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Derivation of breakup probabilities of weakly bound nuclei from experimental elastic and
quasi-elastic scattering angular distributions
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We present a simple method to derive breakup probabilities of weakly bound nuclei by measuring only elastic
(or quasi-elastic) scattering for the system under investigation and a similar tightly bound system. When transfer
followed by breakup is an important process, one can derive only the sum of breakup and transfer probabilities.
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I. INTRODUCTION

The complex reaction mechanisms and scattering in
collisions involving weakly bound nuclei, both stable and
radioactive, have been the subject of intense theoretical and ex-
perimental investigations in recent years. These systems have
special features, particularly the very specific characteristics
of halo nuclei. Some comprehensive review papers have been
published on this subject [1–6].

Several competing reaction processes may occur when
weakly bound nuclei are involved, at energies near the
Coulomb barrier, in addition to the usual processes which
are present when tightly bound nuclei interact (inelastic
excitations, direct transfer of nucleons or clusters of nucleons,
fusion). If at least one of the colliding nuclei has small breakup
threshold energy, typically smaller than 3 MeV, this nucleus
may break up in the field of the partner nucleus and different
processes may occur, such as sequential complete fusion (when
all fragments fuse), incomplete fusion (when some but not
all fragments fuse), and noncapture breakup (when neither
fragment fuses). As recently observed [7,8], at sub-barrier
energies the breakup following direct transfer of nucleons of
stable weakly bound nuclei ( 6Li, 7Li, 9Be) predominates over
the direct breakup of these nuclei.

Among the most important questions on this subject one
finds the following: Does the breakup enhance or suppress the
complete fusion cross sections? How large are the noncapture
breakup cross sections, compared with the fusion cross
sections? The answers to these questions depend on the energy
regime (above or below the barrier), the target mass or charge,
and if the projectile has halo characteristics. The effect of
breakup on the fusion cross section has been intensively
studied and some qualitative trends on the systematic behavior
of complete fusion suppression, at energies above the barrier,
have been found [1,9–16], although the subject is still far from
being fully understood. In particular, the study of the fusion
reactions involving nuclei close to the drip lines so far has led
to the contradictory results.

Concerning the measurement of noncapture breakup, this
is a very difficult task. It requires very accurate exclusive

experiments with coincidences between the fragments and
then conversion of the events in integrated cross sections.
A clear identification of the processes, including sequential
breakup (breakup following transfer), may be possible through
the Q values of the reactions [7]. If one is interested in the
investigation of the effect of breakup on the fusion cross
section, it is of fundamental importance to have indications
on the time scale of the breakup. If the breakup occurs when
the projectile approaches the target, which is called prompt
breakup, it may affect fusion. Otherwise, if the breakup occurs
when the projectile is already far from the target and moving
away from it, which is called delayed breakup, the process
cannot affect fusion. The breakup probability is an important
quantity but almost impossible to be measured, because it
involves several reaction mechanisms (depending on what
happens with the fragments after the breakup) and also may be
triggered by transfer reactions where the breakup occurs after
the direct transfer of nucleons. From the theory side, there is no
model which provides all the cross sections related to breakup
simultaneously.

We believe that the establishing relationships between
various reaction observables is useful for a quantitative under-
standing of the reaction processes, providing a comprehensive
picture of the physics of low-energy heavy-ion collisions.
As an alternative to derive breakup and capture probabilities
in a simpler way than to measure these processes directly,
the use of elastic and quasi-elastic backscattering data has
recently been suggested [12,13,17], since the elastic and
quasi-elastic experiments are usually not so complicated as
the fusion (capture) and breakup measurements. Particularly,
for the derivation of breakup probabilities at backward angle
θ = 180◦, Sargsyan et al. [13] have proposed the use of
elastic (quasi-elastic) backscattering data. However, experi-
ments cannot be peformed at θ = 180◦, but rather backscat-
tering experiments are usually performed in the range θ =
130◦–170◦. Then, the data must be corrected and theoretically
transformed to θ = 180◦ by introducing an effective energy
that is obtained from the relation between elastic scattering
energy and scattering angle. In the present paper we propose
one even simpler method to obtain breakup probabilities. Now,
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the extraction of breakup probabilities can be obtained from
elastic (quasi-elastic) scattering data obtained at any arbitrary
angle. Furthermore, now we take into account the effects of
nucleon or cluster transfer.

The results of the present method are similar to the pre-
vious one using backscattering data. However, when transfer
channels are important, as for instance when transfer Q values
are positive, the present method works much better.

In Secs. II and III we derive the relationships between prob-
abilities of various reaction channels. In Sec. IV, using these
relationships, we suggest the method for extracting breakup
probabilities from the experimental elastic (quasi-elastic)
scattering data. The results of calculations and conclusions
are given in Secs. V and VI.

