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Scaled variance, skewness, and kurtosis near the critical point of nuclear matter
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The van der Waals (VDW) equation of state predicts the existence of a first-order liquid-gas phase transition
and contains a critical point. The VDW equation with Fermi statistics is applied to a description of the nuclear
matter. The nucleon number fluctuations near the critical point of nuclear matter are studied. The scaled variance,
skewness, and kurtosis diverge at the critical point. It is found that the crossover region of the phase diagram is
characterized by the large values of the scaled variance, the almost zero skewness, and the significantly negative
kurtosis. The rich structures of the skewness and kurtosis are observed in the phase diagram in the wide region
around the critical point; namely, they both may attain large positive or negative values.
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I. INTRODUCTION

The first-order liquid-gas phase transition is a well known
phenomenon that takes place in atomic and/or molecular
systems, in the system of interacting nucleons (nuclear matter),
and most probably between hadrons and quark-gluon plasma
at large baryonic densities. In all these cases the phase
transition line in the plane of temperature T and chemical
potential μ has an end point. It is called the critical point
(CP), and it demonstrates some universal features typical for
the second-order phase transitions, in particular, anomalously
large fluctuations.

The particle number fluctuations are characterized by the
central moments, 〈(�N )2〉, 〈(�N )3〉, 〈(�N )4〉, etc., where
〈· · · 〉 denotes the event-by-event averaging and �N ≡ N −
〈N〉. The scaled variance ω[N ], skewness Sσ , and kurtosis κσ 2

defined as the following combinations of the central moments,

ω[N ] = 〈(�N )2〉
〈N〉 , Sσ = 〈(�N )3〉

〈(�N )2〉 ,
(1)

κσ 2 = 〈(�N )4〉 − 3〈(�N )2〉2

〈(�N )2〉 ,

are the well known size-independent (intensive) measures of
particle number fluctuations.

In the grand canonical ensemble (GCE) the pressure p
plays the role of the thermodynamical potential, and its
natural variables are temperature T and chemical potential
μ. The particle number fluctuations can be characterized by
the following dimensionless cumulants (n = 1,2, . . .):

kn = ∂n(p/T 4)

∂(μ/T )n
. (2)

The fluctuation measures in Eq. (1) can be then presented as
the following:

ω[N ] = k2

k1
, Sσ = k3

k2
, κσ 2 = k4

k2
. (3)

The study of event-by-event fluctuations in high-
energy nucleus-nucleus collisions opens new possibilities

to investigate properties of strongly interacting matter (see,
e.g., Refs. [1,2] and references therein), and the experimental
search for the chiral CP is now in progress (see, e.g.,
Refs. [3–5] and references therein). The fluctuation signals
of the QCD CP were discussed in Refs. [6–8]. In particular,
the non-Gaussian fluctuation measures of conserved charges
such as the skewness Sσ and kurtosis κσ 2 have attracted
much attention recently (see, e.g., Refs. [9,10]). The higher
moments of conserved charges were suggested as probes to
study the QCD phase structure [11,12], and were calculated
in various effective QCD models [13–16]. Experimentally,
the higher moments of net-proton and net-charge multiplicity
were recently measured by the STAR Collaboration in Au+Au
collisions in

√
sNN = 7.7–200 GeV energy range [17–19].

However, no definitive conclusion regarding the existence and
location of the chiral CP has been obtained yet.

In the present paper the scaled variance, skewness, and
kurtosis of net-nucleon (net-baryon) number fluctuations near
the critical point of nuclear matter are studied. A presence of
the liquid-gas phase transition in nuclear matter was reported
in a large number of papers; see, e.g., Refs. [20–22]. Exper-
imental estimates of the nuclear matter CP, Tc

∼= 17.9 MeV
and nc

∼= 0.06 fm−3, were presented recently in Ref. [23].
At such small temperatures the effects of deconfinement and
of production of new particles, such as pions, are expected
to be negligible, and the number of nucleons is essentially
a conserved quantity. Thus, very different physical pictures
of the critical behavior in nuclear matter and near the chiral
CP are evidently expected. Nevertheless, in both cases the
fluctuations of conserved charges are expected to be sensitive
probes of critical behavior and may be used to pinpoint the
location of the corresponding CP.

