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A system of equations for anisotropic hydrodynamics is derived that describes a mixture of anisotropic quark
and gluon fluids. The consistent treatment of the zeroth, first, and second moments of the kinetic equations allows
us to construct a new framework with more general forms of the anisotropic phase-space distribution functions
than used before. In this way, the main deficiencies of the previous formulations of anisotropic hydrodynamics
for mixtures are overcome and a good agreement with the exact kinetic-theory results is obtained.
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I. INTRODUCTION

The successful description of relativistic heavy-ion
collisions at RHIC and at the LHC in terms of relativistic
dissipative fluid dynamics (for a recent review see Ref. [1])
has focused a lot of attention on studies aiming to construct the
most adequate hydrodynamic framework. One way to achieve
this task is to compare the results of various hydrodynamic
approaches [2–12], which differ by the number of terms
included in the formalism and by the values of the transport
coefficients, with the results of the underlying microscopic
kinetic theory [13–18]. The latter is very often used as a starting
point to derive the specific form of the evolution equations of
relativistic hydrodynamics, however, several approximations
done in such procedures may result in differences between the
predictions of the kinetic theory and the hydrodynamic models
constructed directly with its help.

As a lot of work has already been done in this context for
simple (i.e., one-component) fluids, the analysis of mixtures
has so far been quite limited [19–21]; for some recent develop-
ments, see Refs. [22–24]. One of the problems of the previous
approaches using the concept of anisotropic hydrodynamics
[19–21] was that they were based only on the zeroth and
first moments of the kinetic equations. Assuming that the
distribution functions used in anisotropic hydrodynamics are
described by the original Romatschke-Strickland form [25],
one finds an underdetermined set of equations, where the
number of unknown parameters is larger than the number of
equations. Consequently, to close the system of equations, in
Refs. [19–21] the transverse-momentum scale parameters for
quarks and gluons were taken to be equal.1

In this work we develop the approach presented in
Refs. [19–21], see also [26–29]. We use the zeroth, first,
and second moments of the kinetic equations for quarks,
antiquarks, and gluons. This allows us to use the Romatschke-
Strickland form with more independent parameters compared
to previous works. Our selection of the equations is presented
and discussed in greater detail below. Here we only mention
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1The transverse-momentum scale parameters can be interpreted

also as transverse temperatures: parameters characterizing transverse-
momentum distributions.

that our equations include the baryon number and energy-
momentum conservation laws. This is achieved by the use of
two types of the Landau matching condition: the first one
fixes the effective chemical potential μ, while the second
one (more commonly used) fixes the effective temperature T .
Moreover, we use a special combination of equations coming
from the second moment, which guarantees the agreement
with the Israel-Stewart theory for a system approaching local
equilibrium [30] (see also Refs. [31–33]).

Our approach is restricted to one-dimensional, boost-
invariant systems [34], denoted (0 + 1)D systems. We show
that the evolution equations of anisotropic hydrodynamics for
quark and gluon fluids derived herein yield a good agreement
with the results of the kinetic theory. Several options for the
selection of the zeroth-moment equations have been studied
and the best choice is indicated. The new approach eliminates
solutions with exponentially damped anisotropy parameters,
found in Ref. [19], which do not agree with the kinetic-theory
solutions [21]. Such solutions appeared in cases where the
initial conditions corresponded to oblate-prolate or prolate-
prolate initial quark and gluon momentum distribution func-
tions. The new solutions have the same qualitative character
for all types of initial conditions (oblate-oblate, oblate-prolate,
and prolate-prolate), do not exhibit exponential damping, and
closely follow the kinetic-theory solutions for systems far from
and close to local thermal equilibrium.

The paper is organized as follows: In Sec. II the kinetic
equations for quarks, antiquarks, and gluons in the relaxation
time approximation (RTA) are introduced. In Sec. III the zeroth
moments of the quark and antiquark equations are discussed in
the context of the baryon number conservation. In Sec. IV we
discuss the first moment of the kinetic equations and analyze
the energy-momentum conservation. The second moments are
discussed in Sec. V and our results are presented in Sec. VI.
We conclude in Sec. VII. Throughout the paper we use natural
units and the metric tensor’s signature is (+, − , − ,−).

