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We investigate low-energy 9Be elastic scattering on two different targets (heavy, light) within a four-body
framework using the continuum-discretized coupled-channels (CDCC) method. The 9Be projectile is described in
an α + α + n three-body model using the analytical transformed harmonic oscillator (THO) basis in hyperspheri-
cal coordinates. We show that continuum couplings are important in describing the elastic cross section, especially
at low energies and on heavy targets. The dipolar contribution to the elastic cross section at energies around the
Coulomb barrier is important but small compared to that of halo nuclei. The effect of the projectile low-energy
resonances is also relevant. The agreement with the available experimental data supports the reliability of the
method in describing reactions induced by three-body projectiles which include more than one charged particle.
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I. INTRODUCTION

Over the last few decades, the continuum-discretized
coupled-channels (CDCC) method [1,2] has been applied as a
fundamental tool to study nuclear reactions involving weakly
bound nuclei. In particular, the method has been very useful in
the description of elastic and breakup observables for reactions
involving halo nuclei [3]. Loosely bound systems are easily
broken up in the scattering process due to nuclear and Coulomb
forces. This effect can be properly treated within the CDCC
formalism including the coupling to the continuum part of the
spectrum or breakup channels [4–7].

For two-body projectiles, whose continuum states can
be easily calculated, the traditional discretization method is
the binning procedure, in which the continuum spectrum
is truncated at a maximum excitation energy and divided
into energy (or momentum) intervals. For each interval, or
bin, a normalizable state is built up by superposition of the
scattering states within the interval. This method has been
extended to three-body projectiles such as the halo nuclei
6He [8] and 11Li [7], which consist of a core and two valence
neutrons. For three-body systems with more than one charged
particle, however, the calculation of continuum states is a very
involved problem [9] since the asymptotic behavior of the
wave functions is not known in general. An alternative to the
binning procedure is the so called pseudostate (PS) method,
which consists of representing the continuum spectrum of
the projectile by the eigenstates of its internal Hamiltonian
in a basis of square-integrable functions. The advantage of
this procedure is that it does not require going through the
exact continuum wave functions, and the knowledge of the
asymptotic behavior is not needed. A variety of bases has been
proposed for two-body [10–13] and three-body [14–17] cal-
culations. The PS discretization has been successfully applied
to CDCC calculations involving three-body projectiles [4,5]
and, more recently, to the description of reactions induced by
two-body projectiles with core excitations [18].

In this work, we investigate 9Be scattering on two different
targets using the CDCC formalism. In a three-body model
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(α + α + n) this nucleus shows a Borromean structure, since
none of its binary subsystems, α + n or α + α, are bound.
Two-body models for 9Be need to assume a 8Be + n or
5He +α cluster structure, while both configurations are
naturally included in a consistent three-body model. For that
reason, we use the four-body CDCC framework considering
three-body projectile internal states. The 9Be system is stable
but has a small separation energy [19], so breakup effects
are expected to be important for the description of reactions
induced by this nucleus. This has already been reported in
previous CDCC calculations using a two-body approximation
for 9Be [20] and, more recently, with a three-body model
for the scattering on a 208Pb target [21,22]. The elastic and
breakup data on 9Be + 208Pb [23,24] and 27Al [25] provide a
good opportunity to test the three-body description of the 9Be
system within a four-body reaction formalism and to study the
effect of different target masses on the reaction mechanism.

We describe the 9Be three-body system using the PS
discretization method. In a recent work [17,26] we presented
a PS method for three-body systems based on an analytical
local scale transformation of the harmonic oscillator (HO)
basis, the transformed harmonic oscillator (THO) method. We
successfully applied this procedure to 6He (α + n + n) and,
more recently, to 9Be (α + α + n) [27], focusing on their
astrophysical interest. The analytical THO basis provided a
reliable description of the 9Be properties, which encourages
its application to reactions induced by this nucleus.

This paper is structured as follows. In Sec. II the analytical
THO method for three-body systems is briefly presented and
the main features of the four-body CDCC method are shown. In
Sec. III the formalism is applied to the particular case of 9Be,
focusing on the 9Be + 208Pb and 9Be + 27Al elastic scattering
at different energies. Finally, in Sec. IV, the main conclusions
of this work are summarized.

