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We investigate heavy-ion multinucleon transfer reactions using the coupled-channels formalism. We first use
the semiclassical approximation and show that a direct coupling between the entrance and the pair transfer
channels improves a fit to the experimental one- and two-neutron transfer cross sections for the 40Ca + 96Zr
and 60Ni + 116Sn systems. We then discuss the validity of the perturbative approach and highlight the effect of
high-order terms. The effect of absorption is also investigated for energies around the Coulomb barrier. Finally,
we use a quantal coupled-channels approach to achieve a simultaneous description of the fusion cross sections
and the transfer probabilities for the 40Ca + 96Zr reaction. We find a significant effect of the couplings to the
collective excited states on the transfer probabilities around the Coulomb barrier.
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I. INTRODUCTION

A transfer of a few nucleons during the reaction process
plays an important role in heavy-ion sub-barrier fusion
reactions [1]. The coupling to a transfer degree of freedom
is in general weaker than couplings to collective excitations.
However, when the coupling is sufficiently large, e.g., for a
transfer channel with a positive Q value, it is expected that
the transfer coupling leads to an extra enhancement of fusion
cross sections below the Coulomb barrier [2–18].

It is well known that two-neutron transfer reactions provide
a unique tool to study the pair correlation between nucleons
[19–22]. Recently two experiments for heavy-ion transfer reac-
tions have been carried out at energies far below the Coulomb
barrier [23,24] in order to study the relation between the
transfer of one neutron and that of a pair of neutrons. See also
Refs. [25,26]. The experimental data show an enhancement of
the two-neutron transfer cross sections compared to a simple
estimate based on the independent picture, that is, a square of
the transfer probability of one neutron.

Several theoretical studies have been performed in order
to understand the reaction dynamics of the pair transfer
process. Those include the time-dependent perturbation theory
based on the semiclassical approximation [19,20,27–29], the
second-order distorted-wave Born approximation (DWBA)
[22,30–32], and the semiclassical [26] and the quantal [4,5]
coupled-channels approaches. Recently, the time-dependent
density functional theory (TDDFT) has also been employed to
investigate the transfer reaction. An advantage of this method
is that the formalism takes into account simultaneously the
structure and the dynamics. Although this method reproduces
the individual transfer of nucleons [33–36], the enhancement
factor of a two-neutron transfer probability is underestimated
with this method [37] even if the pairing correlation is taken
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into account [38]. This implies a necessity to go beyond the
mean-field dynamics with pairing in order to take into account
all the remaining correlations [39–42].

In this paper, we carry out a phenomenological study in
order to understand the transfer dynamics using the formalism
of the semiclassical and the quantal coupled-channels ap-
proaches. Our aim in this paper is twofold: One is to understand
the reaction dynamics of the two-neutron transfer reactions.
We emphasize that the reaction dynamics is so complicated
that many microscopic approaches still lack prediction for
the two-neutron transfer. In particular, the nature of the
two-neutron transfer reaction, that is, the relative importance
between the direct and sequential processes, is still under dis-
cussion [5,22,27,32,38,43–45]. The second aim of this paper
is to describe sub-barrier fusion reactions using the transfer
coupling form factors which are consistent with the transfer
cross sections. For these purposes, we phenomenologically
adjust the parameters in the form factors for the transfer
couplings, rather than computing them microscopically.

The paper is organized as follows. In Sec. II, we employ the
semiclassical time-dependent coupled-channels method and
discuss the sequential and the direct natures of the two-neutron
transfer process. In Sec. III, we use the transfer coupling form
factors obtained in Sec. II to discuss the role of absorption in the
two-neutron transfer reactions. In particular, we investigate the
interplay between the transfer and the fusion processes using
the quantal coupled-channels approach. We then summarize
the paper in Sec. IV.

II. SEMICLASSICAL APPROACH

A. Transfer probability

Since the experimental transfer cross sections are often
analyzed using the semiclassical method [19], we first employ
it to investigate the nature of the two-neutron transfer.

With the semiclassical approximation to coupled-channels
equations, one assumes a Rutherford trajectory for the relative
motion r(t) between the colliding nuclei. This yields a
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time-dependent field for the intrinsic motions in the pro-
jectile and the target nuclei. That is, the nuclear intrinsic
wave function is expanded as |�(t)〉 = ∑N

n=0 cn(t)|n〉, n = 0
corresponding to the entrance channel, and it is then evolved
in time as

i�
dcn(t)

dt
=

∑
n′

Hnn′(t) cn′(t), (1)

with cn(−∞) = δn,0. Here, Hnn′ (t) is given as

Hnn′(t) = εnδn,n′ + Vnn′ [r(t)], (2)

where εn is the excitation energy for the channel n and
Vnn′ [r(t)] is the coupling form factor evaluated along the
classical trajectory, r(t). The probability for the channel n
is given as Pn = |cn|2 at t = +∞.