II. NUCLEAR MATTER WITH THE VAN DER WAALS
EQUATION OF STATE

In this work we use the van der Waals (VDW) equation of
state to study the measures (3) of particle number fluctuations
near the CP of the nuclear matter. The VDW model contains
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FIG. 1. (Color online) The (a) particle number density n(T ,μ) (6) and (b) scaled variance ω[N ] (10) calculated for the symmetric nuclear
matter in (T ,μ) coordinates within the VDW equation of state for fermions. The open circle at T = 0 denotes the ground state of nuclear
matter, the solid circle at T = Tc corresponds to the CP, and the phase transition curve μ = μmix(T ) is depicted by the solid line.

the first-order liquid-gas phase transition which ends at the CP.
In the canonical ensemble the classical VDW equation of state
has a simple and transparent form (see, e.g., Ref. [24]):

p(T ,n) = NT

V − bN
− a

N2

V 2
≡ nT

1 − bn
− an2, (4)

where V is the system volume, a > 0 and b > 0 are the VDW
parameters that describe attractive and repulsive interactions,
respectively, and n ≡ N/V is the particle number density.
The CP corresponds to the temperature Tc and particle number
density nc, where

(
∂p

∂n

)
T

= 0,

(
∂2p

∂n2

)
T

= 0. (5)

In order to apply the VDW equation of state to systems with
a variable number of particles the GCE formulation is needed
(see Ref. [25]).

In the following we consider the VDW equation of state for
the system of interacting nucleons. We restrict our considera-
tion to temperatures T � 40 MeV; thus, the production of new
particles (like pions) is neglected. In addition, both the nucleon
clusters (i.e., ordinary nuclei) and the baryonic resonances
(like N∗ and �) are neglected. Within these approximations,
the number of nucleons, N , becomes a conserved number, and
the chemical potential μ of the GCE regulates the number
density of nucleons.

At low temperatures and/or high particle number densities
the Boltzmann approximation becomes inadequate and leads
to unphysical negative values of the system entropy. The
generalization of the VDW equation which includes effects
of the quantum statistics was recently proposed in Ref. [26].
The pressure and the particle density are then defined by the
following system of two equations for p(T ,μ) and n(T ,μ)
functions:

p(T ,μ) = pid(T ,μ∗) − an2(T ,μ),
(6)

n(T ,μ) = nid(T ,μ∗)

1 + bnid(T ,μ∗)
,

where

μ∗ = μ − bp(T ,μ) − abn2(T ,μ) + 2an(T ,μ). (7)

The pid and nid are expressions for the quantum ideal gas
pressure and particle density, respectively:

pid(T ,μ) = g

6π2

∫ ∞

0
k2dk

k2

√
m2 + k2

×
[

exp

(√
m2 + k2 − μ

T

)
+ η

]−1

, (8)

nid(T ,μ) = g

2π2

∫ ∞

0
k2dk

[
exp

(√
m2 + k2 − μ

T

)
+ η

]−1

,

(9)

where g is the degeneracy factor (the number of spin and
isospin states) and m is the particle mass. In Eqs. (8) and (9),
η = +1 for Fermi statistics, η = −1 for Bose statistics, and
η = 0 for the Boltzmann approximation.

The VDW equation of state with Fermi statistics was used
in Ref. [26] to describe the properties of symmetric nuclear
matter. In this case, η = 1, g = 4, and m = 938 MeV in
Eqs. (8) and (9). Parameters a and b are fixed to reproduce
the properties of nuclear matter in its ground state; i.e., at
T = 0 it should be p = 0, n = n0

∼= 0.16 fm−3, and the
binding energy per nucleon, EB = E/N − m ∼= −16 MeV.
These conditions give a ∼= 329 MeV fm3 and b ∼= 3.42 fm3.
Note that particle volume parameter b is connected to its
hard-core radius r = [3b/(16π )]1/3 ∼= 0.59 fm. In the GCE,
at fixed T and μ, Eqs. (6) may have more than one solution. In
such a case a solution with the largest pressure is selected in
accordance with the Gibbs criteria (see Ref. [26] for details).