II. THEORETICAL FORMALISM

The three- and four-body formalisms used in this work are
described in detail in Refs. [5,17,27]. For completeness, in
this section we summarize the main features and establish the
notation we use throughout the paper.
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FIG. 1. The three sets of scaled Jacobi coordinates.

We describe the three-body projectile using Jacobi coordi-
nates {xk, yk}. The variable xk is proportional to the relative
coordinate between two particles, and yk is proportional to
the distance from the center of mass of the x subsystem to
the third particle, both with a scaling factor depending on
their masses [16]. Label k identifies one of the three possible
Jacobi systems, as shown in Fig. 1. As in Ref. [27], we
use the notation in which, for example, the Jacobi-1 system
corresponds to the system where the particles (2,3) are related
by the coordinate x1. From the Jacobi coordinates we can
define the hyperspherical coordinates {ρ,αk,̂xk,̂yk}, where the
hyper-radius ρ and the hyperangle αk are given by

ρ =
√

x2
k + y2

k , (1)

αk = tan

(
xk

yk

)
, (2)

and {̂xk,̂yk} are the two-dimensional angular variables associ-
ated with {xk, yk}. Note that while the hyperangle depends on
k, the hyper-radius is the same for the three Jacobi systems.

A. Analytical THO method for three-body systems

Pseudostate methods consist in diagonalizing the Hamilto-
nian in a discrete basis of square-integrable functions. Using
hyperspherical coordinates, the solutions of the three-body
Schrödinger equation in one of the Jacobi systems can be
expanded as (if k is fixed we do not specify it)

φnjμ(ρ,�) = ρ−5/2
∑

β

χ
jμ
nβ (ρ)Yβjμ(�), (3)

where the label n enumerates the eigenstates, � ≡ {α,̂x,̂y}
is introduced for the angular dependence, and β ≡
{K,lx,ly,l,Sx,jab} is a set of quantum numbers called channel.
In this set, K is the hypermomentum, lx and ly are the orbital
angular momenta associated with the Jacobi coordinates x
and y, respectively, l is the total orbital angular momentum
(l = lx + l y), Sx is the spin of the particles related by the
coordinate x, and jab results from the coupling jab = l + Sx . If
we denote by I the spin of the third particle, which we assume
to be fixed, the total angular momentum is j = jab + I . The
functions Yβjμ(�) are states of good total angular momentum,
expanded in hyperspherical harmonics (HH) [28]. See, for
instance, Appendix A in Ref. [27].

We expand the hyper-radial functions χ
jμ
nβ (ρ) in the analyt-

ical THO basis as

χ
jμ
nβ (ρ) =

imax∑
i=0

Ciβj
n UTHO

iβ (ρ), (4)

where i denotes the hyper-radial excitation, so that (imax + 1)
represents the number of hyper-radial functions included for
each channel. The THO basis functions are based on a local
scale transformation s(ρ) of the HO functions,

UTHO
iβ (ρ) =

√
ds

dρ
UHO

iK [s(ρ)]. (5)

The transformation keeps the simplicity of the HO functions,
but converts their Gaussian asymptotic behavior into an expo-
nential one. This provides a suitable representation of bound
and resonant states to calculate structure and scattering ob-
servables. In this paper, as in previous publications [6,13,17],
we use the analytical form proposed by Karataglidis et al. [29],

s(ρ) = 1√
2b

⎡⎣ 1(
1
ρ

)ξ + (
1

γ
√

ρ

)ξ

⎤⎦
1
ξ

, (6)

depending on the parameters ξ , γ , and b. We have fixed
for all calculations ξ = 4 as in Ref. [27], since a very
weak dependence of the results on this parameter was found
previously. Note that the THO hyper-radial wave functions
depend, in general, on all the quantum numbers included in
a channel β, however the HO hyper-radial wave functions
only depend on the hypermomentum K . The eigenstates are
obtained by inserting Eq. (4) into Eq. (3),

φTHO
njμ (ρ,�) = ρ−5/2

∑
β

imax∑
i=0

Ciβj
n UTHO

iβ (ρ)Yβjμ(�), (7)

where C
iβj
n are just the diagonalization coefficients, and the

associated energy eigenvalue is denoted by εnj . We refer the
reader to Ref. [17] for details about the Hamiltonian matrix
element calculations.