For the transfer problem, n corresponds to the number of
transferred nucleons. By truncating the transfer channels at
n = 2, the coupling Hamiltonian H reads

H(t) =
⎛
⎝ 0 V01(t) V02(t)

V01(t) −Q1 V12(t)
V02(t) V12(t) −Q2

⎞
⎠, (3)

where εn = −Qn is the transfer Q value for each partition, n.
For the coupling form factor Vnn′ , we employ

Vnn′ (r) = βnn′√
4π ann′

[e(r−rp)/ann′ ]3

[1 + e(r−rp)/ann′ ]4
. (4)

This function has the exponential form

Vnn′ (r) ∼ βnn′√
4π ann′

e−(r−rp)/ann′ (5)

for r � rp. Note that this parametrization differs from a
frequently used form, Vnn′ (r) = βnn′ d

dr
f (r), where f (r) is a

Fermi function, only for small values of r . We find that the
solutions for the coupled-channels equations are numerically
more stable with the parametrization given by Eq. (4).

In the actual calculations presented below, we use rp =
1.1 × (A1/3

T + A
1/3
P ) fm, where AT and AP are the mass

numbers for the target and the projectile nuclei, respectively.
We start the time-dependent Schrödinger equation, Eq. (1),
at at an initial distance rini = 30 fm where the coupling
is negligible. Following Ref. [29], we evaluate the time
dependence of the coupling form factor Vnn′ (t) by averaging
the two Rutherford trajectories, rn(t) and rn′(t), as r(t) =
(rn(t) + rn′(t))/2, where rn(t) and rn′(t) are evaluated with the
energy of En = Ecm + Qn and En′ = Ecm + Qn′ , respectively.
In order to avoid a dependence of the results on the initial
position, rini, all the trajectories are arranged so that the
distance of the closest approach is reached at the same time,
tmin. We follow the time evolution until the two fragments are
separated with a distance of 30 fm. We have checked that the
couplings among the channels are practically negligible after
this distance, and thus the transfer probabilities are not altered.

In order to reduce the number of adjustable parameters, we
employ two different schemes. The first scheme corresponds
to a pure sequential process, for which we set V02 to be zero
while V01 and V12 are allowed to be different. On the other
hand, the second scheme corresponds to a direct two-neutron

FIG. 1. The ground-state energies for the one-neutron (1n) and
the two-neutron (2n) transfer processes for the 40Ca + 96Zr and
60Ni + 116Sn systems. The dashed lines denote the optimum Q value
for each transfer channel.

transfer process, for which we set V01(r) = V12(r) but V02 �= 0
in general. The enhancement of two-neutron transfer process
is explained in a different way with these two schemes. In
the pure sequential transfer scheme, the enhancement factor
is due to the increase of the probability for the transfer of the
second neutron after the first neutron is transferred, that is,
|V12| > |V01|. On the other hand, in the direct transfer scheme,
the enhancement is due to the additional coupling between the
entrance and the two-neutron transfer channels.

We test these schemes on the two recent experiments for
the 40Ca + 96Zr and 60Ni + 116Sn systems [23,24]. In these
references, the experimental data, taken at backward angles
in the center-of-mass frame, are given in terms of the transfer
probability defined by the ratio of the transfer cross sections
to the Rutherford cross sections, Pxn ≡ dσxn/dσR , with x =
1,2, . . . , as a function of the distance of the closest approach,
D, for the Rutherford trajectory. Figure 1 summarizes the
ground-state energies for these systems. The Q value for the
ground state to the ground-state transition, Qgg, is positive both
for the one-neutron and the two-neutron transfer channels for
the 40Ca + 96Zr system, while it is negative for the one-neutron
transfer and positive for the two-neutron transfer for the
60Ni + 116Sn system.

Let us first consider a case with the ground state to the
ground-state Q value, that is, a case with Qn = Qgg(n), in
Eq. (3). We adjust the coefficients ann′ and βnn′ in Eq. (4)
by fitting the experimental data for D > 13.5 fm, for which
the coupling is weak and only the first-order dynamics is
important. Figure 2 shows a comparison of the calculated
transfer probabilities so obtained with the experimental data.
Those are obtained by varying the center-of-mass energy with
fixed values of the scattering angle, that is, θc.m. = 140 deg for
the 40Ca + 96Zr and 60Ni + 116Sn systems. For each energy,
the impact parameter is determined so that the scattering
angle for the Rutherford trajectory for the entrance channel
is consistent with the given value of the scattering angle. In
the figure, the thin solid and the dotted lines denote the results
with the pure sequential scheme for the 1n and 2n transfer
processes, respectively. On the other hand, the thick solid and
the dashed lines denote those with the direct transfer scheme.

