρσ div
1616 = iλ

216π2

(
35G4

D + 90G2
DG2

F + 27G4
F

)
× (gμρgνσ + gρσ gμν − 2gνρgμσ ). (42b)

We now consider Eq. (30b) for the combinations (a,b,c,d) =
(1,3,1,3) and (a,b,c,d) = (1,6,1,6), respectively, and make
use of the results of Eq. (41) and Eqs. (42a) and (42b) as
well as the tree-level Feynman rule of Table II. We obtain two
results for δgλ, namely,

δgλ = − λ

108π2g

(
11G4

D + 90G2
DG2

F + 27G4
F

)
+ λ

6π2

(
5G2

D + 9G2
F

)
g, (43a)

δgλ = − λ

108π2g

(
35G4

D + 90G2
DG2

F + 27G4
F

)
+ λ

6π2

(
5G2

D + 9G2
F

)
g. (43b)

In a self-consistent theory, the two expressions for δgλ must
be equal. This implies

GD = 0, (44)

because otherwise the interacting theory would not be
renormalizable in the perturbative sense of effective field
theory. Using GD = 0, the universality GF = g is obtained
in analogy to the SU(2) case by comparing the expressions
for δgλ obtained from the three-vector and four-vector vertex
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functions, respectively. We obtain for the three-vector vertex
function

δgλ = 3λ

4π2
gG2

F + λ

2π2
G3

F , (45)

which needs to be compared with

δgλ = − λ

4π2g
G4

F + 3λ

2π2
G2

F g (46)

from the four-vector vertex function. As solutions we either
obtain GF = 0 or GF = g. Consequently, our final result is

GD = 0 and GF = g. (47)

The renormalizability analysis thus generates relations among
the dimensionless coupling constants of the most general
Lagrangian with a global SU(3) symmetry. We end up with
a universality principle in SU(3), in which the leading-order
Lagrangian is that of a massive Yang-Mills theory with
a universal coupling g. Of course, Lagrangians of such
type were often used in phenomenological applications (see,
e.g., Refs. [24–28]). Indeed, by using the requirement of
renormalizability in the sense of EFT, the present analysis
provides a further motivation for the universal coupling of
vector mesons as originally discussed in Ref. [29] for isospin,
baryon number, and hypercharge (see also Refs. [30–32]).

VI. CONCLUSIONS

At the classical level, the lowest-order SU(3)-invariant
Lagrangians of Eqs. (15a)–(15c), involving three independent
coupling constants g, GF , and GD , define a self-consistent
starting point for the self-interaction of the vector-meson octet
as well as the interaction of the vector-meson octet with the
baryon octet. This was explicitly shown by using Dirac’s
method.

However, the requirement of renormalizability in the sense
of effective field theory implies additional constraints among
the renormalized couplings. By comparing the expression for
δg obtained from the V V V vertex function on the one hand and
the V V V V vertex function on the other hand, we were able to
show that there are relations among the renormalized coupling
constants g, GF , and GD . We found a universal interaction
with g = GF and GD = 0. In other words, starting from the
most general leading-order Lagrangian invariant under a global
SU(3) transformation, we have seen that, after obtaining a
universal coupling, the interaction Lagrangian is that of a
(massive) SU(3) Yang-Mills theory.
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APPENDIX A: GENERALIZED POISSON BRACKETS

With the inclusion of Grassmann fields, we need a gen-
eralization of the standard Poisson brackets. Here, we only
collect the results needed for the present purposes and refer
the reader to Chapter 6 of Ref. [17] for more details. Let F
denote a function of the dynamical variables �αa , ��αa , �∗

αa ,
��∗αa , Vaμ, and πaμ. The Grassmann parity εF is defined to be
equal to 0 if the function consists of monomials of Grassmann
variables of even degree, and the function is then said to
be even. An odd function has Grassmann parity εF = 1 and
consists of monomials of Grassmann variables of odd degree.
Any function F can be decomposed into its even and odd
components, respectively, F = FE + FO . The Poisson bracket
of two functionals (or functions) is defined as

{F,G} =
∫

d3x

(
δF

δVaμ(�x)

δG

δπ
μ
a (�x)

− δF

δπ
μ
a (�x)

δG

δVaμ(�x)

)
+(−)εF

×
∫

d3x

(
δLF

δ�αa(�x)

δLG

δ��αa(�x)
+ δLF

δ��αa(�x)

δLG

δ�αa(�x)

+ δLF

δ�∗
αa(�x)

δLG

δ��∗αa(�x)
+ δLF

δ��∗αa(�x)

δLG

δ�∗
αa(�x)

)
,

(A1)

where a summation over repeated indices is implied, and F is
assumed to have a definite Grassmann parity εF . We suppress
time as an argument of the fields, as they are to be evaluated
at the same time. The symbol L in the functional derivative
indicates that the relevant function entering the functional has
to be moved to the left with an appropriate sign factor resulting
from the necessary permutations. The fundamental Poisson
brackets are given by

{Vaμ(�x),πbν(�y)} = δabδμνδ
3(�x − �y), (A2a)

