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Two-particle correlations in pseudorapidity in a hydrodynamic model
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Two-particle pseudorapidity correlations of hadrons produced in Pb+Pb collisions at
√

sNN = 2.76 TeV at the
CERN Large Hadron Collider are analyzed in the framework of a model based on viscous 3+1-dimensional hydro-
dynamics with the Glauber initial condition. Based on our results, we argue that the correlation from resonance de-
cays, formed at a late stage of the evolution, produce significant effects. In particular, their contribution to the event
averages of the coefficients of the expansion in the Legendre basis explain 60–70% of the experimental values.
We propose an accurate way to compute these coefficients, independent of the binning in pseudorapidity, and test
a double expansion of the two-particle correlation function in the azimuth and pseudorapidity, which allows us to
investigate the pseudorapidity correlations between harmonics of the collective flow. In our model, these quantities
are also dominated by the nonflow effects from the resonance decays. Finally, our method can be used to compute
higher-order cumulants for the expansion in orthonormal polynomials [A. Bzdak and P. Bożek, arXiv:1509.02967
[hep-ph] (2015)] which offers a suitable way of eliminating the nonflow effects from the correlation
analyses.

DOI: 10.1103/PhysRevC.92.054913 PACS number(s): 25.75.Gz, 25.75.Ld

I. INTRODUCTION

The mechanism of energy deposition in relativistic nuclear
collisions is a subject of intense studies. Whereas most of
the investigations are concerned with the entropy-deposition
profile in the transverse plane and the resulting transverse
expansion (for reviews see, e.g., [1,2]), the dynamics in the
longitudinal direction is less explored, and has been recently
gaining more attention with the new experimental analyses
from the CERN Large Hadron Collider (LHC), expected
shortly. Such studies could give valuable insight into the
initial energy and momentum distributions in rapidity [3],
the longitudinal collective dynamics [4], or hydrodynamic
fluctuations [5]. Correlations in (pseudo)rapidity can be
studied in various ways, in particular, as correlations of
the transverse flow at different rapidity bins, or as multi-
plicity correlations in rapidity. The first case requires an
intermediate collective expansion stage producing flow [6–8],
whereas the particle distribution and multiplicity correlations
in rapidity are not modified significantly during the fire-
ball expansion, thus are expected to reflect more closely
the initial conditions in the fireball. In other words, the
multiplicity correlations arise even without any collective
expansion.

Correlations of the multiplicity of particles observed in high
energy collisions in different pseudorapidity intervals have
been studied in a number of colliding systems [3,9,10]. The
most common approach is based on the correlation of the
number of particles in forward and backward pseudorapidity
bins, 〈nF nB〉, or related observables.
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Bzdak and Teaney have proposed to expand the two-point
correlation function in pseudorapidity in a basis of orthogonal
polynomials [9]. The correlations are then written in terms
of the corresponding expansion coefficients 〈anam〉. The
extracted coefficients can serve to parametrize event-by-event
fluctuations of the particle distribution in pseudorapidity. A
basis of the Legendre polynomials [11] has been used for the
expansion of the correlation in pseudorapidity for the case of
Pb+Pb collisions at

√
s = 2760 GeV, recently measured by

the ATLAS Collaboration [12].
In this work we present predictions of the relativistic

hydrodynamic model for the two-particle correlations in
pseudorapidity, focusing on correlations generated in the late
stage of the collision via resonance decays. Our approach
consists of a Glauber Monte Carlo model with asymmetric
longitudinal emission profile for the initial state, and
the viscous 3+1D hydrodynamic evolution of the fireball,
followed by statistical hadron emission at freeze out. Our main
result is that the late-stage correlations from resonance decays
contribute largely (about a half of the measured values) to
the correlations extracted in terms of the 〈anam〉 coefficients.
The missing strength should be attributed to the correlations
generated in the earlier stages of the evolution (initial state,
jets).