The function s(ρ) behaves asymptotically as γ

b

√
ρ
2 , and

hence the THO hyper-radial wave functions obtained behave
at large distances as exp (−γ 2ρ/2b2). Therefore, the ratio γ /b
governs the asymptotic behavior of the THO functions: as γ /b
increases, the hyper-radial extension of the basis decreases,
and some of the eigenvalues obtained by diagonalizing
the Hamiltonian explore higher energies [6]. That is, γ /b
determines the density of PSs as a function of the energy.
This allows us to select an optimal basis depending on the
observable of interest.

B. Four-body CDCC framework

We are interested in describing reactions induced by three-
body projectiles, illustrated in Fig. 2. The four-body wave
function can be expanded in internal states of the projectile,
given by Eq. (7), as

�JM (R,x, y) ≡
∑

njμLML

φTHO
njμ (x, y)〈LMLjμ|JM〉

× iLYLML
(R̂)

1

R
f J

Lnj (R), (8)

where R is the coordinate from the target to the center of mass
of the projectile, L is the orbital angular momentum of the
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FIG. 2. (Color online) Scattering of a three-body projectile by a
structureless target.

relative motion, and J is the total angular momentum, given
by J = L + j . The radial functions satisfy then the coupled
equations[

− �

2mr

(
d2

dR2
− L(L + 1)

R2

)
+ εnj − E

]
f J

Lnj (R)

+
∑
L′n′j ′

iL
′−LV J

Lnj,L′n′j ′(R)f J
L′n′j ′(R) = 0. (9)

To calculate the coupling potentials V J
Lnj,L′n′j ′(R) we use

a multipole expansion of the projectile-target interaction
V̂pt (r1,r2,r3). The procedure is explained in detail in Ref. [5].
The only difference is that we use here the analytical THO
basis to expand the projectile internal states. The parameters
of the analytical transformation in Eq. (6) allow us to select an
optimal basis to describe the low-energy continuum with a high
density of states. This minimizes the convergence problems
previously reported for reactions on heavy targets, where the
Coulomb repulsion is strong, due to the discrete nature of
the basis [5]. Besides, the analytical THO basis can be used
for three-body projectiles including more than one charged
particle, and the previous knowledge of the ground state is not
needed.

III. APPLICATION TO 9Be INDUCED REACTIONS

A. Three-body model for 9Be

The 9Be nucleus can be described in a three-body model
as two α particles loosely bound by the remaining neutron.
It has a Borromean structure, since its binary subsystems
have no bound states. The ground state of 9Be has total
angular momentum jπ = 3/2− and a binding energy of
1.5736 MeV below the α + α + n threshold [19]. The low-
energy spectrum of 9Be shows several resonances with angular
momenta jπ = 1/2+, 5/2−, 1/2−, 5/2+, 3/2+, and possibly
others, whose positions and widths have been investigated
by many authors in different experiments [30–32]. The spin-
parity assignment for some of these states is still under
discussion [33], although there are no implications for the
lowest 1/2+ and 5/2− resonances. We describe the states of
the system using the analytical THO method. The structure
calculations are reported in Ref. [27], where the method is
applied to generate the photodissociation cross section and
reaction rate for 9Be formation. In these calculations, the α-n
potential is taken from Ref. [34] and the α-α potential is the
Ali-Bodmer interaction “a” [35], modified to reproduce the

experimental phase shifts. These are shallow potentials in the
sense that they include repulsive terms to remove unphysical
two-body states. Since the three-body calculations are just
an approximation to the full many-body problem, including
only binary interactions may lead to deviations from the
experimental three-body energies [36,37]. We include then
a simple hyper-radial three-body force, depending on three
parameters, which can be fixed to adjust the position of the
known states of the system to the experimental values without
distorting their structure,

V3b(ρ) = v3b

1 + (
ρ
r3b

)a3b
. (10)

Calculations shown in Ref. [27] truncate the maximum
hypermomentum at large values of Kmax. For 9Be, it is
necessary to consider Kmax � 30 in order to obtain a well-
converged ground state and, more importantly, to achieve
converged energy distributions. For coupled-channels calcu-
lations including several jπ configurations, however, such
Kmax values imply working with very large basis sets, which
is computationally challenging. In this work, we fix smaller
Kmax values and adjust the three-body force parameters to
recover the same energy and radius of the relevant states. In the
following, unless stated otherwise, the calculations presented
are performed with Kmax = 10. This value provides converged
reaction calculations with respect to the hypermomentum, as
will be shown in the following section.

