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Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission
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Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic
density functional studies of fission have previously concentrated on adiabatic approaches based on constrained
static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products.
Purpose: We explore the ability of dynamic mean-field methods to describe fast fission processes beyond the
fission barrier, using the nuclide 240Pu as an example.
Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate
nonadiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the
dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are
compared to data.
Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier
exhibit giant-resonance-type behavior. Those beginning just beyond the barrier explore large-amplitude motion
but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states
which differ according to the exact initial deformation.
Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast
fission, provided one begins from a sufficiently deformed state.

DOI: 10.1103/PhysRevC.92.054610 PACS number(s): 24.75.+i, 25.85.−w, 21.60.Jz, 24.10.−i

I. INTRODUCTION

Studies of nuclear fission have been ongoing since the
discovery of the process in 1938 by Hahn and Strassmann [1].
The actinide nuclide 240Pu has long been a case of interest, as
spontaneous fission presents itself as a decay mechanism with
significant probability relative to other isotopes in the actinide
region. This allows for quantitative comparisons between
spontaneous and induced fission [2–5]. Experimentally, fission
can be induced by a variety of techniques, including neutron-
induced fission, fission induced by more complex projectiles,
and photofission [2,6]. Recent experimental campaigns have
investigated β-delayed fission [7].

Theoretically, microscopic studies have focused upon the
role of the quadrupole degree of freedom in forming the
fission pathway, as exemplified by constrained mean-field
calculations [8,9]. The typical observed behavior in actinide
nuclei for the binding energy as a function of increasing
quadrupole deformation is to follow a multihumped pathway
(see Fig. 1). When considering the potential energy surface
(PES), starting from the ground state, then increasing the
quadrupole deformation, will result in a first fission barrier.
By increasing the deformation further, a secondary minimum,
corresponding to an isomer, is found. Beyond this minimum,
a second fission barrier is encountered, and past this barrier,
the general consensus is that it becomes more energetically
favorable for the nucleus to fission. The energies EA, EB , and
EII presented in Fig. 1 correspond to those defined in Ref. [10]:
the energy difference between the ground state and the peak of
the first fission barrier, the difference between the ground state
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and the peak of the second fission barrier, and the difference
between the ground state and fission isomer, respectively.
In some exotic cases, triple-humped potential surfaces are
expected [11–14]. Although the multihumped behavior of
the energy surface cannot be measured directly, experimental
evidence points towards this characteristic structure [13,15].

For fission studies, the quadrupole degree of freedom is of
capital importance, as it describes the elongation of the nucleus
[16]. Additionally, as many nuclei are observed to fission
with asymmetric mass distributions, the octupole degree of
freedom is vital to describe any mass reflection asymmetry.
Modern Density Functional Theory (DFT) solvers are able to
perform symmetry-unrestricted calculations which allow, in
principle, any and multiple degrees of freedom to be explored
[17]. As well as considering deformation degrees of freedom,
constraints can be imposed from alternate perspectives to
study fission in static calculations. Some studies, for instance,
assume a symmetric fission fragment path [18] or a constrained
multiconfigurational static solution before investigating time
evolution [19]. In fact, time-dependent generator coordinate
method calculations provide a generalization of the approach
presented here to take into account the evolution of collective
coordinates [20].

The approach of calculating the PES to describe fission,
regardless of the number of particular degrees of freedom
constrained, is limited to producing a series of static solutions
which attempt to describe a dynamic process, resulting in an
effectively adiabatic approximation. Shape-constrained DFT
calculations produce Slater determinants which contain no
internal excitations. Some attempts have been made to account
for finite-temperature effects as sources of dissipation [21].
How such effects would couple with the nonadiabatic time-
dependent Hartree-Fock (TDHF) approach is an open question
that deserves further study [22]. Time-dependent techniques
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FIG. 1. (Color online) Schematic of typical potential energy sur-
face obtained when increasing the elongation (which corresponds
to quadrupole deformation) of an actinide nucleus. The energies EA,
EB , and EII relate to properties of the fission barriers, and correspond
to the definitions in Ref. [10].

coupled with constrained calculations may therefore yield
new, insightful results because they describe the dynamics
of a fissioning system. Time-dependent Hartree-Fock [23]
presents itself as a candidate method, as it is able to temporally
evolve Slater determinants which begin as a solution to the
constrained static Hartree-Fock (HF) equations.