II. TWO-PARTICLE CORRELATION

The two-particle correlation in pseudorapidity, scaled by
the one-particle distributions, is defined as

C(η1,η2) = 〈N (η1)N (η2)〉 − 〈N (η1)〉δ(η1 − η2)

〈N (η1)〉〈N (η2)〉 , (1)

where N (η) denotes the distribution of the number of hadrons
at η and the averaging is over events in a selected centrality
class. The estimation of the correlation function (1) from
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real, finite multiplicity events requires finite binning in
pseudorapidity. Then, the δ function in Eq. (1) takes the form
of the Kronecker δ for two particles in the same bin. In the
experiment, the correlation function is constructed as the ratio
of the histogram for particle pairs from physical events to the
histogram constructed from mixed events in the same centrality
class [12],

C(η1,η2) = S(η1,η2)

B(η1,η2)
. (2)

For a perfect detector, the denominator is proportional to
the product of single particle densities B(η1,η2) = 〈N (N −
1)〉/〈N〉2 × 〈N (η1)〉〈N (η2)〉, where N denotes the total num-
ber of particles recorded in the given event. Moreover, since
the dependence of N (η) on η is weak in the ATLAS detector
acceptance [−Y,Y ], the normalization of the correlation
function is

∫ Y

−Y

∫ Y

−Y
C(η1,η2) dη1

2Y
dη2

2Y
� 1.

We note that the definition of Eq. (1) corresponds to the
scaled second factorial moment of the multiplicity distribution,
which depends on the centrality definition and the width
of the centrality bin. To reduce the effects of the overall
multiplicity fluctuations, the ATLAS collaboration uses a
modified correlation function

CN (η1,η2) = C(η1,η2)

Cp(η1)Cp(η2)
(3)

with Cp(η1) = 1
2Y

∫ Y

−Y
C(η1,η2)dη2. The experimental analy-

sis suggests that CN (η1,η2) is approximately independent of
the definition of centrality [11,12].

III. EXPANSION IN ORTHONORMAL POLYNOMIALS

As the shape of the distribution function N (η)/〈N (η)〉
fluctuates event by event, it can be expanded in a basis of
orthogonal functions [9]

N (η)

〈N (η)〉 = 1 +
∞∑

n=0

anTn

(
η

Y

)
. (4)

For the case of Legendre polynomials Pn(x), the normalized

functions are Tn( η
Y

) =
√

2n+1
2 Pn(x) [11], where [−Y,Y ] is the

pseudorapidity range on which the correlation functions are
defined, such that the orthonormality condition takes the form∫ Y

−Y

Tn

(
η

Y

)
Tm

(
η

Y

)
dη

Y
= δnm . (5)

The event-average 〈anam〉 can be calculated from the two-
particle correlation function

〈anam〉 =
∫ Y

−Y

dη1

Y

∫ Y

−Y

dη2

Y
C(η1,η2)Tn

(
η1

Y

)
Tm

(
η1

Y

)
. (6)

The procedure is rather complicated, as first the two-particle
correlation function must be constructed with sufficiently fine
binning. In the case of low statistics, large binning of C
introduces biases.

An estimate of the integral (6) can be simply obtained from
the equation

〈anam〉 =
〈∑

a �=b

Tn

(
ηa

Y

)
Y 〈N (ηa)〉

Tm

(
ηb

Y

)
Y 〈N (ηb)〉

〉

=
〈∑

a

Tn

(
ηa

Y

)
Y 〈N (ηa)〉

∑
b

Tm

(
ηb

Y

)
Y 〈N (ηb)〉

〉

−
〈∑

a

Tn

(
ηa

Y

)
Y 〈N (ηa)〉

Tm

(
ηa

Y

)
Y 〈N (ηa)〉

〉
, (7)

where the sums are over hadrons in the given event and the
averages are over events. Equation (7) produces very stable
results, free of the binning bias.