{�αa(�x),��βb(�y)} = −δαβδabδ
3(�x − �y), (A2b)

{�∗
αa(�x),��∗βb(�y)} = −δαβδabδ

3(�x − �y). (A2c)

In addition, the following properties are useful:

{F,G} = −(−)εF εG{G,F }, (A3)

{F,GH } = {F,G}H + (−)εF εGG{F,H }, (A4)

{F,G}∗ = −{G∗,F ∗}. (A5)

APPENDIX B: HAMILTONIAN DENSITIES

The Hamiltonian densities relevant for the evaluation of the
Poisson brackets read

H 1
2

= − i

2
[�̄aγ

i∂i�a − (∂i�̄a)γ i�a] + MB�̄a�a,

H1 = −1

2
πaiπ

i
a + (∂iVa0)πi

a + 1

4
VaijV

ij
a − M2

V

2
VaμV μ

a

− gfabcπ
i
aVb0Vci + gfabc(∂iV j

a )VbiVcj

+ g2

4
fabcfadeVbiVcjV

i
dV j

e ,

Hint = iGF fabc�̄aγ
μ�bVcμ − GDdabc�̄aγ

μ�bVcμ.
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APPENDIX C: RESULTS OF THE CONSTRAINT ANALYSIS

{θV a,HT } = ∂iπ
i
a + M2

V Va0 − gfabcπ
i
bVci + (−iGF fabc + GDdabc)�†

b�c ≡ ϑV a ≈ 0, (C1)

{ϑV a,HT } = −M2
V ∂iV

i
a + gfabcVb0∂iπ

i
c + g2fabefecdVc0

(
Vbiπ

i
d − πi

bVdi

)
− g2fabefecdVbi

[
(∂jVcj )V i

d + (
∂iV j

c

)
Vdj

] + g2fabefecd∂i

(
V i

c VdjV
j
b

) − g3

2
fabcfdbefdfgVciVejV

i
f V j

g

+ gfabc(iGF fcde − GDdcde)Vbi�̄dγ
i�e + (iGF fabc − GDdabc)∂i(�̄bγ

i�c)

+ (−iGF fabc − GDdabc)λ1αb�
∗
αc + (iGF fabc − GDdabc)λ2αb�αc + M2

V λV a, (C2)

{χ1αa,HT } = i(∂i�
∗
βa)(γ 0γ i)βα + MB�∗

βaγ
0
βα − (iGF fabc + GDdabc)�∗

βb(γ 0γ μ)βαVcμ + iλ2αa ≈ 0, (C3)

{χ2αa,HT } = i(γ 0γ i)αβ∂i�βa − MBγ 0
αβ�βa + (−iGF fabc + GDdabc)(γ 0γ μ)αβ�βbVcu + iλ1αa ≈ 0. (C4)

APPENDIX D: COUNTER-TERM FUNCTIONS

The expressions for the counter-term functions in Eq. (23) are given by

δ{MB} = δMB + δZ�MB, δ
{
M2

V

} = δM2
V + δZV M2

V , δ{g} = δg + 3
2δZV g,

δ{g2} = 2δgg + 2δZ2
V g2, δ{GF } = δGF + (

δZ� + 1
2δZV

)
GF , δ{GD} = δGD + (

δZ� + 1
2δZV

)
GD.

We only displayed the terms relevant at leading order in an expansion in �, i.e., we omitted terms of the type δM2
V δZV , etc.

APPENDIX E: FEYNMAN RULES

See Table II.

APPENDIX F: LOOP INTEGRALS

The scalar loop integrals of the two-, three-, and four-point functions which are used for the calculation of the self-energy and
the vertex diagrams are given by

A0(m2) = (2πμ)4−D

iπ2

∫
dDk

1

k2 − m2
,

B0
(
p2

1,m
2
1,m

2
2

) = (2πμ)4−D

iπ2

∫
dDk

1[
k2 − m2

1

][
(k + p1)2 − m2

2

] ,

C0
(
p2

1,p
2
2,p

2
12,m

2
1,m

2
2,m

2
3

) = (2πμ)4−D

iπ2

∫
dDk

1[
k2 − m2

1

][
(k + p1)2 − m2

2

][
(k + p1 + p2)2 − m2

3

] ,

D0
(
p2

1,p
2
2,p

2
3,p

2
4,p

2
12,p

2
23,m

2
1,m

2
2,m

2
3,m

2
4

)
= (2πμ)4−D

iπ2

∫
dDk

1[
k2 − m2

1

][
(k + p1)2 − m2

2

][
(k + p1 + p2)2 − m2

3

][
(k + p4)2 − m2

4

] ,

with the abbreviation pij = (pi + pj ) for the momenta. For the sake of brevity, we have suppressed the boundary conditions iε
in the individual factors of the denominators.
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TABLE II. Propagators and vertices of Feynman diagrams in SU(2) and SU(3). Single and double lines correspond to fermions and bosons,
respectively. a,b,c,d correspond to SU(3) octet indices, i,j,k,l and r,s correspond isospin triplet and doublet indices, respectively.
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