With the analytical THO basis, we are able to adjust
the parameters of the local scale transformation in order to
concentrate more states at low energy. However, if the level
density is very high, coupled-channels calculations become
more and more demanding computationally. We fix the THO
parameters to b = 0.7 fm and γ = 1.2 fm1/2 for all the jπ

states considered. These values ensure a fast convergence of
the ground state with respect to the number of hyper-radial
excitations imax and also allows us to concentrate a reasonable
number of continuum states close to the breakup threshold.
As an example, in Fig. 3 we show the energy spectra for
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FIG. 3. Energy spectra for the states with jπ = 3/2−, 1/2+, 5/2−

up to 10 MeV. Calculations are performed for an analytical THO basis
with Kmax = 10 and imax = 8.
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different jπ configurations calculated with imax = 8. The
only negative eigenstate for jπ = 3/2− corresponds to the
bound state, and the positive energy eigenvalues represent our
continuum discretization in the THO basis up to 10 MeV.
Assuming that the α particle charge radius is 1.6755 fm, for
the ground state we obtain a charge radius of rch = 2.50 fm.
This value is in agreement with the experimental value of
2.519 ± 0.012 fm [38] and indicates that our description of the
system is quite accurate. Our model also describes the strong
quadrupole deformation of 9Be and provides a quadrupole
moment of Q2 = 4.82 e fm2, close to the experimental value
of 5.29 ± 0.04 e fm2 [39].

B. 9Be + 208Pb

In this section we study the scattering of 9Be on a 208Pb
target at different energies. We use the eigenstates obtained
with the analytical THO method to represent the 9Be projectile
wave functions. States with very high excitation energies will
not be relevant for the description of the scattering process,
since their couplings will be weak. Thus we include in the
CDCC calculations only the states up to a given cutoff energy,
chosen to be high enough to provide converged results. The
data of two different experiments are available in the literature
for this reaction [23,24].

The Coulomb barrier for the 9Be + 208Pb system is around
47 MeV. We will show our coupled-channels results above
(Elab = 60 MeV), around (44 MeV), and below (38 MeV)
the barrier. Since 9Be is a weakly bound system, we expect
to observe a strong absorption even at low energies, with
an important coupling to breakup channels. This effect is
widely known for exotic systems such as halo nuclei [5,40].
The coupling potentials in Eq. (9) are generated consider-
ing the n- 208Pb potential from the Koning and Delaroche
global parametrization [41] and the α- 208Pb interaction from
Ref. [42]. Note that these potentials are in general energy
dependent. The coupled equations are solved up to J = 301/2,
including projectile-target interaction multipole couplings of
the order Q = 0–5.

Our model space to describe the 9Be projectile includes
jπ = 3/2±, 1/2±, and 5/2± states up to a maximum energy
εmax. The states are obtained with a THO basis with maximum
hypermomentum Kmax and imax hyper-radial excitations in
each channel. We first show the convergence of our calcu-
lations with respect to the hypermomentum. In Fig. 4 we show
the elastic cross section at Elab = 60 MeV calculated with
different values Kmax = 6, 8, 10 for the same value of imax = 6.
In all cases, we adjust the three-body force in the model
Hamiltonian in order to recover the same energy and radius
of the 3/2− ground state and the same position of different
projectile resonances. The calculations with Kmax = 8 and 10
are almost identical, confirming the convergence of the results
with respect to this parameter. The same behavior is observed
for the reaction at lower energies. At Elab = 60 MeV, calcu-
lations show a very fast convergence with respect to imax and
the cutoff energy εmax. For the reaction around and below the
Coulomb barrier, however, a slower convergence is observed.
To illustrate this point, in Fig. 5 we show the convergence with
respect to εmax of the elastic cross section at Elab = 44 MeV,
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FIG. 4. Convergence of the angular distribution of the elastic
cross section relative to Rutherford with respect to Kmax for the
reaction 9Be + 208Pb at Elab = 60 MeV. Calculations are performed
with imax = 6 and εmax = 6 MeV.

for a fixed value of imax = 6. Calculations with εmax = 8 and
10 MeV are almost indistinguishable. For calculations with
larger imax values, the same behavior is observed. In Fig. 6
we show the dependence of the calculation at Elab = 44 MeV
on the parameter imax, with a fixed cutoff energy of 8 MeV.
Calculations are very close, with small differences only in the
angular region between 60◦ and 90◦. Working with imax > 10
is computationally very time consuming, and we do not expect
the results to change significantly. The same features are
observed at Elab = 38 MeV. The slower convergence at low
energies was already reported for reactions induced by weakly
bound projectiles on heavy targets [5].