In the experimental analysis of Ref. [12] the function
CN (η1,η2) instead of C(η1,η2) is used in Eq. (6). We have
checked that in our case the resulting difference for the 〈anam〉
coefficients for 1 � n,m � 5 is very small, a fraction of a
percent,1 hence in the following we will use C(η1,η2) in
Eq. (7). In addition, the function C(η1,η2) is, in the experiment,
normalized to 1. To conform to this convention we rescale the
coefficients obtained from Eq. (7):

〈anam〉 → 〈anam〉
1 + 〈a0a0〉/2

, (8)

which is equivalent to rescaling

C(η1,η2) −→ C(η1,η2)∫ Y

−Y

∫ Y

−Y
C(η1,η2) dη1

2Y
dη2

2Y

. (9)

In practice, for centrality bins in the model calculation defined
by the number of participant nucleons, the correction to the
normalization is less than 2%.

The motivation of the studies of Refs. [9,11,12] was
to transform the two-particle distributions into a series of
coefficients 〈anam〉 with a simple interpretation. For instance,
the coefficient 〈a1a1〉 is related to the asymmetry in the entropy
deposition in rapidity from the forward- and backward-going
participant nucleons. The expansion of the correlation function
C(η1,η2) in the basis of orthogonal polynomials is similar
to the expansion into its principal components [13], but
before diagonalization off-diagonal terms 〈anam〉, n �= m,
are, in general, nonzero. The asymmetry of the deposition
in rapidity is visible in the charged particle distribution in
pseudorapidity in asymmetric collisions [14] and in forward-
backward multiplicity distributions [10].

IV. RESULTS FROM THE HYDRODYNAMIC MODEL

We use the 3+1-dimensional viscous hydrodynamics [15]
to model the evolution of the fireball created in Pb+Pb
collisions at

√
s = 2.76 TeV. The initial entropy density

in the transverse plane is calculated in GLISSANDO [16],
implementing the Glauber Monte Carlo model. The initial

1A correction, which is tiny, could be worked out along the lines of
Ref. [11].
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profile in the longitudinal direction (in space-time rapidity) is
considered in two qualitatively different scenarios. In the first
scenario, the entropy distribution in space-time rapidity from
a left- and right-going participant nucleons is of the form

f±(η‖) = ηbeam ± η‖
ybeam

H (η‖) for |η‖| < ybeam, (10)

where

H (η‖) = exp

(
− (|η‖| − ηp)2�(|η‖| − ηp)

2σ 2
η

)
, (11)

and ybeam is the rapidity of the beam. For the LHC, the
parameters determining the shape are σ = 1.4 and ηp = 2.4.
The asymmetric distribution of the deposited entropy between
the forward and backward rapidity hemisphere leads, together
with the fluctuations in the number of participants, to nontrivial
correlations between forward and backward rapidity bins, both
in multiplicity [10] and in the flow angle orientation [6]. The
latter has been termed the torque effect, hence we label our
calculations based on Eq. (10) as torque.

The reference scenario assumes that the initial entropy
profile in space-time rapidity is symmetric,

f±(η‖) = H (η‖) for |η‖| < ybeam . (12)

In that case (labeled no torque) in each event the fireball density
has a backward-forward symmetry, hence no shape fluctua-
tions of odd reflection symmetry are possible. To summarize,
the torque case includes certain initial-state fluctuations in
rapidity, while the no-torque case does not.

At freeze out, hadrons are emitted, and later resonance
decays occur. The decays of resonances introduce short-range
correlations of length of about one unit in pseudorapidity,
leading to a nontrivial structure of the two-dimensional
correlation functions. Note that another source of correlation
in the late stage, unrelated to the fireball shape fluctuations, is
due to local charge conservation [17,18].