II. KINETIC EQUATIONS

We start our analysis with the kinetic equations for quarks,
antiquarks, and gluons written in the RTA [26–28]. They read

pμ∂μQ±(x,p) = −pμUμ

Q±(x,p) − Q±
eq(x,p)

τeq
, (1)
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pμ∂μG(x,p) = −pμUμ

G(x,p) − Geq(x,p)

τeq
, (2)

where Q+(x,p) [Q−(x,p)] is the quark [antiquark] phase-
space distribution function, G(x,p) is the gluon distribution
function, and τeq is the relaxation time. The four-vector U
describes the hydrodynamic flow in the Landau frame (i.e., U
is defined as the eigen four-vector of the energy-momentum
tensor).

The quark and gluon distribution functions are assumed to
have a generic structure [25],

Q±(x,p) = exp

(±λq − √
(p · U )2 + ξq(p · Z)2

�q

)
,

(3)

G(x,p) = exp

(
−

√
(p · U )2 + ξg(p · Z)2

�g

)
,

where the parameters �q and �g define the transverse momen-
tum scale, λq is the nonequilibrium baryon chemical potential
of quarks, and ξq and ξg are the anisotropy parameters. In local
equilibrium, the two anisotropy parameters vanish and Eqs. (3)
are reduced to the standard equilibrium distributions,

Q±
eq(x,p) = exp

(±μ − p · U

T

)
,

(4)

Geq(x,p) = exp

(
−p · U

T

)
,

where T is the temperature and μ is the baryon chemical
potential. For the sake of simplicity, we assume here the
classical Boltzmann statistics. Generalization of the present
results to the case of the quantum Bose-Einstein and Fermi-
Dirac statistics is straightforward [16,29].

The equilibrium distribution functions of the form (4) are
used to define the RTA collision terms in (1) and (2). In this
case μ and T should be treated as the effective baryon chemical
potential and effective temperature, which are determined by
the appropriate Landau matching conditions.

In addition to the flow vector U , which can be parametrized
in terms of the three-velocity in the standard way as

Uμ = γ (1,vx,vy,vz), γ = (1 − v2)−1/2, (5)

we introduce the four-vector Z, defined as [11]

Zμ = γz(vz,0,0,1), γz = (
1 − v2

z

)−1/2
. (6)

The appearance of Z is connected with the privileged direction
of the beam axis.

The four vectors U and Z satisfy the following normaliza-
tion conditions:

U 2 = 1, Z2 = −1, U · Z = 0. (7)

In the local rest frame of the fluid element, Uμ and Zμ have
simple forms:

Uμ = (1,0,0,0), Zμ = (0,0,0,1). (8)

In the (0 + 1)D case, we may further use

Uμ = (t/τ,0,0,z/τ ), Zμ = (z/τ,0,0,t/τ ), (9)

where τ is the (longitudinal) proper time,

τ =
√

t2 − z2. (10)

III. ZEROTH MOMENTS OF THE KINETIC EQUATIONS

Integrating Eqs. (1) and (2) over the three-momentum and
including the internal degrees of freedom we obtain the three
scalar equations

∂μ(n±
q Uμ) = n±

q,eq − n±
q

τeq
, (11)

∂μ(ngU
μ) = ng,eq − ng

τeq
, (12)

where we have introduced the nonequilibrium and equilibrium
particle densities defined by the expressions

n±
q = gq

π2

e±λq/�q �3
q√

1 + ξq

, n±
q,eq = gq

π2
e±μ/T T 3, (13)

ng = gg

π2

�3
g√

1 + ξg

, ng,eq = gg

π2
T 3. (14)

Note that for the (0 + 1)D system we have Uμ∂μ = d/dτ and
∂μUμ = 1/τ .

Instead of using Eqs. (11) and (12) we use the difference in
the equations for quarks vs antiquarks appearing in (11),

d

dτ
(n+

q − n−
q ) + n+

q − n−
q

τ
= n+

q,eq − n−
q,eq − (n+

q − n−
q )

τeq
,

(15)

and the following linear combination of Eqs. (11) and (12):

α

(
dnq

dτ
+ nq

τ

)
+ (1 − α)

(
dng

dτ
+ ng

τ

)

= α
nq,eq − nq

τeq
+ (1 − α)

ng,eq − ng

τeq
. (16)

In Eq. (16) we have introduced the notation nq and nq,eq for
the sum of the quark and antiquark densities:

nq = n+
q + n−

q = 2gq

π2

cosh(λq/�q)�3
q√

1 + ξq

,

nq,eq = n+
q,eq + n−

q,eq = 2gq

π2
cosh(μ/T ) T 3. (17)

It is important to note that, in contrast to Eq. (15), which
leads directly to the fundamental law of baryon number
conservation, the use of Eq. (16) is not as well motivated.
A straightforward treatment of Eqs. (11) and (12) suggests
that Eq. (15) should be supplemented by two extra equations,
for example, one equation for the sum of the quark and
antiquark distributions and the other for the gluon distribution.
It turns out, however, that the use of three equations obtained
from the zeroth moment leads, finally, to an overdetermined
system of equations. Therefore, we have decided to use the
linear combination defined by Eq. (16), where α = const. is a
parameter taken from the range 0 � α � 1.