In Fig. 7 we show our final results at Elab = 60, 44,
and 38 MeV compared with the experimental data from
Refs. [23,24]. The error bars are very small and, for clarity, they
are not shown. Calculations use imax = 6, εmax = 6 MeV for
the reaction at Elab = 60 MeV and imax = 10, εmax = 8 MeV at
Elab = 44 and 38 MeV. In this figure, dashed lines correspond
to calculations including the ground state only, and solid lines
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FIG. 5. Convergence of the angular distribution of the elastic
cross section relative to Rutherford with respect to εmax for the
reaction 9Be + 208Pb at Elab = 44 MeV. Calculations are performed
with imax = 6.
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FIG. 6. Convergence of the angular distribution of the elastic
cross section relative to Rutherford with respect to imax for the
reaction 9Be + 208Pb at Elab = 44 MeV. Calculations are performed
with εmax = 8 MeV.

are the full CDCC calculations. In all cases, the agreement
between our calculations and the data is improved when we
include the coupling to breakup channels. The calculations
describe reasonably well the experimental data in the complete
angular range. Around (Elab = 44 MeV) and below (38
MeV) the Coulomb barrier, there is an uncertainty related
to the difference between the two data sets. This indicates
a possible data normalization problem. At Elab = 44 MeV,
our calculation underestimates the data between 60◦ and 90◦,
i.e., in the nuclear-Coulomb interference region. At Elab =
38 MeV, our calculation seems to overestimate the data at
backward angles and to slightly underestimate the data in the
nuclear-Coulomb interference region.

It is worth mentioning that these features are not observed
in a recent work by Descouvemont et al. [21] using also
pseudostates to describe the continuum. In that work, the
Lagrange-mesh basis is used, and different α-n, α-α potentials
are considered. Calculations in Ref. [21] seem to match the
experimental data in the nuclear-Coulomb interference region
at both Elab = 44 and 38 MeV. However, these calculations
involve only jπ = 3/2−, 1/2+, and 5/2− states. If we use in
our calculations just the same 9Be angular momenta, then we
also reproduce the experimental data in the rainbow region.
This is shown for clarity in Fig. 8. However, in the most
recent publication by the same authors [22], calculations
involve the same model space (jπ = 3/2±, 1/2±, and 5/2±
states) included in the present work. Results therein are in
good agreement with our calculations and show the above-
mentioned underestimation of the data in the interference
region. Thus, both theoretical approaches are consistent if the
same model space is used. A limited model space including
only jπ = 3/2−, 1/2+, 5/2− states is not sufficient to reach
convergence.

The source of the discrepancies, between the converged cal-
culations (Ref. [22] and the present work) and the experiment
in the nuclear-Coulomb interference region, could be due to
either the experimental data analysis or the theoretical models
used. First, we expect that the scattering of a weakly bound
nucleus such as 9Be on a heavy target at energies around and
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FIG. 7. (Color online) Angular distribution of the elastic cross
section relative to Rutherford for the reaction 9Be + 208Pb at Elab =
60, 44, and 38 MeV. Dashed lines correspond to calculations including
the ground state only, and solid lines are the full CDCC calculations.
The experimental data are shown with circles (Wolliscroft 2004 [23])
and squares (Yu 2010 [24]).

below the Coulomb barrier follows the same behavior reported
both experimentally and theoretically for other weakly bound
nuclei such as 6He [43,44], 11Li [40], and 11Be [45]. All these
nuclei present a suppression of the rainbow at the interference
region when colliding with heavy targets, at energies around
and below the Coulomb barrier. This is due to the strong dipolar
Coulomb coupling to the continuum states. This suppression
is not present in the experimental data on 9Be + 208Pb at
Elab = 44 MeV and is smaller than the theoretical predictions
at Elab = 38 MeV.
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FIG. 8. (Color online) Effect of the model space truncation on
the elastic cross section relative to Rutherford for the reaction
9Be + 208Pb at Elab = 44 MeV. Calculations use imax = 10 and
εmax = 8 MeV.

