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Using the variational principle, we compute mass spectra and decay constants of ground state pseudoscalar and
vector mesons in the light-front quark model (LFQM) with the QCD-motivated effective Hamiltonian including
the hyperfine interaction. By smearing out the Dirac § function in the hyperfine interaction, we avoid the issue
of negative infinity in applying the variational principle to the computation of meson mass spectra and provide
analytic expressions for the meson mass spectra. Our analysis with the smeared hyperfine interaction indicates
that the interaction for the heavy meson sector including the bottom and charm quarks gets more point-like. We

also consider the flavor mixing effect in our analysis and determine the mixing angles from the mass spectra of
(w,¢) and (n,n"). Our variational analysis with the trial wave function including the two lowest order harmonic
oscillator basis functions appears to improve the agreement with the data of meson decay constants and the heavy
meson mass spectra over the previous computation handling the hyperfine interaction as perturbation.
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I. INTRODUCTION

Effective degrees of freedom to describe a strongly inter-
acting system of hadrons have been one of the key issues
in understanding the nonperturbative nature of QCD in the
low energy regime. Within an impressive array of effective
theories available nowadays, the constituent quark model
has been quite useful in providing a good physical picture
of hadrons just like the atomic model for the system of
atoms. Absorbing the complicated effect of quark, antiquark,
and gluon interactions into the effective constituent degrees
of freedom, one may make the problem more tractable yet
still keep some key features of the underlying QCD to
provide useful predictions [1]. The effective potentials used
in constituent quark models are typically described by the flux
tube configurations generated by the gluon fields as well as
the effective “one-gluon-exchange” calculation in QCD [2,3].
In the QCD-motivated effective Hamiltonian, a proper way
of dealing with the relativistic effects in the hadron system
is quite essential due to the nature of strong interactions. In
particular, proper care and handling of relativistic effects has
been emphasized in describing the hadrons made of u, d, and
s quarks and antiquarks.

As a proper way of handling relativistic effects, the
light-front quark model (LFQM) [4-8] appears to be one
of the most efficient and effective tools in hadron physics
as it takes advantage of the distinguished features of the
light-front dynamics (LFD) [9,10]. In particular, the LFD
carries the maximum number (seven) of the Kkinetic (or
interaction independent) generators and thus the less effort in
dynamics is necessary in order to get the QCD solutions that
reflect the full Poincaré symmetries. Moreover, the rational
energy-momentum dispersion relation of LFD, namely p~ =
(p% +m?)/p*, yields the sign correlation between the light-
front (LF) energy p~(= p° — p*) and the LF longitudinal
momentum p*(= p® + p?) and leads to the suppression of
quantum fluctuations of the vacuum, sweeping the complicated
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vacuum fluctuations into the zero modes in the limitof p* — 0
[11-13]. This simplification is a remarkable advantage in LFD
and facilitates the partonic interpretation of the amplitudes.
Based on the advantages of the LFD, the LFQM has been
developed [14] and subsequently applied for various meson
phenomenologies such as the mass spectra of both heavy and
light mesons [15], the decay constants, distribution amplitudes,
form factors, and generalized parton distributions [10,14-23].

Despite these successes in reproducing the general features
of the data, however, it has proved very difficult to obtain
direct connection between the LFQM and QCD. Typically,
rigorous derivations of the connection between the effective
constituent degrees of freedom and the fundamental QCD
quark, antiquark, and gluon degrees of freedom have been
explored by solving momentum-dependent mass gap equations
as discussed in many-body Hamiltonian approach [24], Dyson-
Schwinger approach [25], etc. Although one has not yet
explored solving the momentum-dependent mass gap equation
in LFD, there has been some attempt to derive an effective LF
Hamiltonian starting from QCD using the discrete light-cone
quantization (DLCQ) and solve the corresponding equation
of motion approximately for the quark and antiquark bound
states to provide semianalytical expressions for the masses
of pseudoscalar and vector mesons [26]. The attempt to
link between QCD and LFQM is also supported by our
recent analyses of quark-antiquark distribution amplitudes
for pseudoscalar and vector mesons in LFQM [27], where
we presented a self-consistent covariant description of twist
2 and twist 3 quark-antiquark distribution amplitudes for
pseudoscalar and vector mesons in LFQM to discuss the
link between the chiral symmetry of QCD and the LFQM.
Our results for the pseudoscalar and vector mesons [27]
effectively indicated that the constituent quark and antiquark
in the LFQM could be considered as the dressed constituents
including the zero-mode quantum fluctuations from the QCD
vacuum. Moreover, the light-front holography based on the
five-dimensional anti—de Sitter (AdS) space-time and the
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conformal symmetry has given insight into the nature of the
effective confinement potential and the resulting light front
wave functions for both light and heavy mesons [28]. As
we have shown in Ref. [29], our LFQM analysis of the pion
form factor provided compatible results both in spacelike and
timelike regions with the holographic approach to LF QCD
[30]. These developments motivate our present work for the
more-in-depth analysis of the mass spectra and decay constants
for the ground state pseudoscalar and vector mesons in LFQM.