The values of the parameters are summarized in Tables I
and II for the 40Ca + 96Zr and 60Ni + 116Sn systems, respec-
tively. Notice that the direct two-neutron transfer has a shorter
range with small a2 than the sequential coupling, in accordance
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FIG. 2. (Color online) The transfer probabilities for the
40Ca + 96Zr (the upper panel) and 60Ni + 116Sn (the lower panel)
reactions as a function of the distance of the closest approach, D,
for the Rutherford trajectory. The experimental data, taken form
Refs. [23,24], for the one-neutron (the crosses) and the two-neutron
(the squares) transfers are compared to transfer probabilities for the
ground state to the ground-state transitions obtained with the pure
sequential scheme (the thin solid line for the 1n transfer and the
dotted line for the 2n transfer) and with the direct transfer scheme
(the thick solid line for the 1n transfer and the dashed line for the 2n

transfer).

with the argument in Ref. [46]. One can also notice that with
the sequential scheme one has to take considerably different
parameters for V12 from those for V01 in order to reproduce
the experimental two-neutron transfer probability. This may
appear unnatural since a drastic change of structure is not
expected even after one neutron is transferred, although it may
simply mock up a constructive interference of different transfer
paths [47].

TABLE I. The parameters for the transfer coupling form factors
for the 40Ca + 96Zr reaction. For all the rows, a1 and β1 are those
for the coupling between the entrance and the 1n transfer channels.
For the sequential scheme (seq.), a2 and β2 are those for the coupling
between the 1n and the 2n transfer channels, that is, a2 = a12 and
β2 = β12. For the direct transfer scheme (dir.), a2 and β2 are those
for the coupling between the 0n and the 2n transfer channels, that is,
a2 = a02 and β2 = β02. These parameters are obtained either with the
ground state to the ground-state transfer Q values (Qgg) or with the
optimum Q values (Qopt).

Q Scheme a1 (fm) β1 (MeV fm) a2 (fm) β2 (MeV fm)

Qgg seq. 1.015 121.8 0.726 4470
Qgg dir. 1.309 39.05 0.727 443
Qopt seq. 1.113 80.33 1.458 107.4
Qopt dir. 1.230 51.56 0.700 278.9

TABLE II. Same as Table I, but for the 60Ni + 116Sn reaction.

Q Scheme a1 (fm) β1 (MeV fm) a2 (fm) β2 (MeV fm)

Qgg seq. 0.877 138.9 1.36 131.9
Qgg dir. 1.18 40.6 0.602 363.4
Qopt seq. 0.893 126.6 1.38 109.4
Qopt dir. 1.13 47.1 0.600 384.2

In Fig. 2, an unexpected behavior can be seen for the
40Ca + 96Zr reaction with the pure sequential scheme (the dot-
ted and the thin solid lines). That is, the transfer probabilities
oscillate as a function of D, even though the exponential tail
is correctly reproduced. This behavior is due to the large Q
value for the two-neutron transfer channel, Q2 = 5.5 MeV.

In reality, however, the transfer takes place mainly to excited
states, rather than to the ground state [23,48]. In fact, the
optimum Q value for a neutron transfer is Qopt = 0 [49],
and the coupling to the ground state is much weaker [6].
Figure 3 is obtained by using the optimum Q values, that
is, Q = min(0,Qgg) (see Fig. 1). See Tables I and II for the
parameters. As expected, the agreement with the experimental
data is much improved.

In Fig. 3, one can notice that the one-neutron transfer
probability is well reproduced with the direct transfer scheme.
In contrast, a significant deviation is seen for small values of
D with the sequential scheme. This can be attributed to the
sequential nature of the transfer dynamics. For large values
of D, the transfer probabilities are small and the sequential
transfer to the 2n channel does not modify P1. However, as D
decreases, the two-step process becomes significant, reducing
the probability for the one-neutron transfer channel. With the
direct two-neutron transfer scheme, on the other hand, the
two-neutron transfer takes place mainly from the entrance
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FIG. 3. (Color online) Same as Fig. 2, but with the optimum Q

values (see the text).
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FIG. 4. (Color online) The one-neutron transfer probability as a
function of the distance of the closest approach for the 40Ca + 96Zr
reaction. The sequential two-neutron scheme with the optimum Q

value is employed. The dashed line, the triangles, and the dotted
line are the results of the time-dependent perturbation theory with
the first, the second, and the third orders, respectively. Those
results are compared to the exact solution (the solid line) and to
the experimental data (the crosses). The coupling parameters used
here are a1 = 1.55 fm, β1 = 26.4 MeV fm, a2 = 1.286 fm, and
β2 = 150.4 MeV fm.

channel (see Sec. II C below), as the coupling between the
1n and the 2n channels stays relatively weak.