Concerning the data analysis, a small uncertainty in the
angle determination can produce an important deviation in the
measured elastic cross section with respect to Rutherford at
small angles. This is due to the elastic cross section behavior
[sin−4(θ/2)]. In particular, it is necessary to be extremely
careful with the beam misalignment. This issue has been
addressed in different experimental works (see, for example,
Refs. [40,44,46]) and could imply a slope change in the
elastic cross section in the rainbow region. On the theoretical
side, models describing this kind of reaction depend on
several approximations, including the use of optical potentials
between the projectile fragments and the target and a truncation
of the model space describing the projectile states. At this point
we cannot assess whether the source of the discrepancy arises
from experimental problems or theoretical issues. However,
CDCC calculations agree with the experimental data, elastic
and breakup, in the rainbow region for other weakly bound
projectiles under similar scattering conditions (heavy target,
energy around the Coulomb barrier). This is the case for
11Li + 208Pb [7,40] and 11Be + 197Au [45], in which the
observed enhancement of the breakup cross section in the
nuclear-Coulomb interference region produces a systematic
reduction of the elastic cross section at the same angles.
Regardless, differences between the data on 9Be + 208Pb and
the four-body CDCC calculations at this region are below
6%, and the overall agreement is quite good considering that
there is no parameter fitting. This affirms the reliability of a
three-body model in describing the structure of 9Be.

In order to study the effect of the jπ contributions and
coupling multipolarities Q on the results, we show in Fig. 9
different calculations at Elab = 44 MeV. The monopolar (Q =
0) contribution allows us to connect the 3/2− ground state to
the 3/2− continuum. Then, the dipolar (Q = 1) contribution
connects the ground state with 1/2+, 3/2+, and 5/2+ states.
From them, dipolar and higher order contributions introduce
couplings between all jπ configurations considered. We see
in Fig. 9 that the main contributions to reducing the cross
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FIG. 9. (Color online) Effect of the different coupling multipo-
larities Q on the elastic cross section relative to Rutherford for the
reaction 9Be + 208Pb at Elab = 44 MeV. Calculations use imax = 10
and εmax = 8 MeV. See the text for details.

section, the monopole and dipole terms, are of the same order.
This result differs from the case of 6He and 11Li on 208Pb,
where dipolar contributions produce the largest reduction with
respect to the calculation without continuum couplings [5,40].
This dipole effect in halo nuclei, such as 6He and 11Li, is
due to the deviation of the center of charge with respect to the
center of mass because of the presence of two valence particles
far away from the charged core ( 4He or 9Li). This produces a
strong dipole moment and large B(E1) strengths at low energy.
On the contrary, the 9Be system is not a halo nucleus and does
not present such a large deviation; so dipolar effects, although
present, are smaller. This is related to the fact that the sum
rule for dipolar transitions is smaller in this case [27]. Higher
order contributions, specially the quadrupolar terms, produce a
correction which improves the description of the experimental
data at backward angles.

We have also studied the effect of the projectile resonances
on the elastic cross section. It is known that the low-energy
resonances may play an important role in the description
of the elastic and breakup processes [40]. To illustrate this
point, we can change the resonance positions by introducing
a different three-body strength in Eq. (10) for the 1/2±, 5/2±,
and 3/2+ states. In Fig. 10 we show our calculations “without”
resonances, i.e., including a strong repulsive three-body force
so that the resonances appear at very high energies and play no
role in the CDCC calculations. In that case the cross section
exhibits a smaller reduction than the calculation with the
resonance positions fitted to the experimental values. Although
we cannot separate the resonant and nonresonant parts of the
spectrum directly, the calculations clearly show the relevance
of the resonance positions in the reaction mechanism.

C. 9Be + 27Al

In order to study the effect of the target mass on the reaction
mechanism, we describe in this section the scattering of 9Be
on a lighter target, 27Al, using the same formalism. Elastic
scattering data are available in the literature for this reaction at
near barrier energies [25]. In that reference it is shown that the
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FIG. 10. (Color online) Effect of the position of the resonances
on the elastic cross section for the reaction 9Be + 208Pb at Elab =
38 MeV. Calculations use imax = 10 and εmax = 8 MeV.

coupling to breakup and/or transfer channels may be relevant
even at energies below the Coulomb barrier.