In LFQM, the LF wave function is independent of all
reference frames related by the front-form boosts because the
longitudinal boost operator as well as the LF transverse boost
operators are all kinematical. This is clearly an advantageous
feature unique to LFQM, which makes the calculation of
observables, such as mass spectra, decay constants, form
factors, etc., much more effective. Computing the meson
mass spectra, however, we have previously [14,15] treated the
hyperfine interaction as a perturbation rather than including it
in the variation procedure to avoid the negative infinity from
the Dirac 6 function contained in the hyperfine interaction.
In the present work, we smear out the Dirac § function by a
Gaussian distribution and resolve the infinity problem when
variational principle is applied to the hyperfine interaction. We
obtain optimal model parameters in our variational analysis
including the hyperfine interaction and examine if it improves
phenomenologically our numerical results compared to the
ones obtained by the perturbative treatment of the hyperfine
interaction. For our trial wave function, we also take a larger
harmonic oscillator (HO) basis to see if it provides any
phenomenological improvement in our predictions of mass
spectra and decay constants for ground state pseudoscalar and
vector mesons.

The paper is organized as follows. In Sec. II, we describe our
QCD-motivated effective Hamiltonian with the smeared-out
hyperfine interaction. Using the mixture of the two lowest
order HO states as our trial wave function of the variational
principle, we find the analytic formula of the mass eigenvalues
for the ground state pseudoscalar and vector mesons. The
optimum values of model parameters are also presented in
this section. In Sec. III, we present our numerical results of
the mass spectra obtained by taking a larger HO basis in the
trial wave function and compare them with the experimental
data as well as our previous calculations [14,15]. To test
our trial wave function with the parameters obtained from
the variational principle, we also calculate the meson decay
constants and compare them with the experimental data as
well as other available theoretical predictions. Summary and
conclusion follow in Sec. IV. The detailed procedure of fixing
our parameters through variational principle is presented in the
Appendix.

II. MODEL DESCRIPTION

As mentioned in the Introduction, there has been an attempt
to derive an effective LF Hamiltonian starting from QCD using
DLCQ [26]. Transforming the LFD variables to the ordinary
variables in the instant form dynamics (IFD), one may see the
equivalence between the resulting effective LF Hamiltonian for
the quark and antiquark bound states and the usual relativistic
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constituent quark model Hamiltonian for mesons typically
given in the rest frame of the meson, i.e., the center of mass
(c.m.) frame for the constituent quark and antiquark system. It
may be more intuitive to express the effective LF Hamiltonian
describing the relativistic constituent quark model system for
mesons in terms of the ordinary IFD variables. Effectively, the
meson system at rest is then described as an interacting bound
system of effectively dressed valence quark and antiquark
typically given by the following QCD-motivated effective
Hamiltonian in the quark and antiquark c.m. frame [14,15]:

Hc.m.=\/m3+1?2+\/m§+l?2+v, (n

where k = (K ,k;) is the relativistic three-momentum of the
constituent quarks and V is the effective potential between
quark and antiquark in the rest frame of the meson. The
effective potential V is typically given by the linear confining
potential Vo plus the effective one-gluon-exchange potential
Voge- For S-wave pseudoscalar and vector mesons, the effective
one-gluon-exchange potential reduces to the Coulomb poten-
tial Veou plus the hyperfine interaction Viyp. Thus, one may
summarize V as

V = Veonr + Voge

Coul hyp
4 2S,-S
aS . -
=a + br — + s qV2VC0ulv (2)
——— 3r 3 mgmg
conf

oge

where «; is the strong interaction coupling constant,' (S, -
Sg) = 1/4 (=3/4) for the vector (pseudoscalar) meson, and
V2Veou = (16may/3)83(r). Reduction of the LF Hamiltonian
in QCD to a similar form of the effective Hamiltonian in
the c.m. frame of the quark and antiquark system given by
Egs. (1) and (2) was discussed in Ref. [26]. For the hyperfine
interaction Vpyp, one may consider the relativization such
as Viyp = /mqmg/EqEgVaypy/mgmg/EqE; [31,32]. Such
relativization may be important for the 83(r)-type potential
without any smearing in computing particularly the light
meson sector. Since we apply the variational principle even for
the hyperfine interaction in this work smearing out the Dirac §
function to resolve the infinity problem, we naturally introduce
a smearing parameter which may effectively compensate the
factor due to the relativization. With this treatment, we are
able to provide explicit analytic expressions for the meson
mass spectra [see Eq. (9)].