In order to better understand this phenomena, one can
use the time-dependent perturbation theory by separating
the contribution of each order. Figure 4 shows the approxi-
mate solutions for the one-neutron transfer reaction for the
40Ca + 96Zr system obtained with the sequential two-neutron
scheme. Here, the coupling parameters are readjusted in order
to reproduce the experimental data for large D with the first-
order dynamics. Up to the first order, the one-neutron transfer
probability is found to be exponential with the distance of the
closest approach in the whole range of D shown in the figure.
As a consequence, the calculation appears to be consistent
with the experimental data. This remains to be the same up to
the second order, since there is no second-order contribution
to the one-neutron transfer channel. On the other hand, if
one considers up to the third order, the result is drastically
changed and becomes close to the full-order result obtained
by solving the time-dependent coupled-channels equations,
Eq. (1), without using the perturbation theory. That is, the
third-order process now includes the diminution of the one-
neutron transfer probability due to the second-order process to
the 2n channel. From this comparison, we can conclude that
the perturbative calculations must be used with caution for an
application to multinucleon transfer calculations, since a good
agreement with experimental data may be an artifact of the
first-order perturbation theory.

Notice that the sequential scheme largely underestimates
the transfer probabilities at small D. In this region, the absorp-
tion effect would be important, but the effect of absorption
will always decrease the transfer probabilities, as we discuss
in Sec. II C. Evidently, a pure sequential two-neutron transfer
is not compatible with the experimental data, at least with this
simple model. See also Refs. [5,44] for a similar conclusion.
We have confirmed that this conclusion remains the same even
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FIG. 5. (Color online) The two-neutron transfer probability for
the 40Ca + 96Zr system as a function of the distance of the closest
approach, D. The direct two-neutron transfer scheme with the
optimum Q values is employed. The results of the time-dependent
perturbation theory up to the first and the second orders are shown by
the dotted and the solid lines, respectively. The result of the second-
order calculation neglecting the direct two-neutron transfer couplings
is also shown by the dashed line (see text). The experimental data are
taken from Ref. [23].

if we include a few states around the optimum Q value for
each transfer partition.

Notice that the semiclassical transfer calculations have
indicated that the two-neutron transfer process occurs pre-
dominantly with a sequential process [27–29]. The present
result is somewhat in contradiction with the previous finding
of the semiclassical method. The difference may be due to
the fact that the previous semiclassical calculations take into
account many intermediate 1n transfer channels with a wide
distribution of excitation energy while we include only a
single channel (or at most a few channels). In this sense, our
coupling scheme may have to be regarded as an effective one,
which implicitly takes into account the effect of many other
intermediate channels. It would be an interesting future work to
clarify how the elimination of the intermediate states gradually
changes the nature of the two-neutron transfer couplings.

B. Nature of two-neutron transfer

In the previous subsection, we have argued that the direct
two-neutron transfer scheme is more plausible than the purely
sequential transfer scheme as long as a simple coupling scheme
as in Eq. (3) is employed. Let us then investigate the nature
of the two-neutron transfer process by assuming the direct
transfer scheme with the optimum Q values. Figure 5 shows
the result for the probability of the two-neutron channel for
the 40Ca + 96Zr system obtained by the perturbation theory.
To this end, we use the same parameters as those used in
Fig. 3. The dotted line denotes the result of the first-order
perturbation theory, which includes only the direct population
of the 2n transfer channel from the entrance channel. The solid
line, on the other hand, denotes the result of the second-order
perturbation theory, which in addition includes the sequential
two-neutron transfer via the intermediate 1n transfer channel.
For a comparison, the figure also shows the calculation with
the second-order contribution only (the dashed line), that is,
the calculation neglecting the direct two-neutron coupling.
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One can see that the sequential process is negligibly small as
compared to the first-order process. That is, the two-neutron
transfer in this model is largely dominated by the direct
two-neutron transfer from the entrance channel partition.
Notice that this conclusion is a direct consequence of the
simplified transfer model with the choice of V12(r) = V01(r),
and it would need to be confirmed with a more general model.