One may check a posteriori which value of α is the best by
comparing the hydrodynamic results with the kinetic-theory
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results. In this way we have found that the best agreement is
obtained for α = 1. A similar agreement is also obtained for
the case α = 0. We note that the cases α = 0 and α = 1 do
not introduce the coupling between the quark and the gluon
sectors at the level of the zeroth moment. This seems to
be a desirable situation, since the kinetic equations, (1) and
(2), treated exactly include the coupling between the quark
and the gluon sectors only through the energy-momentum
conservation [that is, within the first moment of Eqs. (1) and
(2)] with the corresponding Landau matching condition (see
Ref. [21]). We return to the discussion of this point following
Eq. (43).2

A. Baryon number conservation and the corresponding
Landau matching

Equation (15) divided by a factor of 3 gives the constraint
on the baryon number density b = (n+

q − n−
q )/3, namely,

db

dτ
+ b

τ
= beq − b

τeq
. (18)

In order to have the baryon number conserved both the left-
and the right-hand sides of (18) should vanish. This yields

b(τ ) = b0τ0

τ
= 2gq

3π2
sinh

(
λq

�q

)
�3

q√
1 + ξq

(19)

and

sinh

(
μ

T

)
T 3 = sinh

(
λq

�q

)
�3

q√
1 + ξq

, (20)

respectively. We note that the solution b(τ ) = b0τ0/τ has the
scaling form known from the Bjorken model [34]. The quantity
b0 ≡ b(τ = τ0) on the right-hand side of Eq. (19) is the baryon
number density at the initial proper time.

Equations (19) and (20) can be solved for the chemical
potentials λq and μ [19]. We find

λq

�q

= sinh−1(D) = ln[D +
√

1 + D2], (21)

where

D(τ,�q,ξq) =
(

3π2b0τ0
√

1 + ξq

2gqτ�3
q

)
, (22)

and

μ

T
= sinh−1

(
D

κq

)
= ln

[
D

κq

+
√

1 + D2

κ2
q

]
, (23)

where

κq(T ,�q,ξq) = T 3
√

1 + ξq

�3
q

. (24)

2The choice α = 1 eliminates Eq. (12) from our considerations. As
this may be unexpected at first glance, we note that Eq. (12) does not
reflect any basic physics rule. It describes the gluon production or
gluon entropy production. The latter is also included in the second-
moment equations that we take into account.

One should note here that the ratio D/κq = (3π2b0τ0)/
(2gqτT 3) no longer depends on �q and ξq . The condition

beq = b, (25)

resulting in Eq. (20), should be treated as the Landau matching
condition that guarantees baryon number conservation. It
defines the effective baryon chemical potential μ [see Eqs. (20)
and (23)] in terms of the variables τ, T , �q , and ξq . Similarly,
the baryon conservation equation allows us to express λq

in terms of τ, T , �q , and ξq . In this way, in the following
expressions we may completely eliminate both μ and λq (the
expressions depend, however, in an explicit way on τ0 and b0).

B. Sum of the zeroth-order moments

Using Eqs. (21) and (23) and the mathematical identity

cosh[sinh−1(x)] =
√

1 + x2, (26)

we find the expressions for the quark nonequilibrium and
equilibrium densities,

nq = 2gq

π2

√
1 + D2�3

q√
1 + ξq

,

(27)

nq,eq = 2gq

π2

√
1 + D2/κ2

q T 3,

respectively. Using this notation we rewrite Eq. (16) in the
form

d

dτ

(
α

√
1 + D2�3

q√
1 + ξq

+ (1 − α)
r̃�3

g√
1 + ξg

)

+
(

1

τ
+ 1

τeq

)(
α

√
1 + D2�3

q√
1 + ξq

+ (1 − α)
r̃�3

g√
1 + ξg

)

= T 3

τeq

(
α
√

1 + D2/κ2
q + (1 − α)r̃

)
, (28)

where r̃ is the ratio of the internal degrees of freedom for
gluons and quarks,

r̃ = gg

2gq

. (29)

In the numerical calculations we use the value r̃ = 2/3.