While the effective bound-state mass square ng is given

by quq = (P? )* in the c.m. frame of the constituent
quark and antiquark system, the energy-momentum dispersion
relation in LFD is given by qu =Ptp- — Pﬁ_, where the
four-momentum of the bound system is denoted by P* =
(PT,P~,P,)=(P°+ P3 P°— P3 P)). From this, one may
consider the LFQM mass square operator PP~ — f’i (that
provides the eigenvalues P* P~ — P?) as the square of the

! Although one may consider a running coupling constant, we take
o as one of the variation parameters in this work.
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effective Hamiltonian given by Eq. (1), i.e., H2, . Since
the eigenvalues and the expectation values are same for
the eigenstates, we compute the expectation value (H.p, )
using the variation principle. Alternatively, one may consider
computing the expectation value (HZ ) in view of the
LFQM mass square operator PTP~ — P2 being (H2, ).
Although ((AH..)?) =0 in principle for the eigenstates,
it may be interesting to examine numerically how small the
corresponding deviation ((AHp )?) = (H2 ) - (Hem )? is.
More future works complementary to our present computation
of (H. ) canbe suggested in variational analysis. In this work,
we examine the x2 values of our computational results in
comparison with experimental data to get optimal parameter
values in the (H., ) computation. This will provide useful
ground information for any alternative and/or further works
beyond the present analysis.

As discussed earlier, the longitudinal boost operator as well
as the LF transverse boost operators are all kinematical and
thus the LF wave function does not depend on the external
momentum, i.e., P and P . In effect, the determination of the
LF wave function in the meson rest frame such as P* = M,
and P; = 0 will not hinder its use for any other values of
P* and P, . This provides the applicability of LFQM for the
computation of observables beyond the meson mass spectra.

The wave function is thus represented by the Lorentz
invariant internal variables x; = p?’/P*’, ki, =p1i —xPy,
and helicity ;, where p!" is the momenta of constituent quarks.
Explicitly, the LF wave function of the ground state mesons is
given by

JJ, JJ,

Wigo (i kiindi) = Ry 5 (xi k) (xi K1), (3)

where & is the radial wave function and R;:A, is the

interaction-independent spin-orbit wave function. The spin-

orbit wave functions for pseudoscalar and vector mesons are
given by [14,33]

o0 —x,(Pg¥sva,(Pg)
Aghy — ,
V2, ME ~ (my — mg
_ “
. —itz, (py)] ¢(J2) — A;O(ffn—,iﬁ,,/] 2 (Pg)
)‘q)‘zi - )

V2 MG~ (g — my)?

where €#(J,) is the polarization vector of the vector meson and
the boost invariant meson mass squared Mg obtained from the
free energies of the constituents is given by

K +m2 K+ m?
M} = 4 1. (5)
X 1 —x
The spin-orbit wave functions satisfy the relation

qu,\q ,{J,\TR,\ », = 1 for both pseudoscalar and vector
mesons.

To use a variational principle, we take our trial wave
function as an expansion of the true wave function in the
HO basis. We use the same trial wave function expanded with

the two lowest order HO wave functions ® = Zi:l Cn@ns for
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both pseudoscalar and vector mesons, where

4z [ok, _ 2
e (©)
f 7/2(2’<2—3B WoEeE, @)

and p is the variational parameter. We should note here that our
LF wave functions ¢, s are dependent on Mg and thus cannot be
factorized into a function of k ; multiplied by another function
of x;. In particular, k2 in Egs. (6) and (7) is given by k* = k2 +
kf, wherek, = (x — 1/2)M, + (mé — mg)/ZMO. For instance,
e~R 2B — o287 p= MG /85

¢dos(xi k1) =

in the case of equal quark and
antiquark mass m, = mgz; = m. The variable transformation
x,k)) — k= (k. ,k;) requires the Jacobian factor given by
ok, /0x = My[l — (mé — m%)z/Mg]/4x(1 — Xx)asonecansee
from Eqgs. (6) and (7). The normalization of the wave function
¢dns 1s thus given by

/ / Ton? = IpusCri k)P = 1. (8)

With & = anl cn®us, we evaluate the expectation value
of the Hamiltonian in Eq. (1), i.e., (®|H¢m.|®) which depends
on the variational parameter 8. According to the variational
principle, we can set the upper limit of the ground state’s
energy by calculating the expectation value of the system’s
Hamiltonian with a trial wave function. In our previous
calculations [14,15], which we call “CJ model”, we first
evaluate the expectation value of the central Hamiltonian
T + Veont + Veow With the trial function ¢;5, where T is
the kinetic energy part of the Hamiltonian. Once the model
parameters are fixed by minimizing the expectation value
(D151(T + Veont + Vcou)|@1s), then the mass eigenvalue of
each meson is obtained as M,; = (¢15|Hcm.|¢15). The hy-
perfine interaction Vyy, in CJ model, which contains a Dirac
d function, was treated as perturbation to the Hamiltonian and
was left out in the variational process that optimizes the model
parameters. The main reason for doing this was to avoid the
negative infinity generated by the § function as was pointed out
in [31]. Specifically, (¢1s|Vayplo1s) for pseudoscalar mesons
decreases faster than other terms that increase as 8 increases
and the expectation value of the Hamiltonian is unbounded
from below.