C. Effect of absorption

While the experimental data for the two-neutron transfer
are well described with the direct two-neutron transfer scheme
for the distance of the closest approach of 13 fm or larger, a dis-
crepancy is found for D < 13 fm (except for the 40Ca + 96Zr
system with Qgg). While the calculations predict a nearly
exponential behavior of D, the experimental data show a much
slower dependence in this region. This could be attributed to
several mechanisms beyond the present model, such as a devi-
ation of the classical trajectory from the Rutherford trajectory,
a loss of one-to-one correspondence between the experimental
and the theoretical definitions of the transfer probabilities (that
is, the quantity dσxn/dσR may not be able to be interpreted as
a transfer probability at small values of D), and a deviation of
the coupling form factor from that given by Eq. (4).

In the following, we choose to test a hypothesis that this
effect originates from the absorption of the wave function,
which corresponds to a capture and/or inelastic excitations. In
order to take into account this effect in a simple way, we add
an imaginary potential to the diagonal part of the Hamiltonian,
Eq. (3), with the expression

iW (r) = −iW0

1 + exp[(r − RW )/aW ]
, (6)

for which the parameters W0, RW , and aW may be different for
each channel. We adjust these parameters in order to reproduce
the experimental transfer probabilities using the direct two-
neutron transfer scheme with the optimum Q values. The
resultant values for the parameters are summarized in Table III,
and the fit to the experimental transfer probabilities is shown
in Fig. 6. One can see that a good agreement between the
calculations and the experimental data is achieved, including
the region with small values of the distance of the closest
approach, although the good reproduction of the data may be
due to the large number of adjustable parameters.

The single-channel calculations with those absorbing po-
tentials lead to the survival probability for each channel shown
in Fig. 7. Notice that this is not the survival probability for the
whole transfer process, that is, Psurv = |c0|2 + |c1|2 + |c2|2,
but the single-channel probability corresponding to that given

TABLE III. The parameters of the absorbing potential for each
channel required to fit the experimental data.

System Channel W0 (MeV) RW (fm) aW (fm)

40Ca + 96Zr 0n and 1n 9.96 11.88 0.12
2n 9.89 12.10 0.18

60Ni + 116Sn 0n and 1n 10.03 12.01 0.08
2n 10.08 12.25 0.16
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FIG. 6. (Color online) The transfer probabilities as a function of
the distance of the closest approach, D, calculated by including the
effect of absorption of the classical trajectories with the imaginary
potential. The direct two-neutron transfer scheme with the optimum
Q value is employed. The solid lines denote the results for the
one-neutron transfer process, while the dashed lines are for the
two-neutron transfer process. The experimental data are taken from
Refs. [23,24].

60
Ni+

116
Sn

40
Ca+

96
Zr

0.0

0.2

0.4

0.6

0.8

1.0

P
su

rv

82 84 86 88 90 92 94 96 98 100 102

0n and 1n calc.
2n calc.
0n and 1n eq. (8)
2n eq. (8)

0.0

0.2

0.4

0.6

0.8

1.0

P
su

rv

150 155 160 165 170 175

Ec.m. [MeV]

FIG. 7. (Color online) The s-wave survival probability for each
channel as a function of the center of mass energy. It is obtained
by solving the time-dependent Schrödinger equation with a single
channel including the imaginary potential. The crosses and the
squares show a fit with the complementary error function given by
Eq. (8).
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TABLE IV. The parameters for the complementary error function
given by Eq. (8) which fit the results of the time-dependent
calculations for the survival probability for each channel.

System Channel B (MeV) σ (MeV)

40Ca + 96Zr 0n 95 1.3
1n 95 1.3
2n 92 1.8

60Ni + 116Sn 0n 166 1.3
1n 166 1.5
2n 160 2.8

by [29]

P (xn)
surv (E) = 1 − exp

(
2

�

∫ ∞

0
W [rn(t)]dt

)
. (7)

We find that the survival probability for each channel, P (xn)
surv ,

can be well parametrized with the complementary error
function,

P (xn)
surv (E) ∼ 1

2
+ 1

2
erfc

(
E − B√

2σ

)
, (8)

with the parameters given in Table IV (see Fig. 7). Notice that
the values of the parameters are considerably different between
the two-neutron transfer channel and the one-neutron transfer
channel. The meaning of the imaginary potential is to take into
account the loss of flux from the model space explicitly taken
into account in the calculations to the outside, which include
the tunneling through the barrier (that is, the capture) and
the inelastic processes. In either case, the imaginary potential
reduces the transfer probabilities. The different values of
the parameters for each channel implies that the effect of
absorption may be different in each channel. We find that it is
essential to have the channel dependence in the parameters of
the absorbing potential in order to account for the diminution
of the 2n transfer probability without significantly degrading
the reproduction of the 1n transfer channel.