The correlation function (2) is calculated from realistic,
finite-multiplicity events, generated after the hydrodynamic
evolution with THERMINATOR [19]. We use the freeze-out
temperature Tf = 150 MeV. The simulated events include
the short-range correlations from resonance decays. In Fig. 1
we show the two-dimensional correlations for three different
centrality classes. Charged particles with p⊥ > 0.5 GeV and
|η| < 2.5 are taken to simulate the ATLAS acceptance.

For C(η1,η2), plotted in Fig. 1 for three sample centralities,
a broad peak from the short-range correlations is visible
around η1 � η2, more pronounced for the central events.
Such an effect of short-range correlations has been noticed
previously for the case of the elliptic flow [20]. When passing
to CN (η1,η2), we note that the denominator in Eq. (3) is smaller
than one at large |η1,2|, hence it causes relative enhancement
of the correlation measure in this region. As a result, the
shape of the correlation function is changed significantly when
passing from C(η1,η2) to CN (η1,η2), cf. Figs. 1 and 2, and
a characteristic ridge structure around η1 = η2 is formed.
The ridge has a saddle-like form, corresponding to a term
of the form Aη1η2 = A(η2

+ − η2
−)/4, where η± = η1 ± η2.

Such a term is expected from event-by-event asymmetry of
the initial distribution function [9], giving a nonzero value of
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FIG. 1. (Color online) Two-dimensional correlation function in
pseudorapidity for charged particles in Pb+Pb collisions at

√
s =

2.76 TeV at three centrality classes 0–5%, 30–40%, and 60–70% in
(a), (b), and (c), respectively.

〈a1a1〉. Without this asymmetry, the short-range correlations
are expected to be a function of |η1 − η2| only [21].

In our simulations, where the effect is dominated by short-
range correlations, almost the same value of 〈a1a1〉 is obtained
from the correlation functions C(η1,η2) and CN (η1,η2). It
thus suggests that the observed quadratic dependence of the
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FIG. 2. (Color online) Same as Fig. 1 but for the corrected
correlations function CN (η1,η2), Eq. (3).

correlation function CN (η1,η2) on η± does not directly prove
the existence of correlations induced by the event-by-event
fluctuations of the distribution.

In Fig. 3 we show the calculated coefficients
√〈anan〉, n =

1, . . . ,7 for two sample centralities. The magnitude predicted
by the model reaches about 60–70% of the values observed
experimentally [12]. The trend of the dependence on the
rank n is similar as in the experiment. Similar conclusions

FIG. 3. (Color online) Calculated coefficients
√〈anan〉 for cen-

trality 0–5% (a) and 30–40% (b) for the torque and no-torque models,
as well as for the oversampled events for the torque case (see text for
details).

can be made for the nondiagonal coefficients
√−〈anan+2〉

shown in Fig. 4. With the available statistics, we cannot
calculate higher-order averages 〈anan+4〉. The results for the
two scenarios of the initial conditions, torque and no-torque,
are shown. Interestingly, both calculations give very similar
results. This shows that in our model the dominant contribution
in the observed signal comes from the short-range correlations
due to resonance decays.

V. DOUBLE EXPANSION OF CORRELATIONS
FUNCTIONS IN AZIMUTHAL ANGLE AND

PSEUDORAPIDITY

Collective flow in ultrarelativistic heavy-ion collisions
causes all particles to be emitted in a correlated way, which
leads to azimuthal asymmetry in hadron distributions. The
correlation function between two pseudorapidity bins, con-
structed for multiplicity correlations as in the preceding sec-
tions, can be straightforwardly generalized for each harmonic
flow component for any two pseudorapidity bins. Various
techniques are applicable here. The rapidity dependence
could be decomposed into principal components [13], but in
practice the principal component analysis may be difficult
and restricted to the lowest eigenmodes. Alternatively, the
harmonic flow correlations in pseudorapidity can be expanded
in a basis of suitable orthogonal polynomials, in full analogy
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FIG. 4. (Color online) Same as in Fig. 3 but for the the coeffi-
cients

√−〈anan+2〉.

to the multiplicity case. This provides insight into a different
characteristic of the flow, with possibly different sensitivity to
nonflow effects than in the multiplicity correlations discussed
in Sec. II.