The singular nature of the hyperfine interaction and its
regularization is a standard topic in atomic physics and the
atomic analysis has been carried out to extraordinary precision
[34]. In particular, a Bethe-Salpeter based bound-state formal-
ism was applied to the calculation of recoil contributions of
order ma® to hyperfine splitting in ground-state positronium
[35]. Instead of dropping the relative energy dependence in
favor of equations with a simpler kinematical structure but
a more complicated effective kernel, the Barbieri-Remiddi
formalism [36] was discussed as an effective way to handle
significant complications concerning the Bethe logarithm [37].
As discussed in Ref. [35], the § function of the relative
energy po is replaced by a smearing function of py in the
Barbieri-Remiddi formalism [36]. In LFD, the equal LF time

xt(= x° + x?) correlates the ordinary time x° and space x> so
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that the idea of smearing p° in the Barbieri-Remiddi formalism
may be extended to smear the §°(r) function in hyperfine
interaction discussed in the present work. In this respect, our
regularization procedure discussed below would also be valid
and is compatible for the hyperfine splitting in atoms. Analytic
treatment of positronium spin splittings was presented in LF
QED [38] and more recent DLCQ application to the analysis
of u* ™ bound state spectrum can be found in Ref. [39].

To avoid the negative infinity, we thus use a Gaussian
smearing function to weaken the singularity of §%(r) in
hyperfine interaction, viz. [31,32], 83(r) — (03/n3/2)e_"2'2.

Once the § function is smeared out like this, a true
minimum for the mass occurs at a certain value of S.
The analytic formulas of mass eigenvalues for our modified
Hamiltonian with the smeared-out hyperfine interaction, i.e.,
M,z = (P|Hem |®), are found as follows?:

M,; = +L<3— 2—2\/2 )
qq—a ﬂﬁ Cl 36‘]6‘2
1
+ % i;q {ﬁ(\/gclcz — 3c§)U<—§,—2,z,~>

1 4 i
+ gcnge (3 — z,-)K2<5)

1 3 i
+ gziei(chziz — 30% - 6\/6c1cz + 9)K1(%>}

_ 4o, 8
W

_ 4,320’3<Sq . Sq)
(B2 + 02 Pmymy

{5 + c% 4+ 64/2/3cic

[(2\/8016‘2 + 3 - C%)O’4

+28%(2¢} + V6c102) 0 + 28] } 9)

where z; = m?/p? and K, is the modified Bessel function
of the second kind and U(a,b,z) is Tricomi’s (confluent
hypergeometric) function. We should note that the mass
formula for the §-function hyperfine interaction corresponds
to Eq. (9) in the limit of 0 — co. We then apply the
variational principle, i.e., dMy5/3B = 0, to find the optimal
model parameters in order to get a best fit for the mass
spectra of ground state pseudoscalar and vector mesons (a
more detailed description of this procedure can be found in
the Appendix).

Our optimized potential parameters are obtained as {a =
—0.6699 GeV,b = 0.18 GeV?,a, = 0.4829}. For the best fit
of the ground state mass spectra, we obtain ¢; = 4++/0.7 and
¢ = ++/0.3. We should note that our potential parameters are
quite comparable with the ones suggested by Scora and Isgur
[40], where they obtained a = —0.81 GeV, b = (.18 GeV?,

2 Although the true minimum occurs with the smeared-out hyperfine
interaction even for ¢5 case, we found that the phenomenological
results do not show any significant improvement compared to CJ
model.
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TABLE 1. Constituent quark masses [GeV] and the smearing
parameter o [GeV] obtained by the variational principle for the
Hamiltonian with a smeared-out hyperfine interaction. Here ¢ = u
and d.

mgy my me my, o

0.205 0.380 1.75 5.15 0.423

and oy = 0.3 ~ 0.6. For a comparison, the coupling constant
we found in our previous CJ model [14,15] was oy, = 0.31.

While we use the common potential parameters (a,b,o;)
for all the mesons, it was shown in [32,41] that if a smearing
procedure for the §3(r) function is used, then a large Gaussian
parameter o is obtained for the heavy quark sector. In our
updated potential model using the smeared hyperfine interac-
tion (03 /3/2)e=""’, we also confirm the same observation as
in [32] for the heavy meson sector including (b,c) quarks.
Thus, we differentiate the smearing parameter o for the
heavy (b,c) sectors such as (c¢,bé,bb) from the other (qq)
sectors by introducing multiplicative factor in front of o, i.e.,
o — Ao with A > 1, while other potential parameters (a,b, o)
remain the same for all (¢g) sectors. This differentiation is to
accommodate the hyperfine splittings for the heavy (b,c) quark
sectors as we will show in the next section. Our new updated
results with A differentiation using the common potential
parameters (a,b,a;,0) for all meson sectors show definite
improvement in the x? fit of the experimental data for meson
masses.