III. QUANTAL COUPLED-CHANNELS APPROACH

We have shown in the previous section that the role of
absorption may differ among the different transfer channels.
We have achieved this conclusion using the semiclassical
method. A drawback of the semiclassical method is that the
tunneling process is not easily described with it, although one
may still do it using the time evolution along the imaginary
time axis [50,51]. For this reason, in this section, we use the
full quantal coupled-channels approach, which can also be
applied to a simultaneous description of fusion cross sections
and transfer probabilities.

The coupled-channels equations for a total angular momen-
tum J read [50][

− �
2

2μ

d2

dr2
+ J (J + 1)�2

2μr2
+ VN (r) + iWN (r)

+ ZP ZT e2

r
+ εn −E

]
un(r) +

∑
m

Vnm(r)um(r) = 0, (9)

TABLE V. The parameters for the nuclear potential used in the
coupled-channels calculations for each system.

System V0 r0 a0 W0 rW aW

(MeV) (fm) (fm) (MeV) (fm) (fm)

40Ca + 96Zr 87.0 1.13 0.700 40 1.1 0.2
60Ni + 116Sn 80.0 1.1 0.487 20 0.9 0.487

where μ is the reduced mass, E is the center-of-mass energy,
and ZP and ZT are the charge numbers of the projectile
and the target, respectively. We have used the isocentrifugal
approximation [50] and assumed that the angular momentum
does not change for each channel. We use a Woods-Saxon
parametrization for the nuclear potential, VN , that is,

VN (r) = −V0

1 + exp[(r − R0)/a0]
(10)

with R0 = r0(A1/3
P + A

1/3
T ). We use the Woods-Saxon

parametrization also for the imaginary potential, WN , as in
Eq. (6).

We solve the coupled-channels equations using a modified
version of the computer program CCFULL [52] in order to
construct the transfer cross sections from the S matrix. The
transfer probability is then calculated using the same definition
as the experimental probability, that is, Pxn ≡ dσxn/dσR .

A. Quantum effect

Let us first solve the coupled-channels equations including
only the transfer channels and examine the validity of the
semiclassical trajectory approximation. To this end, we use
the direct two-neutron transfer scheme with the optimum Q
values, for which the parameters for the transfer coupling form
factors are given in Tables I and II. We use the parameters in
Table V for the nucleus-nucleus potential (both for the real
and the imaginary parts). In order to simplify the comparison
between the semiclassical and the quantal calculations, we
neglect the effect of absorption on the transfer probabilities.
For this purpose, the real and the imaginary parts of the
nuclear potential are not taken into account in the semiclassical
calculation. Moreover, we choose the parameters of the
nuclear potential so that they yield a higher barrier than the
systematics.

Figure 8 shows a comparison between the quantal coupled-
channels calculations and the semiclassical coupled-channels
calculations for the same coupling potentials. One can find a
good agreement between the two calculations for the distance
of the closest approach of D > 13.5 fm; that is, the two
calculations differ only by about 10%. The difference between
the two calculations is more significant for D < 13 fm, where
the quantum effect as well as the absorption process play an
important role.

Evidently, the conclusions obtained in the previous section
with the semiclassical method remain unchanged even if we
use the quantal coupled-channels method.
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FIG. 8. (Color online) A comparison between the transfer prob-
abilities obtained with the semiclassical approximation (the crosses
and the circles) and those with the quantal coupled-channels cal-
culations (the solid and the dashed lines) for the 40Ca + 96Zr and
60Ni + 116Sn systems.

B. Role of absorption

We next discuss the role of absorption in the transfer
reactions by fully taking into account the tunneling effect.
For this purpose, we still use the three-channel problem in the
previous subsection. Figure 9 compares two calculations for
the transfer probabilities for the 60Ni + 116Sn system. The first

(b)
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FIG. 9. (Color online) The one-neutron transfer (the upper panel)
and the two-neutron transfer (the lower panel) probabilities as a
function of the distance of the closest approach for the 60Ni + 116Sn
reaction. The solid and the dotted lines are obtained with the nuclear
potential, which yields the barrier heights of B = 166 and 179.9 MeV,
respectively.
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FIG. 10. (Color online) The three eigenbarriers obtained by di-
agonalizing the intrinsic Hamiltonian matrix, Eq. (3), at each
internuclear separation, r .