IV. ENERGY-MOMENTUM CONSERVATION LAW

A. Landau matching for the energy density

The first moment of the sum of the kinetic equations, (1)
and (2), gives the divergence of the energy-momentum tensor

∂μT μν = 1

τeq
Uμ

(
T μν

q,eq + T μν
g,eq − (

T μν
q + T μν

g

))
, (30)

where the energy-momentum tensor T μν includes the quark
and gluon contributions,

T μν = T μν
q + T μν

g . (31)
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The Lorentz structure of the distribution functions for quarks
and gluons implies the following forms of the energy-
momentum tensors for quarks and gluons [11]:

T
μν
i = (εi + Pi,T )UμUν − Pi,T gμν

− (Pi,T − Pi,L)ZμZν , (32)

where εi , Pi,L, and Pi,T denote the energy density, longitudinal
pressure, and transverse pressure, respectively, and the index
i stands for quarks (i = q) or gluons (i = g). Here the energy
densities of quarks and gluons are given by the expressions

εq = 6gq�
4
q

π2

√
1 + D2 R(ξq),

(33)

εg = 3gg�
4
g

π2
R(ξg),

where the function R(ξ ) is defined as [10]

R(ξ ) = 1

2(1 + ξ )

[
1 + (1 + ξ ) tan−1 √

ξ√
ξ

]
. (34)

Correspondingly, for the equilibrium part we find

T μν
eq = T μν

q,eq + T μν
g,eq, (35)

where

T
μν
i,eq = (εi,eq + Pi,eq)UμUν − Pi,eqg

μν, (36)

with εi,eq and Pi,eq being the equilibrium energy density and
pressure, respectively. The equilibrium energy densities for
quarks and gluons are given by the expressions

εq,eq = 6gqT
4

π2

√
1 + D2/κ2

q ,

(37)

εg,eq = 3ggT
4

π2
.

The energy-momentum conservation law ∂μT μν = 0 re-
quires that the right-hand side of Eq. (30) vanishes. This
is nothing but the Landau matching condition for energy-
momentum conservation. This matching requires that the
energy determined from the nonequilibrium distribution func-
tions is the same as the energy obtained with the equilibrium
distribution functions:

ε = εq + εg = εeq = εq,eq + εg,eq. (38)

This leads directly to the constraint on the effective tempera-
ture T :

T 4 = �4
q

√
1 + D2 R(ξq) + �4

gr̃ R(ξg)√
1 + D2/κ2

q + r̃
. (39)

B. Energy and momentum conservation

In the (0 + 1)D case considered here the energy and
momentum conservation takes the form

dε

dτ
= −ε + PL

τ
, (40)

where PL is the sum of the longitudinal pressures for quarks
and gluons,

Pq,L = 6gq�
4
q

π2

√
1 + D2 RL(ξq),

(41)

Pg,L = 3gg�
4
g

π2
RL(ξg),

with RL defined through the formula

RL(ξ ) = −[2(1 + ξ )R′(ξ ) + R(ξ )]. (42)

This leads directly to the formula

d

dτ

[
�4

q

√
1 + D2 R(ξq) + r̃�4

gR(ξg)
]

= 2

τ

[
�4

q

√
1 + D2(1 + ξq)R′(ξq) + r̃�4

g(1 + ξg)R′(ξg)
]
.

(43)

We note that Eqs. (39) and (43) couple the quark and
gluon parameters similarly to the way these two sectors
are coupled in the exact treatment of the kinetic equations,
(1) and (2). Hence, the best agreement between the hydrody-
namic equations and the kinetic theory may be expected if no
other coupling is incorporated in the hydrodynamic approach.
This, in turn, suggests using the value α = 1 or α = 0 in
Eq. (16). This conjecture has been supported by our numerical
calculations done with various values of α taken within the
range 0 � α � 1.

V. SECOND MOMENT OF THE KINETIC EQUATION

So far we have constructed three equations [see Eqs. (28),
(39), and (43)] for five unknown functions: �q , �g , ξq , ξg ,
and T . In order to close the system of equations we need
to include two extra equations. We construct them using the
second moment of the kinetic equation.