The calculational basis for this study is the so-called
TDHF technique. We note, however, that nowadays this
should probably be called “time-dependent density functional”
because it is based upon a nuclear energy density functional.
The slightly less correct TDHF moniker has stuck within the
nuclear-physics literature, though, and we keep this convention
in the present work.

TDHF is the basic lowest-order microscopic dynamical
mean-field theory, first proposed by Dirac [23] and later
on applied to more or less realistic nuclear systems in the
1970s–1980s [24–28]. A practical implementation involves
beginning from an energy density functional and using the
variational principle to obtain Hartree-Fock-like equations for
the static initial state. The time evolution equations, based on
the same energy density functional, are then run on this initial
state. We use the Skyrme energy density functional, depending
on the local densities and currents,

E = Esky(ρ,J,τ,s, j ,ξ ), (1)

where ρ is the particle density, J is the vector part of the
spin-current tensor, τ is the kinetic density, s is the spin density,
j is the particle current, and ξ is the pairing density [29]. These
densities and currents include time-odd fields (s and j ), which
are only active in the dynamic part of the calculation. Only
those time-odd fields that couple to the necessary time-even
fields through Galilean invariance are included in the present
calculation. Full details of the practical aspects of solving the
static and dynamic HF equations, along with the explicit details
of the density functional are contained in the documentation
of the SKY3D code [30].

There have been several historic attempts to describe fission
dynamics using TDHF. The pioneering attempt by Negele
et al. [26] was followed by a series of studies that suffered
from computational power limitations and were hindered by
axial symmetry and restricted forms of the nucleon-nucleon

interaction [31,32]. With a new generation of TDHF solvers
able to perform symmetry-unrestricted, three-dimensional
calculations [30,33,34], modern TDHF studies have begun to
take a renewed interest in fission [18,35,36]. Here we use a
modified version of the recently published code SKY3D [30],
with shape constraints explicitly included. We then solve the
HF + BCS equations in a three-dimensional Cartesian basis
and evolve the calculated states using TDHF.

Spontaneous fission cannot be accessed directly within
TDHF. To reach a fissioned configuration from the ground or
isomeric state, the nucleus must tunnel through the barriers in
the PES. While TDHF allows a quantum mechanical descrip-
tion of single-particle wave functions, the collective motion
is semiclassical, hence forbidding tunneling in collective
coordinates [37]. In contrast, TDHF is suitable for exploring
the dynamics of induced fission. The potential challenging
issue is the incorporation of the fissioning mechanism within
the TDHF framework. Here we follow the strategy of finding
constrained Hartree-Fock (CHF) states and use them as initial
conditions in a TDHF calculation. Our aim is to investigate
how the underlying deformed structure pushes the parent
nucleus towards fissioning paths, if it does so at all.

We also run TDHF simulations from initial states that lie
past the fission barrier. At that stage, one is somehow mim-
icking spontaneous decay in the sense that these represent the
states right after tunneling. The complex quantum dynamics
that occur in the leadup to the point at which we let the TDHF
calculations take over will clearly populate a range of different
configurations, leading to a spread of fission products. Our
dynamical calculations only take a handful of initial states on a
single constrained quadrupole PES as a proxy for the quantum
nature of the “tunneling” process. A more realistic way of
sampling may be to find multiple PES solutions at the same
energy and start from those. We note that our different initial
configurations correspond to slightly different total energy
content in the system.

The paper is organized as follows. In Sec. II, the static
constrained starting points are discussed. Section III explores
the dynamics of the fissioning nucleus, while Sec. IV looks
in more detail at the dynamics of the fission fragments. Some
concluding remarks are given in Sec. V.