Our optimal constituent quark masses and the smearing
parameters o are listed in Table I. Since we included the
hyperfine interaction with smearing function entirely in our
variational process, we now obtain the two different sets
of B values, one for pseudoscalar and the other for vector
mesons, respectively. The optimal Gaussian parameters B4
for pseudoscalar and vector mesons are also listed in Table II.
We should note that the values of the multiplicative factor A
to get the best fits for the mass eigenvalues are obtained as
A = (2,2.3,3) for (c¢,b¢,bb) sectors. As a sensitivity check,
however, we present the numerical results with the following
theoretical error bars A = (2f},2.3fi,3f%) for (c¢,bé,bb)
sectors, respectively. Although one may fine-tune more to
improve the hyperfine splittings for the heavy-light sectors
by using different set of A parameters, we set A = 1 for any
other gg sectors except (cZ,bé,bb) sectors in this work for
simplicity.

We also determine the mixing angles from the mass spectra
of (w,¢) and (n,7n). Identifying (F,F’) = (¢,w) and (n,n")
for vector and pseudoscalar nonets, the flavor assignment of F
and F’ mesons in the quark-flavor basis nin = (ui + dﬁ)/ﬁ
and s5 is given by [42—-44]

F cose —sina \(nn nn
<}'/> - (sina cos o )(si) - U(a)(si )’ (10)

where « is the mixing angle in the quark-flavor basis. For the
n — 1’ mixing, the SU(3) mixing angle 6 in the flavor SU(3)
octet-singlet basis (1g,n1) can also be used and the relation
between the mixing angles is given by 0 = o — arctan~/2 ~
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TABLEII. The Gaussian parameter 8 [GeV] for ground state pseudoscalar (J ¢ = 0~*) and vector (1~~) mesons obtained by the variational
principle. ¢ = u and d. We should note that A = (Zf} ,2.3f} ,31’;) are used to get (Bec, Boc, Bop) values and A = 1 is used to get the rest of Byq

values.

JPC ﬁqq ,qu ﬂss ﬁqc ,Bcs ﬁcc :qu ﬂbs ,th ﬂbb

0~* 04465 03759 03445 03801 03859  0.5270700% 04226 04412 0.66467 001,  0.99061 003
17~ 02346 02598 02820 03445 03667 049140005 04057 04321  0.6365.000%  0.9603,0007

o — 54.7° [45]. Taking into account SU(3) symmetry breaking
and using the parametrization for the (mass)” matrix suggested
by Scadron [46], we obtain [14]

(4 = M2 (1~ i)

(M3~ M) (05— M3)’

tan2 o =

an

which is the model-independent equation for any gg meson
nonets. The details of obtaining meson mixing angles using
quark-annihilation diagrams are summarized in [14], where the
mixing angle § = a — 90° is used in the quark-flavor basis. In
order to predict the w — ¢ and n — 1’ mixing angles, we use the
experimental values of Mx = (My,M,)and Mz = (M,,,M,/)
as well as the masses of M- [MY.] =780 (901) MeV and
MPE [ME] = 140 (726) MeV obtained from (®|H,;|®) for
both vector (V) and pseudoscalar (P) mesons, respectively.
Our prediction for the @ — ¢ mixing angle is o,y = 84.8°,
which is about 5.2° deviated from the ideal mixing aldea‘f =
90°. Our prediction for n — i’ mixing angle is o, _,, = 36.3°,
which is in agreement with the range 34.7° to 44.7° of
phenomenological values [42,45].

Our updated model with the smeared hyperfine interaction
appears to improve the result of the mass spectrum, which
is presented in the next section. This may suggest that when
using constituent quark models, the contact interactions has
to be smeared out in general. In fact, we think this smeared
interaction is more consistent with the physical picture for
a system of the effective constituent quarks which are not
point-like.

For practical application of our model, we also compute the
decay constants for the ground state pseudoscalar and vector
mesons. The decay constants are typically defined by

Olgy"ysq|P) =ifpP

12)
(Olgy*qlV(P.h)) = fvMye"(h),

for pseudoscalar and vector mesons, respectively. For the n
and 1’ case, one may also define decay constants through
matrix elements of octet and singlet axial-vector currents.
However, as discussed in [42,43], they cannot be expressed
as U(0)diag| fs, f1] due to the U(1),4 anomaly. Thus, the fol-
lowing two mixing angle parametrization is adopted [42,43]:

f8 = fgcos by, f' = —f1sin0y,

(13)
f = f3sinb, f/ = ficosf.

The parameters appearing in Eq. (13) are related to the
basis parameters «, f; = fua, and f; = f5, characterizing the

quark-flavor mixing scheme as follows [42]:

2 2
+2 N 2 N
f82 = u, Oy = o — arctan(ff >

3 fq (14)
2 2 2
ff:%, Glza—arctan(«/;chq).

Using the plus component (i = +) of the currents, one
can calculate the decay constants. The explicit formulas of
pseudoscalar and vector meson decay constants in quark-flavor
basis are given by [14,33]

2
fp_f/ /dkL Pk
A2+k2

fszE/ dxfd?kL CD(x K.) [ Zki]’
0

83 | A2+ K2 Dir

where A = (1 — x)mgy + xmg and D g = Moy + my + my.