calculation shown by the dotted line is the same as the dashed
line in Fig. 8. This result is obtained with the nuclear potential
of Table V, which yields the barrier height of B = 179.9 MeV.
Notice that the Broglia-Winther potential [29] leads to a
somewhat lower barrier height, that is, B = 166 MeV. We
therefore repeat the transfer calculations using the potential
with V0 = 116 MeV, r0 = 1.2 fm, and a0 = 0.687 fm, which
yields the same barrier height as the Broglia-Winther potential.
The result so obtained is denoted by the solid line in the figure.
One can see that the one-neutron transfer cross sections do
not differ much between the two calculations. In contrast,
it is interesting to notice that the two-neutron transfer cross
sections are considerably affected by the choice of the nuclear
potential. Notice that we use the same imaginary potential for
all the channels. Even so, we reach the same conclusion as in
Fig. 6, that is, the 2n transfer amplitude is more absorbed than
the 1n transfer amplitude. In this case, the absorption is more
likely due to the capture rather than the inelastic processes.

In order to understand a reasoning for this phenomenon,
Fig. 10 shows the eigenbarriers by diagonalizing the coupling
matrix, Eq. (3), at each position r . That is,

Vα(r) = VN (r) + ZP ZT e2

r
+ λα(r), (11)

where λα(r) is an eigenvalue of the coupling matrix. In general,
the eigenvectors depend on the position r [50]. However,
for the direct two-neutron transfer scheme with V01 = V12

and Q2 = 0, one of the eigenvectors becomes independent
of r . This special eigenvector has a structure of |ψ1〉 =

1√
2
(|0n〉 − |2n〉) with the eigenvalue of −V02(r). Notice that

the 1n channel does not contribute to this eigenstate. The other
two eigenstates are given as a liner superposition of all the three
channels, |0n〉, |1n〉, and |2n〉. For a positive value of the ratio
β02/a02, that is the case in our calculations, the eigenbarrier
corresponding to the state |ψ1〉 provides the lowest barrier
among the three eigenbarriers and is shown by the dashed line
in Fig. 10. This implies that the capture occurs more easily
from the 2n channel as compared to the 1n channel due to the
lowest eigenbarrier, in which the 1n channel is absent.

As we discuss in the next section, the nonreproduction of
the experimental probabilities in the vicinity of the barrier

054614-7



GUILLAUME SCAMPS AND KOUICHI HAGINO PHYSICAL REVIEW C 92, 054614 (2015)

TABLE VI. The Coulomb deformation parameter, βC , the nuclear
deformation parameter, βN , the multipolarity and the parity, λπ , and
the excitation energy E for the collective states included in the
coupled-channels calculations. The radius parameter of r0 = 1.2 fm
is used in the coupling potentials.

Nucleus λπ βC βN E (MeV)

40Ca 3− 0.43 0.43 3.737
96Zr 3− 0.27 0.305 1.89

shown in Fig. 9 may be attributed to the fact that we do not
include the excited collective states in these calculations.

C. Simultaneous description of fusion
and multineutron transfer

One of the most important issues in the study of transfer
reactions is to investigate whether the same strengths for
the transfer couplings simultaneously account for fusion and
transfer cross sections. Such attempt has been successfully
made for the 33S + 90,91,92Zr systems [53,54]. We make here a
similar attempt for the 40Ca + 96Zr reaction, for which fusion
cross sections have been measured with high precision [7,8].
To this end, we include both the multineutron transfer channels
and the collective inelastic channels in the coupled-channels
equations. To be more specific, we take into account the one
octupole phonon excitation in 40Ca as well as the octupole
phonon excitations in 96Zr up to the three-phonon states. We
include all the possible mutual excitations. The parameters for
the collective couplings are given in Table VI. The deformation
parameters for the Coulomb couplings are estimated with
the measured B(E3) values, while we slightly increase the
nuclear deformation parameter for 96Zr in order to better
reproduce the experimental data. The multineutron transfer
channels are taken into account up to three-neutron transfer,
with the method of Esbensen and Landowne [4]. That is,
we treat the collective excitations and the transfer channels
as independent degrees of freedom so that the channel wave
functions are specified as |ntrninel〉, where ntr (=0, 1, 2, and
3) indicates the number of transferred neutrons while ninel

specifies the inelastic channels. This lead to the total number
of 32 channels (=2 × 4 × 4, where the 2 is for the excitation
in 40Ca, the first 4 is for the excitations in 96Zr, and the
last 4 is for the transfer channels). For the one- and the
two-neutron transfers, the parameters for the transfer couplings
are readjusted to fit the measured transfer probabilities with
the direct two-neutron transfer scheme with the optimum Q
values, that is, Q = 0. The resultant coupling coefficients are
β01 = −71 MeV fm, a01 = 1.13 fm, β02 = −105 MeV fm, and
a02 = 0.82 fm. The three-neutron transfer channel is included
with the coupling V23 = V01, V13 = V02, and V03 = 0. We
employ Q3 = +4 MeV in order to reproduce the experimental
data for the three-neutron transfer reaction. We use the nucleus-
nucleus potential given in Table V.