Let us define the correlation coefficients for the nth order
harmonic flow as

〈aj [n]ak[−n]〉 =
〈∑

a �=b

Tj

(
ηa

Y

)
einφa

Y 〈N (ηa)〉
Tk

(
ηb

Y

)
e−inφb

Y 〈N (ηb)〉

〉
. (13)

In the above equation, use we the normalization of the
correlations function by 1/〈N (η1)〉〈N (η2)〉 as in Eq. (1), but
the formula can be written analogously for the correlation
function of flow vectors in two rapidity intervals as used in
[13]. Note that the linear part of the pseudorapidity dependence
of the torque effect for the orientation of the flow angle [6]
contributes to the 〈a1[n]a1[−n]〉 coefficient.

In Figs. 5 and 6 we show the decomposition coefficients
(13) of the elliptic and triangular flow correlation at different
pseudorapidities. We compare calculations using the torque
and no-torque scenarios for the initial conditions, as in Sec. IV.
We notice that the two calculations give similar results,
although in the no-torque case the odd coefficients should
vanish within the statistical uncertainties. Our results mean that
in the decomposition of the flow correlations in pseudorapidity,
the dominant contribution comes from resonance decays. The
same effect has been noticed in the analysis of factorization

FIG. 5. (Color online) Same as in Fig. 3 but for the the coeffi-
cients of the second order harmonic

√〈an[2]an[−2]〉.

breaking for flow at different pseudorapidities [8] (the torque
effect).

VI. HIGHER-ORDER CUMULANTS

Nonflow correlations have a significant contribution to the
measured 〈anam〉 coefficients. In this section we show results
of an idealized calculation with the nonflow effects removed.
The coefficients are calculated using oversampled events,
where for each hydrodynamic evolution several hundreds of
THERMINATOR events are generated and combined together.
That way nonflow effects are damped. The procedure is equiv-
alent to a Monte Carlo integration of one-particle densities in
each event. The results for 〈a1a1〉 and 〈a2a2〉 are shown in
Fig. 7. The genuine effect due to event-by-event fluctuations
of the rapidity distributions is small. The coefficients from
the shape fluctuations are much smaller than correlations
from resonance decays. The dependence on the rank n of
the coefficients 〈anan〉 from oversampled events is presented
in Figs. 3 to 6. As expected in the torque scenario, involving
forward-backward asymmetry, 〈a1a1〉 and 〈a1[n]a1[−n]〉 have
the largest magnitude.

Two particle correlations from resonances are removed in
higher-order cumulants [22], while genuine correlations due
to the initial-state fluctuations of rapidity distributions (4)
do contribute. There are many possible combinations of the
fourth-order cumulants that can be used for the purpose. In
particular, one can define the simplest fourth-order cumulant
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FIG. 6. (Color online) Same as in Fig. 3 but for the coefficients
of the third harmonic

√〈an[3]an[−3]〉.

for the multiplicity fluctuations as [22]

〈
a4

k

〉
c

=
〈 ∑

a,b,c,d

′ Tk

(
ηa

Y

)
Y 〈N (ηa)〉

Tk

(
ηb

Y

)
Y 〈N (ηb)〉

Tk

(
ηc

Y

)
Y 〈N (ηc)〉

Tk

(
ηd

Y

)
Y 〈N (ηd )〉

〉

− 3

〈∑
a,b

′ Tk

(
ηa

Y

)
Y 〈N (ηa)〉

Tk

(
ηb

Y

)
Y 〈N (ηb)〉

〉
, (14)

where the subscript c stands for the connected part and the
prime denotes summation over different particles. For the flow
correlations in pseudorapidity, the most general cumulant is of
the form