II. ELASTIC SCATTERING

The total elastic scattering amplitude can be written as [18]

f (θ ) = fn(θ ) + fC(θ ) = i

2k

∑

J

(2J + 1)(1 − SJ )PJ (cos θ )

=
∑

J

fJ (θ ), (1)

where θ is the scattering angle in the center-of-mass system
and k =

√
2μE/�2 denotes the asymptotic wave number in

the elastic channel, μ and E being the reduced mass and the
bombarding energy in the center-of-mass system, respectively.
In Eq. (1), fn(θ ) = ∑

J f n
J (θ ) is the Coulomb modified

nuclear amplitude obtained by subtracting the Coulomb (or the
Rutherford) amplitude fC(θ ) = ∑

J f C
J (θ ) from f (θ ). The SJ

is the elastic partial wave S matrix, given by

SJ = SC
J Sn

J = ∣∣Sn
J

∣∣e2i(σC
J +σn

J ), (2)

where Sn
J (SC

J ) represents the effect of the short-range nuclear
(the long-range Coulomb) interaction and σn

J (σC
J ) is the

scattering phase shift associated with Sn
J (SC

J ).
For heavy systems, one usually considers the ratio

σel(θ )/σC(θ ), where σel(θ ) = |f (θ )|2 = ∑
J,J ′ σel(θ,J,J ′) =∑

J,J ′ fJ (θ )f ∗
J ′ (θ ) is the differential elastic-scattering cross

section and σC(θ ) = |fC(θ )|2 = ∑
J,J ′ f C

J (θ )f C∗
J ′ (θ ) is the

Rutherford cross section.
Note that we are using the notation that when σi is written

with an argument θ it corresponds to a differential cross
section; otherwise it corresponds to an integrated cross section.

From Eq. (1), one can write

σR(θ ) = σC(θ ) − σel(θ ) − σfg(θ ), (3)

where

σR(θ ) = 1

4k2

∑

J,J ′
(2J + 1)(2J ′ + 1)SC

J SC∗
J ′

(
1 − Sn

J Sn∗
J ′

)

×PJ (cos θ )PJ ′ (cos θ ) (4)

is the differential reaction cross section and the last term in the
right-hand side of Eq. (3)

σfg(θ ) =
∑

J

σfg(θ,J ) = −2

k
Im[fn(θ )]δ(1 − cos θ ) (5)

is the differential forward nuclear glory scattering cross
section, which is zero everywhere except at θ = 0, due to
the δ function δ(1 − cos θ ).

So, the reaction cross section is the difference between
Coulomb and elastic cross sections. Equation (3) has been
formally derived by Hussein et al. [19,20], by using the optical
theorem and forward glory effects in heavy-ion scattering.

At the angular range 0 < θ � π , one can rewrite Eq. (3) in
the following way:

σR(θ )

σC(θ )
+ σel(θ )

σC(θ )
= PR(θ ) + Pel(θ ) = 1, (6)

where Pi(θ ) = σi(θ )/σC(θ ) refer to the elastic scattering (i =
el) and reaction (i = R) probabilities at a given scattering
angle θ . Owing to the fact that the differential cross sections
are positive and the ratios σi(θ )/σC(θ ) can be interpreted as
probabilities, the conditions 0 � Pi(θ ) � 1 are fulfilled. One
can observe that there is the unique relation (6) among different
channels.

III. QUASI-ELASTIC SCATTERING

In several scattering experiments, it is not possible to
resolve elastic and inelastic scattering, and only quasi-elastic
scattering can be measured, where quasi-elastic means the
sum of elastic and inelastic scattering; that is, the differential
quasi-elastic scattering cross section is defined as

σqe(θ ) = σel(θ ) + σin(θ ). (7)

The differential reaction cross section can be written as

σR(θ ) = σcap(θ ) + σin(θ ) + σtr(θ ) + σBU (θ ) + σDIC(θ ),

(8)

that is, the sum of differential cross sections of capture σcap(θ )
(a sum of evaporation-residue formation, fusion-fission, and
quasi-fission cross sections), inelastic excitations, few-nucleon
transfer σtr(θ ), breakup σBU (θ ), and deep inelastic collisions
σDIC(θ ). Substituting Eqs. (7) and (8) into Eq. (3) one gets

σqe(θ ) + σcap(θ ) + σBU (θ ) + σtr(θ ) + σDIC(θ )

+ σfg(θ ) = σC(θ ). (9)

Employing Eq. (9) at 0 < θ � π , one obtains

Pcap(θ ) + Pqe(θ ) + PBU (θ ) + Ptr(θ ) + PDIC(θ ) = 1, (10)

where Pi(θ ) = σi(θ )/σC(θ ) refer to different channel proba-
bilities at a given scattering angle θ . For systems involving
only tightly bound nuclei, PBU (θ ) is negligible.