Figures 11(a) and 11(b) show the results of the coupled-
channels calculations so obtained for the fusion cross sections
σf and the fusion barrier distributions Dfus for the 40Ca + 96Zr
system, respectively. Here, the fusion barrier distribution is
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FIG. 11. (Color online) (a) The fusion cross sections for the
40Ca + 96Zr reaction. The dashed line shows the results of the
coupled-channels calculations including only the collective excita-
tions in the colliding nuclei, while the solid line shows those with
both the inelastic and the multineutron transfer channels. (b) The
corresponding fusion barrier distribution. The experimental data are
taken from Refs. [7,8]. (c) The probabilities for the multineutron
transfer reactions obtained with (the solid lines) and without (the
dashed lines) taking into account the inelastic excitations. The
experimental data are taken from Ref. [23].

defined as Dfus = d2(Eσf)/dE2 [55,56]. In the figures, the
dashed lines denote the results obtained by including only the
inelastic excitation in the colliding nuclei, while the solid lines
are obtained by including in addition the multineutron transfer
couplings. One can see that both the fusion cross sections and
the barrier distributions are well reproduced by including the
multineutron transfer channels, although fusion cross sections
are still underestimated at low energies. In particular, the
flatness of fusion barrier distribution is well reproduced by this
calculation. We do not know the origin for the underestimation
of fusion cross sections at low energies, but a similar tendency
is seen also in another coupled-channels calculation reported
in Ref. [46]. This could be due to the absence of other transfer
channels, such as proton and α particle transfers, or the change
in the collective couplings for the transfer channels.

The transfer probabilities are shown in Fig. 11(c). The solid
lines show the results of the full coupled-channels calculations,
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while the dashed lines are obtained by excluding the inelastic
channels, that is, by including only the multineutron transfer
channels. One can see that the inelastic excitations do not
affect the one- and two-neutron transfer channels much, but
the three-neutron transfer channel is sensitive to the inelastic
excitations, especially for D < 13 fm. One can also see that
the present coupled-channels calculations well reproduce the
experimental data for the transfer probabilities. It is worthwhile
to mention that the fusion cross sections and the transfer
probabilities are reproduced simultaneously within a single
framework.

IV. SUMMARY

We have carried out a phenomenological study on the
heavy-ion multineutron transfer reactions using the coupled-
channels approaches. The aim was to adjust the parameters
for the transfer couplings using the experimental data at
energies far below the Coulomb barrier, where the perturbation
treatment is applicable, and to investigate the dynamics at
energies around the barrier, where the higher order terms
as well as the absorption are important. We have applied
this strategy to the 40Ca + 96Zr and 60Ni + 116Sn systems,
for which the transfer probabilities were recently measured.
We have first used the semiclassical approximation to a
three-channel problem with one- and two-neutron transfer
channels and have obtained the following conclusions: (i) the
inclusion of the direct coupling between the entrance channel
and the two-neutron transfer channel is necessary in order to

reproduce the experimental data, (ii) the higher order dynamics
is important at energies around the Coulomb barrier and the
first-order treatment may not be sufficient, (iii) the absorption
has an important effect on the transfer probabilities at energies
around the Coulomb barrier, and (iv) the absorption plays a
more important role for the two-neutron transfer channel as
compared to the one-neutron transfer channel.

The role of absorption has been confirmed also by using the
quantal coupled-channels method for the 60Ni + 116Sn system.
For the 40Ca + 96Zr system, we have succeeded in reproducing
simultaneously the fusion cross sections, the fusion barrier dis-
tribution, and the transfer probabilities up to the three-neutron
transfer channel, by including both the collective excitations
and the transfer channels in the coupled-channels calculations.

There have not been many systems for which both the fusion
and the multineutron transfer cross sections are available at en-
ergies around and far below the Coulomb barrier. In that sense,
the present phenomenological analysis is somewhat limited. It
would be interesting to test the present approach to future ex-
perimental data for fusion and multineutron transfer reactions.
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