5)

III. RESULTS AND DISCUSSION

In Fig. 1, we show the masses (and hyperfine splittings)
and the corresponding decay constants of heavy quarkonia
depending on the variation of the multiplicative factor A. For
(c) [Fig. 1(a) and 1(b)] and (bb) [Fig. 1(c) and 1(d)], we plot
the curves corresponding three different A values, i.e., Ao =
(1,2,3)0 and Ao = (1,3,5)0, respectively. The results indicate
that the interaction between heavier quarks gets more point-
like as the larger X values are favored in comparison with data.
In general, as one can see from Fig. 1, the hyperfine splittings
for both charmonium [Fig. 1(a)] and bottomonium [Fig. 1(c)]
states increases as A increases while other potential parameters
remain the same. On the other hand, the decay constants
of vector mesons decrease while the corresponding decay
constants of pseudoscalar mesons increase as A increases [see
Fig. 1(b) and 1(d)]. One may increase A value even further to
have better hyperfine splittings compared to the data. However,
one may not increase A value arbitrarily to accommodate the
empirical constraint fy > fp. Similarly, we could improve
the hyperfine splitting for (bc) sector by using A = 2.3.

We show in Fig. 2 our prediction of the meson mass
spectra obtained from the variational principle to the effective
Hamiltonian with the smeared-out hyperfine interaction using
the trial function & = 212 ci¢is and compare them with
the experimental data [45] as well as the results obtained
from the CJ model with the linear confining potential [14].
We should note that the (m,p) masses are used as inputs.
The (n,n7,w,¢) masses are also used as inputs to find the
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FIG. 1. (Color online) The masses (and hyperfine splittings) and the corresponding decay constants of heavy quarkonia depending on
the variation of the multiplicative factor A, i.e., (c¢) [(a) and (b)] with two different Ao = (1,2)o and (bb) [(c) and (d)] with two different

Mo = (1,3)o values, respectively.

(n—7n') and (w — ¢) mixing angles. The theoretical error
bars for (cZ,bé,bb) sectors are due to the usage of A =
(Zﬂ ,2.3“:} ,33) values, respectively. As one can see, our trial
wave function @ including more HO basis generates overall
better results than our CJ model. This can be seen from
our x? = 0.008 compared to x> = 0.012 obtained from the
CJ model [15]. Except the mass of K, our predictions for
the masses of 1S-state pseudoscalar and vector mesons are
within 4% error. Especially, our effective Hamiltonian with
the smeared hyperfine interaction using & clearly improves the

TABLE III. Decay Constants for light mesons (in unit of MeV)
obtained from our updated LFQM.

Model fr fo fx Sfix
This work 130 205 161 224
CJ[16] 130 246 161 256
Exp. [45] 130.4(2) 2082, 216(5)° 156.1(8) 217(7)

“Exp. value for I'(t — pv;).
"Exp. value for p° — ete™.
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TABLE IV. Decay constants in the singlet-octet basis and the
mixing angle in the quark-flavor basis.

Reference  fy/fx Os Jilfx 61 o
This work 1.30 —27.3° 1.16 —8.6° 36.3°
[42] 1.26 —21.2° 1.17 —9.2° 39.3°
[44] 1.28 —20.5° 1.25 —4° -
[49] 1.51 —23.8° 1.29 —2.4° 40.7°
[50] 1.27 —19.5° 1.17 —5.5° 42.1°

predictions of heavy-light and heavy quarkonia systems such
as (ne,J /¥, B.,np, ) compared to the CJ model adopting the
contact hyperfine interaction. Although the experimental data
for B} is not yet available, our predictions of B}, i.e., 63301’2
MeYV, are quite comparable with the lattice prediction 6331(9)
MeV [47] as well as other quark model predictions such as
6340 MeV [32] and 6345.8 MeV [48].

In Table III, we list our predictions for the decay constants
of light mesons (77, K, p, K *) obtained by using the mixed wave
function ® of 1§ and 2§ HO states and compare them with
the results from the CJ model [16] and the experimental data
[45]. As one can see, our updated model calculation including
the hyperfine interaction in the variation procedure clearly
improves the results over the CJ model.

For the decay constant of the ¢ meson, our prediction
for the ideal mixing angle (ai‘;’;d‘f =90°) is given by fy =

"V = 245.1 MeV. However, we obtain f; = f,¥ = 226 MeV
using our predicted mixing angle o, = 84.8°. Comparing
to the experimental value f;*" =233 MeV [45] (extracted
from the partial width of ¢ — e*e™ decay), our prediction
for f4 prefers a rather small w — ¢ mixing angle such as
Qg—g 2 87.5° than the ideal mixing.

For the decay constants of n and 1/, our predictions of the
decay constants f; and f; are given by f, = 130 MeV and
fs =184.8 MeV sothat f,/f; = 1and f;/f; = 1.42, where
the SU(3) breaking effect is manifest in the ratio f,/f; # 1.
Using Eq. (14), we obtain f3/f; = 1.30 and f1/f, = 1.16
with 63 = —27.3° and 6, = —8.6°, respectively. In Table IV,
we compare our results for the decay constants in the singlet-
octet basis and the mixing angle in the quark-flavor basis with
other theoretical predictions [42,44,49,50]. As one can see,
our results are consistent with other theoretical model results.