IV. DERIVATION METHOD OF BREAKUP
PROBABILITIES

From Eq. (6) one observes the direct relationship between
the elastic scattering and the other reaction processes, since
any loss of flux from the elastic scattering channel contributes
directly to other channels. One may write

Pel(θ ) + PR(θ ) = Pel(θ ) + PBU (θ ) + Prest(θ ) = 1, (11)
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where Prest(θ ) stands for all reaction channels apart from the
breakup.

Dividing all terms of Eq. (11) by 1 − PBU (θ ), Eq. (11) is
rewritten as

Pel(θ )

1 − PBU (θ )
+ Prest(θ )

1 − PBU (θ )
=P noBU

el (θ ) + P noBU
rest (θ ) = 1,

(12)

where

P noBU
el (θ ) = Pel(θ )

1 − PBU (θ )
(13)

and

P noBU
rest (θ ) = Prest(θ )

1 − PBU (θ )
(14)

are the elastic scattering and other channels probabilities,
respectively, in the absence of the breakup process. This is the
situation when the colliding nuclei are tightly bound. From
these expressions we obtain the useful formulas

Pel(θ )

Prest(θ )
= P noBU

el (θ )

P noBU
rest (θ )

= P noBU
el (θ )

1 − P noBU
el (θ )

. (15)

Using Eq. (13), one can find the relationship between the
breakup and elastic scattering processes:

PBU (θ ) = 1 − Pel(θ )

P noBU
el (θ )

. (16)

In Ref. [13], a similar equation was derived for the partial
breakup and elastic scattering probabilities with J = 0 (θ =
180◦), for backscattering.

Equation (6) is also rewritten as

Pel(θ )

1 − PBU (θ ) − Ptr(θ )
+ Prest′ (θ )

1 − PBU (θ ) − Ptr(θ )

= P noBU+notr
el (θ ) + P noBU+notr

rest′ (θ ) = 1, (17)

where

P noBU+notr
el (θ ) = Pel(θ )

1 − PBU (θ ) − Ptr(θ )
(18)

and

P noBU+notr
rest′ (θ ) = Prest′ (θ )

1 − PBU (θ ) − Ptr(θ )
(19)

are the elastic scattering and other channels probabilities,
respectively, in the absence of the breakup and transfer
processes. Employing Eq. (18), one can find the relationship
between the breakup, transfer, and elastic scattering processes:

PBU (θ ) = 1 − Ptr(θ ) − Pel(θ )

P noBU+notr
el (θ )

. (20)

One can also obtain the following useful relations:

Pel(θ )

Prest′ (θ )
= P noBU+notr

el (θ )

P noBU+notr
rest′ (θ )

= P noBU+notr
el (θ )

1 − P noBU+notr
el (θ )

. (21)

As already mentioned, in several experiments it is not
possible to separate elastic and inelastic scattering, and
therefore it is important to consider the derivation of the

expressions similar to Eqs. (16) and (20) for quasi-elastic
scattering. Using Eq. (10), we derive the following relations:

PBU (θ ) = 1 − Pqe(θ )

P noBU
qe (θ )

(22)

and

PBU (θ ) = 1 − Ptr(θ ) − Pqe(θ )

P noBU+notr
qe (θ )

, (23)

where Pqe, P noBU
qe , and P noBU+notr

qe are the quasi-elastic
scattering probabilities with and without the breakup process,
and without the breakup and transfer processes, respectively.
At sub-barrier energies, P noBU+notr

qe (θ ) ≈ 1, and from Eq. (23)
we obtain

PBU (θ ) ≈ 1 − Ptr(θ ) − Pqe(θ ). (24)

By measuring elastic or quasi-elastic scattering angular
distributions with weakly bound and tightly bound nuclei with
similar Coulomb barriers and bombarding energies, and using
Eq. (20) or Eq. (23), one can derive the breakup probability
of the weakly bound nuclei. For example, using Eq. (20) or
Eq. (23) at a given angle and assuming approximate equality
[21]

P noBU+notr
el,qe [ 6He +A−2X] ≈ Pel,qe[ 4He +AX]

at the condition

Vb( 4He +AX) − Ec.m.(
4He +AX) = Vb( 6He +A−2X)

−Ec.m.(
6He +A−2X)

for the corresponding Coulomb barriers and bombarding
energies, using the experimental Pel,qe[ 4He +AX] of the
4He +AX reaction with tightly bound nuclei (without breakup
and transfer), and the experimental Pel,qe[ 6He +A−2X] and
Ptr[