The second moment of the kinetic equation in the RTA was
studied in Ref. [30], where boost-invariant and cylindrically
symmetric systems were analyzed. In that case, it was shown
that it is convenient to select the following equations as the
basis for the hydrodynamic approximation:

d

dτ
ln 
I + θ − 2θI − 1

3

∑
J

[
d

dτ
ln 
J + θ − 2θJ

]

= 1

τeq

[

eq


I

− 1

]
− 1

3

∑
J

{
1

τeq

[

eq


J

− 1

]}
. (44)

Here I = X,Y,Z and J = X,Y,Z are space indices. In the
(0 + 1)D case the coefficients θI have the form θX = θY = 0,
θZ = −1/τ , and θ = 1/τ . The three functions 
I are obtained
as contractions of the third moment of the distribution function
with the tensor U ⊗ I ⊗ I (where I is now the four-vector
corresponding to the index I ). The function 
eq is obtained
by the contraction of the third moment of the equilibrium
distribution function with any of the tensors U ⊗ I ⊗ I
(the result is independent of I ). The four-vectors U and Z
are defined above. The four vectors X and Y in our case,
where the transverse expansion is neglected, are given simply
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by the formulas [35]

Xμ = (0,1,0,0), Y μ = (0,0,1,0). (45)

It is important to emphasize that in our (0+1)D case, only one
of three equations in (44) is independent.3 It may be taken as

d

dτ
ln 
X − d

dτ
ln 
Z − 2

τ
= 
eq

τeq

[
1


X

− 1


Z

]
. (46)

Since Eqs. (44) turned out to be very successful in the
construction of hydrodynamic models [33]—in particular, they
are consistent with the Israel-Stewart theory for systems close
to equilibrium—we use this form separately for quarks and
gluons. See also our remarks following Eq. (43).

A. Quarks and antiquarks

Following the method of Ref. [31] one can derive the
following formulas for the sum of the quark and antiquark
distributions:



q
X = 


q
Y = 8gq�

5
q

π2(1 + ξq)1/2

√
1 + D2,

(47)



q
Z = 8gq�

5
q

π2(1 + ξq)3/2

√
1 + D2.

Similarly, for the equilibrium quark functions one gets



q
X,eq = 


q
Y,eq = 


q
Z,eq = 8gqT

5

π2

√
1 + D2/κ2

q . (48)

Using Eqs. (47) and (49) in (46) we find

d

dτ
ln

(
�5

q

(1 + ξq)1/2

√
1 + D2

)

− d

dτ
ln

(
�5

q

(1 + ξq)3/2

√
1 + D2

)
− 2

τ

= T 5

τeq�5
q

ξq(1 + ξq)1/2

√
1 + D2/κ2

q√
1 + D2

. (49)

B. Gluons

In the case of gluons, the analogous expressions are



g
X = 


g
Y = 4gg�

5
g

π2(1 + ξg)1/2
,

(50)



g
Z = 4gg�

5
g

π2(1 + ξg)3/2
,

and the equilibrium functions are



g
X,eq = 


g
Y,eq = 


g
Z,eq = 4ggT

5

π2
. (51)

3By construction, only two equations in (44) are independent. In
the case where the transverse flow is neglected, these two become
degenerate.

Using Eqs. (50) and (51) in (46) one obtains

d

dτ
ln

(
�5

g

(1 + ξg)1/2

)
− d

dτ
ln

(
�5

g

(1 + ξg)3/2

)
− 2

τ

= T 5

τeq�5
g

ξg(1 + ξg)1/2. (52)

Equations (28), (39), and (43) together with Eqs. (49) and (52)
represent five independent equations that allow us to determine
five unknown functions of the proper time: �q , �g , ξq , ξg ,
and T .

VI. RESULTS

In this section we present our numerical results for four
types of initial conditions. In the first case the initial conditions
correspond to the oblate quark and gluon distribution functions
(oblate-oblate configuration). In the second case the initial
distribution of quarks is prolate, while the gluon distribution is
oblate (prolate-oblate configuration), and in the third case the
two distributions are prolate (prolate-prolate configuration). In
the first three cases we set the baryon number density equal
to 0. The effect of the nonvanishing baryon density is studied
in the fourth case, where the quark and gluon distributions are
both oblate.

We note that the oblate (prolate) distributions correspond to
positive (negative) values of the anisotropy parameter ξ and,
consequently, to a transverse pressure higher (lower) than the
longitudinal pressure. The results of the microscopic calcula-
tions indicate that the initial conditions in relativistic heavy-ion
collisions correspond to the (oblate) case where PT > PL,
as soon as the coherent longitudinal color fields disappear
[36–38]. This suggests that the oblate-oblate configuration is
probably the most realistic one.