PHYSICAL REVIEW C 92, 055203 (2015)
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FIG. 2. (Color online) Fit of the ground state meson masses
[MeV] with the parameters given in Tables II and I compared with
the fit from our previous calculations using the CJ model [15] as
well as the experimental values. The (m,p) masses are our input
data. The (1,7',w,¢) masses are also used as input to find the
(n —1n') and (w — ¢) mixing angles. The theoretical error bars for
(cZ,bé,bb) sectors are due to the usage of A = (2+1,2.3+1,372) values,
respectively.

Since the experimental values are very well known for light
mesons, this improvement is very encouraging.

In Table V, we list our predictions for the charmed meson
decay constants (fp, fp+, fp,, [, fy.» f1/9) together with the
CJ model [23], lattice QCD [51-54], QCD sum rules [55],
relativistic Bethe-Salpeter (BS) model [56], relativized quark
model [57], and other relativistic quark model (RQM) [58] pre-
dictions as well as the available experimental data [45,59]. We
extract the experimental value (f;)w)exp = (407 £ 5) MeV
from the data Tey,(J/ W — ete™) = (5.55 £ 0.14) keV [45]

TABLE V. Charmed meson decay constants (in units of MeV) obtained from our updated LFQM. The theoretical error bars for f;, (/)
come from the variation of the smearing parameters o, i.e., fy.(s/y)(2017).

Model /o fo+ fo, foz Sae Sy
This work 208 230 231 260 353122 3618
CJ [23] 197 239 232 273 326 360
Lattice [51] 211+£3417 24542073 231+ 1278 272 £ 1613, - -
QCD [52,53] 208 +7[52] - 250 &+ 7 [52] - 387 + 7 [53] 418 £9[53]
Sum rules [55] 201133 24272 238113 293119 - -

BS [56] 230 + 25 340 £ 23 248 +27 375+ 24 292 425 459 +28
QM [57] 240 + 20 - 290 + 20 - - -
RQM [58] 234 310 268 315 - -

Exp 206.7 & 8.9 [45] - 257.5 £6.1[45] - 335+ 75[59] 407 £ 5 [45]
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TABLE VI. Bottomed meson decay constants (in units of MeV) obtained from our updated LFQM. The theoretical error bars for f,, ()
come from the variation of the smearing parameters o, i.e., f,,r) (30 2.

Model I s 5, I8 S fr
This work 181 188 205 216 605132 611
CJ [23] 171 185 205 220 507 529
Lattice [51] 179 + 1873 196 + 2473 204 + 167! 229 +20™! - -
QCD [52,60] 189 £ 8 [52] - 228 £ 8 [52] - - 649 + 31 [60]
Sum rules [55] 20717 21079 242417 251114 - -
BS [56] 196 + 29 238 + 18 216 + 32 272 £20 - 498 + 20
QM [57] 155+ 15 - 210 £ 20 - - -
RQM [58] 189 219 218 251 - -
Exp 229138137 [61] - - - - 689 + 5 [45]
and the formula IV. SUMMARY AND CONCLUSION
4r , f& In this work, we updated our LFQM by smearing out the
[(V—>ete)= = YQED€0 (16)  Dirac § function in the hyperfine interaction to avoid the issue
%

where e is the electric charge of the heavy quark in units of e
(2/3 for ¢ and —1/3 for b). We should note that our results of
the ratios fp /fp = 1.11 and f,, /f;/v = 0.981'8:83 are quite
comparable with the available experimental data, fp /fp =
1.25 £0.06 [45] and f;,/f1/w = 0.81 £ 0.19 [45,59], respec-
tively. Our result of the ratios fp:/fp+ = 1.13 is also in good
agreement with other theoretical model calculations such as
1.16 £ 0.02 % 0.06 from the lattice QCD [54] and 1.10 £ 0.06
from the BS model [56].

We list our results for the bottomed mesons
(fB.fB* fB,> fB;, S, fr) in Table VI, and compare with the
CJ model [23], lattice QCD [51,52,60], QCD sum rules
[55], BS model [56], relativized quark model [57], and
RQM [58] predictions as well as the available experimental
data [45,61]. Note that we extract the experimental value
(fr)exp = (689 £ 5) MeV from the data ey (Y — eTe™) =
1.340 £ 0.018 keV [45] and Eq. (16) with eé =1/9forV =
Y. Our results for the ratios fp /fp = 1.13 and fp:/fp =
1.15 are in good agreement with the QCD sum rules [55]
predictions: fg /fp = 1.17100% and fz:/fp- = 1.20 £ 0.04.
Ours are also in good agreement with the lattice results,
fB,/fp = 1.206(24) [52] and fp:/fp- = 1.17(4)1’; [51]. Our
result for the ratio f,, /fr = 0.9970.07 is consistent with the
heavy quark symmetry f,,/fy =1 [62]. One can also see
that for heavy charmed and bottomed mesons, the trial wave
function ¢p produces better results when compared with the
experimental data as well as the lattice results.