6He +A−2X] of the 6He +A−2X reaction with weakly
bound projectile (with breakup and transfer), one can extract
the breakup probability of 6He:

PBU (θ ) = 1 − Ptr(θ )[ 6He +A−2X]

− Pel,qe(θ )[ 6He +A−2X]

Pel,qe(θ )[ 4He +AX]
. (25)

So, to extract the pure PBU (θ ), one should measure the
Ptr(θ )[ 6He +A−2X] for the weakly bound system together with
Pel,qe(θ )[ 6He +A−2X] and Pel,qe(θ )[ 4He +AX]. Alternatively,
instead of forming the same compound nucleus, one could use
scattering data of weakly and tightly bound isotopes with the
same target. At deep sub-barrier energies, Pel,qe[ 4He +AX] ≈
1 and from Eq. (25) one obtains

PBU (θ )≈1 − Ptr(θ )[ 6He +A−2X] − Pel,qe(θ )[ 6He +A−2X].

(26)

To extract the pure PBU (θ ) in this case, one should measure
only the Ptr(θ )[ 6He +A−2X] and Pel,qe(θ )[ 6He +A−2X] for the
weakly bound system.

It should be stressed that in the case of a direct transfer
of nucleons followed by breakup, one should use Eq. (16) or
Eq. (22).

054620-3



V. V. SARGSYAN et al. PHYSICAL REVIEW C 92, 054620 (2015)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  40  80  120  160

σ B
U

/σ
R

θc.m. (deg)

(a)

CDCC
6He (standard)

4He (17.71 MeV)

 0.1
 15.5  16  16.5  17

σ B
U

/σ
R

Rmin (fm)

(b)

0.2

0.3

FIG. 1. (Color online) (a) The breakup probability of formula
(16) (standard) is compared with the CDCC results (solid line)
for 6He + 208Pb at the sub-barrier energy Elab = 16 MeV. The
nonbreakup elastic case of 6He has been replaced with the 4He +
210Pb reaction at Elab = 17.71 MeV (dashed line). (b) The breakup
probability as a function of the distance of closest approach for
previous curves at angles larger than 110◦. See text for further details.

V. RESULTS OF CALCULATIONS

As an example, Fig. 1(a) shows the performance of
formula (16) using the results for PBU (θ ), Pel(θ ), and
P noBU

el (θ ) obtained with four-body continuum-discretized
coupled-channels (CDCC) calculations for 6He + 208Pb at
Elab = 16 MeV. It is assumed that the 6He halo projectile has
a three-body cluster structure (α + n + n), while the 208Pb
target is considered inert. The ground state and continuum
states of 6He along with all the continuum couplings are
explicitly included. The impact of other reaction channels
(fusion, transfer, target excitations, etc.) on the 6He elastic
scattering is effectively treated through optical potentials
between the 6He fragments and the target. This CDCC model
describes elastic breakup only, and the converged CDCC

calculations used in this work were published in detail in
Ref. [22]. At the studied sub-barrier energy, it is observed
that PBU (θ ) of formula (16) (dotted line) compares with direct
PBU (θ ) of CDCC calculations (thick solid line) fairly well.
In Fig. 1(a), an additional calculation is presented, in which
the 6He nonbreakup elastic case is replaced [as in Eq. (25)]
with a 17.71-MeV beam of 4He on the 210Pb target (dashed
line), so the Vb − Ec.m. for 4He + 210Pb is the same as that for
6He + 208Pb. These results of formula (16) are in satisfactory
agreement with the CDCC outcomes (thick solid line). One
can observe that the backscattering region is the dominant
one. Figure 1(b) shows the breakup probability as a function
of the distance of minimal approach, assuming the Rutherford
trajectory for the 6He + 208Pb and 4He + 210Pb collisions at
the sub-barrier energies studied. This breakup function at
backward angles shows up a linear behavior in logarithmic
scale. This function is a critical input of the PLATYPUS code for
calculating the cross sections at above-barrier energies [23].
The results are sensitive to the slope of the breakup function
[24] that determines the radial location (relative to the target)
of the projectile breakup [23].

VI. CONCLUSIONS

We established the simple and interesting relationship
between the breakup and elastic (quasi-elastic) scattering
probabilities. With this relationship and the experimental
quasi-elastic (elastic) scattering data at a given angle in the
reactions with a weakly bound projectile and a tightly bound
isotope and the same or almost the same compound nucleus,
the breakup probability, which is important and difficult to be
measured quantity, may be satisfactorily extracted. As shown,
the elastic (quasi-elastic) scattering technique could be a very
useful tool in the study of the breakup probability as a function
of scattering angle. Our method may be useful for current
experimental activities in the field, as it puts together different
measurable processes.
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