In all the considered cases the initial starting (proper) time
is τ = τ0 = 0.1 fm/c and we continue the evolution to τ =
10 fm/c. The initial transverse-momentum parameters �0,i

for quarks and gluons have been set equal to 1 GeV. From
the Landau matching condition for the energy [see Eq. (39)],
we determine the initial temperature T0, which is different for
the cases with different initial anisotropies. The value of the
relaxation time used in this work is constant, τeq = 0.25 fm/c.
A temperature-dependent τeq can also be used, as described
in Refs. [13,14]. However, to check the agreement with the
kinetic theory it is enough to use a constant value.

In the four cases presented here, the results of anisotropic
hydrodynamics are compared with the exact solutions of the ki-
netic equations, (1) and (2), that were constructed for (0 + 1)D
systems in Ref. [21]. We refer to this paper for all details
connected with the exact treatment of Eqs. (1) and (2). Here
we only emphasize that the initial distribution functions used
in the kinetic-theory calculations are specified by the same
initial parameters as used in the hydrodynamic calculations.

The results for the oblate-oblate initial configuration with
ξ0,q = 1 and ξ0,g = 10 are shown in Fig. 1. Figure 1(a)
shows the ratio of the total transverse pressure to the total
energy density, PT /ε. The solid line describes the result of
the kinetic theory, while the dashed line is the result of
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FIG. 1. (Color online) Comparison of the hydrodynamic and
kinetic-theory results for the initial oblate-oblate configurations. A
detailed description is given in the text.

anistropic hydrodynamics. Figure 1(b) shows the same ratio
but for the individual quark (red lines) and gluon (black lines)
components. Figures 1(c) and 1(d) show the PL/PT ratio for
the whole system and the individual components, respectively.
Figures 2 and 3 show the same ratios as presented in
Fig. 1, but for the prolate-oblate (ξ0,q = −0.5, ξ0,g = 10) and
prolate-prolate (ξ0,q = −0.5, ξ0,g = −0.25) initial conditions,
respectively. The coding of the lines is the same as in Fig. 1.

FIG. 2. (Color online) The same as Fig. 1, but for the prolate-
oblate configuration.

The results presented in Fig. 1 show that the hydrodynamic
description agrees very well with the kinetic results. One may
note, however, that the best agreement is achieved for total
quantities that include both quarks and gluons. On the other
hand, the worst agreement is obtained for gluons alone. This
situation changes if we set α = 0 instead of α = 1, however,
the overall results for the case α = 1 are the best. In Figs. 2
and 3, again, a good agreement between the hydrodynamic
and the kinetic-theory results is shown, especially for the
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FIG. 3. (Color online) The same as Fig. 1, but for the prolate-
prolate configuration.

prolate-prolate configurations. For the prolate-oblate case, the
agreement is a bit worse, but we have to keep in mind that
such an initial configuration is extremely out of equilibrium:
not only are the two distributions highly anisotropic in the
momentum space, but also their individual types of anisotropy
are different. The correct description of such a nonequilibrium
case within a hydrodynamic approach is challenging.

Finally, in Fig. 4 we show the effect of a finite baryon
density. The calculations are done for the two cases b0 = 0

FIG. 4. (Color online) Comparison of the results obtained with
a zero vs a finite initial baryon density for the oblate-oblate
configuration.

and b0 = 1 fm−3. In these two cases the initial oblate-oblate
configuration is assumed. In agreement with earlier studies we
find that the effect of a finite baryon density is very small,
unless the initial baryon number density is extremely high
(b0 � 1 fm−3).

We emphasize that the results shown in Figs. 1–4 were
obtained with α = 1 in Eq. (16), which has turned out to be
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the best choice. A similar agreement was also obtained for the
case α = 0. On the other hand, the case α = 0.5 gives a much
worse agreement.

VII. CONCLUSIONS

We have constructed a new set of equations for anisotropic
hydrodynamics describing a mixture of anisotropic quark
and gluon fluids. The consistent treatment of the zeroth,
first, and second moments of the kinetic equations allows us
to construct our approach with more general forms of the
anisotropic phase-space distribution functions than used in
similar earlier studies [19–21]. In this way, the main problems
of the previous formulations of anisotropic hydrodynamics for
mixtures have been overcome and a good agreement with the
exact kinetic-theory results is obtained.

Our considerations have been based on the RTA form of
the collision term. However, we expect that the hydrodynamic
model formulated in this work should also describe well kinetic
systems with more general collision terms, as long as the cross
sections appearing in those collision terms determine properly
the relaxation time used in the RTA.
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