〈ai1 [m1] . . . ain [mn]〉c
=

〈 ∑
a1,...,an

Ti1

( ηa1
Y

)
eim1φa1

Y 〈N (ηa1 )〉 . . .
Tin

( ηan

Y

)
eimnφan

Y 〈N (ηan
)〉

〉
c

(15)

with
∑n

k=1 mk = 0. The simplest fourth-order cumulants are

〈ak[n]ak[n]ak[−n]ak[−n]〉c
=

〈 ∑
a,b,c,d

′ Tk

(
ηa

Y

)
einφa

Y 〈N (ηa)〉
Tk

(
ηb

Y

)
einφb

Y 〈N (ηb)〉
Tk

(
ηc

Y

)
e−inφc

Y 〈N (ηc)〉

× Tk

(
ηd

Y

)
e−inφd

Y 〈N (ηd )〉

〉

−2

〈∑
a,b

′ Tk

(
ηa

Y

)
einφa

Y 〈N (ηa)〉
Tk

(
ηb

Y

)
e−inφb

Y 〈N (ηb)〉

〉
. (16)

FIG. 7. (Color online) Coefficients
√〈a1a1〉 (a) and

√〈a2a2〉 (b)
for the torque model and for the oversampled events for the torque
case, plotted as functions of the number of participants (determining
centrality). The ATLAS data come from Ref. [12].

We have attempted to compute the fourth-order cumulants
(14) and (16) in our simulation, however, with the available
statistics (20 000 events in each centrality class) the statistical
errors are too large, of the same order as the square of
the second-order cumulant. The application of the cumulant
method [22] is possible on large-statistics experimental data
and the results could be compared to model calculations using
one-particle densities (such as the results for the oversampled
events presented above) that neglect the nonflow effects.

VII. CONCLUSIONS

We have checked the predictions of a realistic simulation
based on viscous 3+1-dimensional hydrodynamics for the
two-particle correlations in pseudorapidity, as measured by
the ATLAS collaboration [12] and found that the correlation
from the resonance decays, formed at a late stage of the
evolution, produce significant effects. In particular, their
contribution to the coefficients 〈anam〉 in the expansion of
the correlation function in the Legendre basis take 60–70% of
the experimental values.

While our model incorporates only some possible sources
of correlations (those from the torque effect and the resonance
decays), it shows their relevance in the analyses. Other, not
incorporated nonflow effects, include the hadron production
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from jets, local current conservation, or additional sources of
rapidity fluctuations in the initial state [8].

On the methodological level, we have proposed a new way
to compute the 〈anam〉 coefficients, independent of the binning
in pseudorapidity, and applied it in our simulations. Also, we
have developed a double expansion of the correlation function
in the azimuth and pseudorapidity, which allows to probe
and quantify the rapidity correlations between harmonics of
the collective flow. We have found that in our model these
quantities are also dominated by nonflow effects. Our method
can be used for higher-order averages of the orthogonal
polynomials, in particular for cumulants. This offers a way
of eliminating the nonflow effects [22], but requires very large
statistics, which, fortunately, is available in the experiments.

These measures could be compared to model calculations with
oversampled events, where sufficient statistics can be achieved.

We note that a study using similar methods and leading
to similar results has been independently and simultaneously
presented in Ref. [23].
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[6] P. Bożek, W. Broniowski, and J. Moreira, Phys. Rev. C 83,
034911 (2011).

[7] H. Petersen, V. Bhattacharya, S. A. Bass, and C. Greiner, Phys.
Rev. C 84, 054908 (2011); K. Xiao, F. Liu, and F. Wang, ibid. 87,
011901(R) (2013); J. Jia and P. Huo, ibid. 90, 034915 (2014);
90, 034905 (2014); L.-G. Pang, G.-Y. Qin, V. Roy, X.-N. Wang,
and G.-L. Ma, ibid. 91, 044904 (2015); V. Khachatryan et al.
(CMS Collaboration), ibid. 92, 034911 (2015).
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