III. NUCLEON NUMBER FLUCTUATIONS NEAR THE
CRITICAL POINT

The phase transition line, μ = μmix(T ), shown in Fig. 1(a),
starts from the normal nuclear matter state with T = 0,
μ0

∼= 922 MeV and ends at the CP with Tc
∼= 19.7 MeV,

μc
∼= 908 MeV (this gives nc

∼= 0.07 fm−3).1 At each point of
the phase transition line, two solutions with different particle

1The Boltzmann approximation η = 0 leads to nc = 1/3b ∼=
0.10 fm−3 and Tc = 8a/(27b) ∼= 28.5 MeV.
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FIG. 2. (Color online) The (a) skewness Sσ [Eq. (12)] and (b) kurtosis κσ 2 [Eq. (13)] calculated for the symmetric nuclear matter in (T ,μ)
coordinates within VDW equation of state for fermions.

densities (the liquid and gas states) and equal pressures exist;
i.e., this is a line of the first-order phase transition. At T > Tc

only a single solution n(T ,μ) exists. Nevertheless, as seen
from Fig. 1(a), a rapid although continuous change of particle
number density takes place in a narrow T − μ region (the
so-called crossover region) even at T > Tc.

Using Eq. (3) one calculates the scaled variance ω[N ] as

ω[N ] = k2

k1
= T

n

(
∂n

∂μ

)
T

= ωid(T ,μ∗)

[
1

(1 − bn)2
− 2an

T
ωid(T ,μ∗)

]−1

, (10)

where the quantity

ωid(T ,μ∗) = 1 − gη

2π2n

∫ ∞

0
dkk2

×
[

exp

(√
m2 + k2 − μ∗

T

)
+ η

]−2

(11)

with η = 1 corresponds to the scaled variance of particle
number fluctuations in the ideal Fermi gas (in the Boltzmann
approximation, η = 0, it is reduced to ωid = 1).

It is clearly seen from Eq. (10) that the repulsive interac-
tions suppress the particle number fluctuations, whereas the
attractive interactions lead to their enhancement. The scaled
variance (10) is shown in Fig. 1(b). At any fixed value of
temperature, ω[N ] → 1 as μ decreases. In this case, n → 0
and ωid(T ,μ∗) → 1; thus, the Boltzmann ideal gas results are
recovered. The scaled variance becomes small, ω[N ] 
 1, as
μ increases. In this case, the particle number density goes to
its limiting value, n → 1/b. The scaled variance (10) diverges
at the CP (note that the thermodynamic limit V → ∞ is
assumed). As seen from Fig. 1(b) the large values of ω[N ] � 1
take place along the crossover region, even far away from the
CP.

Using Eq. (3) one also calculates the skewness,

Sσ = k3

k2
= ω[N ] + T

ω[N ]

(
∂ω[N ]

∂μ

)
T

, (12)

and the kurtosis,

κσ 2 = k4

k2
= (Sσ )2 + T

(
∂[Sσ ]

∂μ

)
T

, (13)

shown in Figs. 2(a) and 2(b), respectively. Similarly to the
scaled variance, the skewness and kurtosis diverge at the
CP. However, these higher moments of the particle number
distribution show much richer structures: the behavior of Sσ
and κσ 2 crucially depend on the path of approach to the CP.

As seen from Fig. 2(a) the liquid phase corresponds to Sσ <
0, whereas the gas phase corresponds to Sσ > 0. The line of
Sσ = 0 goes from the critical point along the crossover region,
and the T − μ regions with Sσ � 1 and Sσ 
 −1 are placed
just under and above this line, respectively. From Fig. 2(b) it
is also seen that the crossover region of the phase diagram
is characterized by the significantly negative kurtosis, κσ 2 

−1. However, outside this crossover region one observes large
positive values of the kurtosis, κσ 2 � 1, in a rather wide
T − μ area around the CP of nuclear matter. Qualitatively, our
findings with regards to the fluctuation patterns near the CP
are consistent with previous results based on effective QCD
models (see, e.g., Refs. [12,15,16]) or on model-independent
universality arguments with regards to critical behavior in the
vicinity of the QCD critical point [9,10].