For the coupling potentials, we use again the n-target
interaction from Ref. [41] adjusted for 27Al. For the α- 27Al
interaction we use the code by Kailas [47], which provides
optical model parameters for α particles using the results from
Ref. [48]. We have observed that calculations with light targets
converge faster with respect to parameters Kmax, imax, and εmax,
due to the weaker Coulomb interaction. We show our results
with Kmax = 10, imax = 6, and εmax = 6 MeV, including again
jπ = 3/2±, 1/2±, and 5/2± continuum states. These values
ensure convergence at the energies considered, Elab = 12, 14,
22, and 32 MeV. In this section we show final results only,
although we carried out a convergence analysis similar to that
for the 208Pb target.

In Fig. 11 we show the elastic cross section above (32, 22
MeV) and around (14, 12 MeV) the Coulomb barrier. In all
cases, the differences between calculations including only the
ground state (dashed lines) and full CDCC calculations (solid
lines) are significantly smaller with respect to the reaction on
208Pb. This indicates that breakup effects are less important
with light targets and confirms that Coulomb breakup is the
dominant process at low incident energies. The agreement
with the experimental data is reasonable but our calculations
underestimate the elastic cross section at backward angles,
especially at 14 and 22 MeV. For light targets the Coulomb
repulsion is weak, so nuclear effects begin to dominate, and
the internal structure of the target plays a more important
role. This problem may be neglected for heavy targets, but
a comprehensive study for light targets is needed. Moreover,
the nuclear-dominated region depends on the features of the
phenomenological optical potentials between the projectile
fragments and the target at the corresponding energy per nu-
cleon. This produces an uncertainty in the nuclear potential that
makes it difficult, in general, to reproduce with high precision
the backward-angle region, where nuclear effects dominate.

IV. SUMMARY AND CONCLUSIONS

The elastic scattering of 9Be on 208Pb and 27Al at near
Coulomb barrier energies has been described within a four-
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FIG. 11. (Color online) Angular distribution of the elastic cross
section relative to Rutherford for the reaction 9Be + 27Al at Elab = 32,
22, 14, and 12 MeV. Calculations use imax = 6 and εmax = 6 MeV.
The experimental data are shown with circles (Gomes 2004 [25]).

body CDCC formalism, using the analytical THO method to
obtain the internal states of the three-body projectile. In order
to get convergence, we have included in the description the
jπ = 3/2±, 1/2±, and 5/2± states of 9Be, paying special
attention to the position of the relevant states. The agreement
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with the experimental data is quite reasonable considering
that there is no parameter fitting in the CDCC calculations.
The convergence with respect to the size of the basis and the
maximum excitation energy is slower at energies around and
below the Coulomb barrier due to the long-range effects of the
Coulomb interaction.

In the case of the 208Pb target, the inclusion of continuum
couplings in the formalism is essential for properly describing
the experimental cross sections. As expected for weakly bound
nuclei such as 9Be, this effect is important even at energies
below the Coulomb barrier. All the jπ contributions included
play an important role. It is shown that the scattering process
of 9Be on 208Pb at low energies is dominated by the monopolar
and dipolar couplings. Dipole contributions are weaker than in
halo nuclei, as expected. The position of the lowest resonances
affects the cross sections, thus confirming their importance
for the reaction mechanism. The discrepancies (below 6%)
between the calculations and the experiment in the nuclear-
Coulomb interference region could be due to either the beam
misalignment problem or the approximations included in the
theoretical formalism. However, the rainbow suppression not
shown in the experimental data is expected for weakly bound
nuclei at beam energies around the Coulomb barrier.

In the case of the 27Al target, continuum couplings produce
a significant smaller effect on the cross section. This fact can be
explained by taking into account the smaller mass (and charge)
of the target, which leads to a smaller Coulomb repulsion and,

consequently, reduces the Coulomb breakup. Our calculations
underestimate the elastic cross section at backward angles,
especially at 14 and 22 MeV, where nuclear effects dominate.
In this region, the internal structure of the target may play a
significant role, and the calculations depend on the features of
the phenomenological optical potentials between the projectile
fragments and the target. A further analysis of these effects is
desirable.

The results we have obtained encourage the application
of the analytical THO method within a four-body CDCC
framework to reactions induced by three-body projectiles with
more than one charged particle and supports the reliability of
our three-body model in describing the structure of 9Be.
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