In Table VII, we present our model predictions for the decay
constants of fp_and f3., and compare them with other model
calculations [15,57,63—67]. Our results are comparable with
other model calculations.

of negative infinity in applying the variational principle to
the computation of meson mass spectra, while our previous
model (CJ model) used the perturbation method to handle the §
function in the contact hyperfine interaction. Using the mixed
wave function @ of 1§ and 2S5 HO states as the trial wave
function, we calculated both the mass spectra of the ground
state pseudoscalar and vector mesons and the decay constants
of the corresponding mesons. The flavor mixing effect has also
been implemented for the meson systems of (w,¢) and (1,1').

The variational analysis with ® seems to improve the agree-
ment with the data of meson decay constants over the results of
the CJ model. It also appears to provide the better agreement
with data in the heavy meson mass spectra. Accommodating
the empirical constraint fy > fp, we have shown that the
mass spectra and the hyperfine splittings for heavy (b,c) quark
sector get improved by introducing the multiplicative factor
A in front of the smearing parameter o, i.e., 0 — Ao, in
the smeared hyperfine interaction (o2 /73/2)e="*". Our results
indicate that the interaction between heavier quarks gets more
point-like as the larger X values are favored in comparison with
data. The distinction between the heavy meson sector and the
light meson sector is rather natural in our LFQM analyses. To
get more definite conclusion in this respect, further analysis of
other wave function related observables such as various meson
elastic and transition form factors may be useful. It may be also
interesting to analyze radially excited meson states using the
larger HO basis.
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APPENDIX: FIXATION OF THE MODEL PARAMETERS
USING VARIATIONAL PRINCIPLE

In our model, we assumed SU(2) flavor symmetry and
have the following parameters that need to be fixed: con-
stituent quark masses (11,(q), M, m,mp), potential parameters
(a,b,ay), gaussian parameter 8, and the smearing parameter
o. For our trial wave function ® = Zi:l CnPns, we also have
the mixing factor c¢,(n = 1,2) that we have to adjust. Notice
that the B values here are not only different for different
quark combinations, but also different for pseudoscalar and
vector mesons of the same quark combination. The reason
for this is that the hyperfine interaction we included in our
parametrization process gives different contributions to the
masses of pseudoscalar and vector mesons and thus induces
different parametrizations under variational principle.

‘We now illustrate our procedure for fixing these parameters.
The variational principle gives us one constraint

NPIH|P) My
F )

We can use this equation to rewrite the coupling constant oy in
terms of other parameters and plug it back into Eq. (9) and thus
eliminate «. The string tension b is fixed to be 0.18 GeV, a
well-known value from other quark model analysis [32,40,68].
We will leave the quark masses and smearing parameter o and
the mixing factor c¢; as externally adjustable variables. We
picked a set of values for (myq),my,m.,mp,0,c1) and proceed
with the following procedure to solve for the rest of parameters.

We are left with three more parameters (a, /3(2, ;’q) for

P_
g

=0. (A1)

mesons of a certain quark combination (¢g), where S

PHYSICAL REVIEW C 92, 055203 (2015)

;q are the gaussian parameters for pseudoscalar and vector

mesons, respectively. Using the masses of # and p as our
input values for M,; in Eq. (9), and the condition that our
coupling constants «; are the same for all these ground state
pseudoscalar and vector mesons, we can fix the three model
parameters (a,f,,B,;) for ¢ =u or d from the following
three equations:

M (B).a) = 0.140, (A2a)
M,(B,;-a) = 0.780, (A2b)
s (B5.a) = as(By;.a).- (A2¢)

Solving these equations not only gives us the remaining
parameters a,,BqZ and ﬂ;q, but also the coupling constant o
which we assumed to be the same for all the mesons we
consider here. We can then solve for the 8 values of all the
other mesons using the known «; value, by equating the o
expressions for different mesons that we got from Eq. (Al).
We thus fixed all parameters for the ground state pseudoscalar
and vector mesons we consider here.

We then assign a different set of values to the externally
adjustable variables, i.e., (mq),ms,m.,myp,0,c1), and repeat
the above procedure until we find a set of values that give best
fit for the meson mass spectra.

Through our trial and error type of analysis, we found
mg = 0.205 GeV, my = 0.38 GeV, m. = 1.75 GeV, m; =
5.15 GeV,0 = 0.423 GeV,c; = +/0.7 gives best fit. We then
determine the mixing angles from the mass spectra of (w,¢)
and (n,7") using Egs. (10) and (11) as we have described
in Sec. II. In addition, the multiplicative factor A in front
of the smearing parameter o for the (c¢,bé,bb) systems
were adjusted utilizing the hyperfine splittings of (b,c) quark
sectors as we have discussed in Sec. III. The updated g values
with this A adjustment are listed in Table II.
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