IV. SUMMARY

In summary, the fluctuation signatures of the nuclear matter
CP—scaled variance, skewness, and kurtosis—are calculated
within the quantum formulation of the VDW equation of state.
The scaled variance diverges, ω[N ] → ∞, at the CP, and
the large values of ω[N ] � 1 take place along the crossover
region even far away from the CP. The behavior of Sσ and
κσ 2 at the CP is more complicated. The limiting singular
values of these quantities depend on the path of approach to
the CP. The rich structures of the skewness and kurtosis are
observed in the wide T − μ area around the CP of nuclear
matter. We hope that results obtained in this paper can be
useful for the identification of the CP signatures of nuclear
matter in heavy-ion collision experiments.
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Statistical Mechanics (Springer-Verlag, New York, 1995).

[25] V. Vovchenko, D. V. Anchishkin, and M. I. Gorenstein, J. Phys.
A 48, 305001 (2015).

[26] V. Vovchenko, D. V. Anchishkin, and M. I. Gorenstein, Phys.
Rev. C 91, 064314 (2015).

054901-4

http://dx.doi.org/10.1142/S0218301314300082
http://dx.doi.org/10.1142/S0218301314300082
http://dx.doi.org/10.1142/S0218301314300082
http://dx.doi.org/10.1142/S0218301314300082
http://arxiv.org/abs/arXiv:1506.08141
http://dx.doi.org/10.1103/PhysRevLett.114.142301
http://dx.doi.org/10.1103/PhysRevLett.114.142301
http://dx.doi.org/10.1103/PhysRevLett.114.142301
http://dx.doi.org/10.1103/PhysRevLett.114.142301
http://dx.doi.org/10.1103/PhysRevLett.81.4816
http://dx.doi.org/10.1103/PhysRevLett.81.4816
http://dx.doi.org/10.1103/PhysRevLett.81.4816
http://dx.doi.org/10.1103/PhysRevLett.81.4816
http://dx.doi.org/10.1103/PhysRevD.60.114028
http://dx.doi.org/10.1103/PhysRevD.60.114028
http://dx.doi.org/10.1103/PhysRevD.60.114028
http://dx.doi.org/10.1103/PhysRevD.60.114028
http://dx.doi.org/10.1103/PhysRevLett.95.182301
http://dx.doi.org/10.1103/PhysRevLett.95.182301
http://dx.doi.org/10.1103/PhysRevLett.95.182301
http://dx.doi.org/10.1103/PhysRevLett.95.182301
http://dx.doi.org/10.1103/PhysRevC.72.064903
http://dx.doi.org/10.1103/PhysRevC.72.064903
http://dx.doi.org/10.1103/PhysRevC.72.064903
http://dx.doi.org/10.1103/PhysRevC.72.064903
http://dx.doi.org/10.1103/PhysRevLett.102.032301
http://dx.doi.org/10.1103/PhysRevLett.102.032301
http://dx.doi.org/10.1103/PhysRevLett.102.032301
http://dx.doi.org/10.1103/PhysRevLett.102.032301
http://dx.doi.org/10.1103/PhysRevLett.107.052301
http://dx.doi.org/10.1103/PhysRevLett.107.052301
http://dx.doi.org/10.1103/PhysRevLett.107.052301
http://dx.doi.org/10.1103/PhysRevLett.107.052301
http://dx.doi.org/10.1016/j.physletb.2005.11.083
http://dx.doi.org/10.1016/j.physletb.2005.11.083
http://dx.doi.org/10.1016/j.physletb.2005.11.083
http://dx.doi.org/10.1016/j.physletb.2005.11.083
http://dx.doi.org/10.1103/PhysRevLett.103.262301
http://dx.doi.org/10.1103/PhysRevLett.103.262301
http://dx.doi.org/10.1103/PhysRevLett.103.262301
http://dx.doi.org/10.1103/PhysRevLett.103.262301
http://dx.doi.org/10.1016/j.physletb.2010.10.046
http://dx.doi.org/10.1016/j.physletb.2010.10.046
http://dx.doi.org/10.1016/j.physletb.2010.10.046
http://dx.doi.org/10.1016/j.physletb.2010.10.046
http://dx.doi.org/10.1103/PhysRevC.83.054904
http://dx.doi.org/10.1103/PhysRevC.83.054904
http://dx.doi.org/10.1103/PhysRevC.83.054904
http://dx.doi.org/10.1103/PhysRevC.83.054904
http://arxiv.org/abs/arXiv:1502.00648
http://arxiv.org/abs/arXiv:1509.04968
http://dx.doi.org/10.1103/PhysRevLett.105.022302
http://dx.doi.org/10.1103/PhysRevLett.105.022302
http://dx.doi.org/10.1103/PhysRevLett.105.022302
http://dx.doi.org/10.1103/PhysRevLett.105.022302
http://dx.doi.org/10.1103/PhysRevLett.112.032302
http://dx.doi.org/10.1103/PhysRevLett.112.032302
http://dx.doi.org/10.1103/PhysRevLett.112.032302
http://dx.doi.org/10.1103/PhysRevLett.112.032302
http://dx.doi.org/10.1103/PhysRevLett.113.092301
http://dx.doi.org/10.1103/PhysRevLett.113.092301
http://dx.doi.org/10.1103/PhysRevLett.113.092301
http://dx.doi.org/10.1103/PhysRevLett.113.092301
http://dx.doi.org/10.1103/PhysRevLett.49.1321
http://dx.doi.org/10.1103/PhysRevLett.49.1321
http://dx.doi.org/10.1103/PhysRevLett.49.1321
http://dx.doi.org/10.1103/PhysRevLett.49.1321
http://dx.doi.org/10.1016/0370-2693(82)90224-6
http://dx.doi.org/10.1016/0370-2693(82)90224-6
http://dx.doi.org/10.1016/0370-2693(82)90224-6
http://dx.doi.org/10.1016/0370-2693(82)90224-6
http://dx.doi.org/10.1038/305410a0
http://dx.doi.org/10.1038/305410a0
http://dx.doi.org/10.1038/305410a0
http://dx.doi.org/10.1038/305410a0
http://dx.doi.org/10.1103/PhysRevC.29.508
http://dx.doi.org/10.1103/PhysRevC.29.508
http://dx.doi.org/10.1103/PhysRevC.29.508
http://dx.doi.org/10.1103/PhysRevC.29.508
http://dx.doi.org/10.1016/0370-1573(86)90031-1
http://dx.doi.org/10.1016/0370-1573(86)90031-1
http://dx.doi.org/10.1016/0370-1573(86)90031-1
http://dx.doi.org/10.1016/0370-1573(86)90031-1
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevLett.75.1040
http://dx.doi.org/10.1103/PhysRevLett.75.1040
http://dx.doi.org/10.1103/PhysRevLett.75.1040
http://dx.doi.org/10.1103/PhysRevLett.75.1040
http://dx.doi.org/10.1103/PhysRevLett.89.212701
http://dx.doi.org/10.1103/PhysRevLett.89.212701
http://dx.doi.org/10.1103/PhysRevLett.89.212701
http://dx.doi.org/10.1103/PhysRevLett.89.212701
http://dx.doi.org/10.1103/PhysRevC.67.011601
http://dx.doi.org/10.1103/PhysRevC.67.011601
http://dx.doi.org/10.1103/PhysRevC.67.011601
http://dx.doi.org/10.1103/PhysRevC.67.011601
http://dx.doi.org/10.1103/PhysRevC.77.035201
http://dx.doi.org/10.1103/PhysRevC.77.035201
http://dx.doi.org/10.1103/PhysRevC.77.035201
http://dx.doi.org/10.1103/PhysRevC.77.035201
http://dx.doi.org/10.1016/j.physletb.2008.05.038
http://dx.doi.org/10.1016/j.physletb.2008.05.038
http://dx.doi.org/10.1016/j.physletb.2008.05.038
http://dx.doi.org/10.1016/j.physletb.2008.05.038
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.057
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.057
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.057
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.057
http://dx.doi.org/10.1103/PhysRevC.87.054622
http://dx.doi.org/10.1103/PhysRevC.87.054622
http://dx.doi.org/10.1103/PhysRevC.87.054622
http://dx.doi.org/10.1103/PhysRevC.87.054622
http://dx.doi.org/10.1088/1751-8113/48/30/305001
http://dx.doi.org/10.1088/1751-8113/48/30/305001
http://dx.doi.org/10.1088/1751-8113/48/30/305001
http://dx.doi.org/10.1088/1751-8113/48/30/305001
http://dx.doi.org/10.1103/PhysRevC.91.064314
http://dx.doi.org/10.1103/PhysRevC.91.064314
http://dx.doi.org/10.1103/PhysRevC.91.064314
http://dx.doi.org/10.1103/PhysRevC.91.064314