II. STATIC CONFIGURATIONS IN 240Pu

We begin the investigation of fission by examining the
PES for a nucleus of interest. The reproduction of the
double-humped fission barriers of actinide nuclei are often
used as a benchmark test for nuclear models [38,39]. Owing
to the wealth of data available from experimental [2–5]
and theoretical [9,10,40,41] studies, 240Pu presents itself
as a strong candidate for a benchmark test of TDHF to
investigate induced nuclear fission [39]. We note, in particular,
that configuration mixing plays a relatively small effect in
this isotope [42]. The static quadrupole-constrained PES is
firstl calculated to provide a selection of initial states for
time evolution. These are obtained by performing an energy
minimization with respect to constraints imposed upon the
quadrupole shape degree of freedom.
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Modern symmetry-unrestricted DFT solvers have extended
the PES for multiple constraints, for example simultaneously
constraining the quadrupole and octupole degrees of freedom
to explore two-dimensional deformation surfaces [43]. The
approach of calculating a multidimensional PES to describe
fission within a microscopic framework has enjoyed much
recent attention [14,21,43–45]. Alternatively, one can explore
fission pathways via shell-corrected macroscopic liquid drop
models. This technique has been applied to perform exhaustive
topographical surveys of deformation space to deduce fission
properties of static configurations [10,46–48]. However, this
approach, regardless of the number of dimensions, is limited
to producing a series of static solutions to describe a dynamic
process, thus being equivalent to adiabatic motion. Time-
dependent simulations describe the fissioning system, while
allowing for internal excitations. This is important for the final,
fast stages of fission, which we explore in the present work.

To build shape-constrained ground states, we begin from an
arbitrarily deformed state and use the augmented Lagrangian
method [43,49] to constrain the quadrupole deformation. Our
purpose is not to pursue an in-depth investigation of multiple
shape constraints in HF calculations, but rather to use the
technique to produce initial states to then investigate their
time evolution. All other degrees of freedom are assumed to
settle into the configuration of minimum energy [37].

For the results presented here, where only one constraint
is applied upon the quadrupole degree of freedom, a masking
procedure has been adopted. This limits the space which the
nuclear wave functions can explore, allowing a single fission
pathway to be explored where the nuclear shape gradually
evolves, rather than abruptly jumping between competing
energy minima. Details of the masking procedure are discussed
in Ref. [50]. Our emphasis is on the fast fission dynamics
beyond the barrier, but it may yet be fruitful to use other
constraints to generate more starting points.

The ground-state and CHF calculations are performed
using the SkM∗ effective interaction. The fission barrier
properties of 240Pu were considered when fitting the SkM∗

effective interaction [51]. We perform our static calculations
in a regularly spaced Cartesian grid of 40 × 40 × 40 points,
ranging from −19.5 to 19.5 fm in the x, y, and z directions.
This rather coarse grid gives surprisingly good results, with,
e.g., binding energies typically differing by parts in around
104 relative to much finer grids [30]. BCS pairing is included
within the static calculation, using the volume-� interaction
[30], with 184 neutron and 126 proton single-particle wave
functions and pairing strengths V0,n = 258.962 01 MeV and
V0,p = 270.082 00 MeV for neutrons and protons, respec-
tively. The PES for 240Pu presents a prominent local minimum,
corresponding to a fission isomer. If the initial test wave
functions (harmonic oscillator states in the case of SKY3D)
are chosen to be prolate with similar deformations, shape
unconstrained static calculations converge directly into the
isomeric state. This provides two initial points for the CHF
calculations, starting at either the ground or the isomeric state.
Some properties of the ground state and isomer are presented
in Table I. These compare well with previous results in the
literature [9]. We consider thus that our choice of pairing
interaction is suitable. We do not take into account pairing

TABLE I. Summary of ground-state and isomer properties of
240Pu, calculated using SKY3D with the SkM∗ Skyrme effective
interaction. Further details of the calculations are included in the text.
Both the ground state and isomer are prolate deformed and axially
symmetric.

Nucleus Binding energy rms radius β20 β30 β40

(MeV) (fm)

240Pu −1781.95 5.941 0.280 0.000 0.255
240Pu

∗ −1778.91 6.418 0.682 0.000 0.547

correlations in the dynamical evolution, and hence we do not
perform a systematic study of the role of the pairing interaction.

One-dimensional projections of the quadrupole-
constrained PES for 240Pu are shown in the top three panels
of Fig. 2. Panel (a) focuses on the dependence of the energy
on the constrained quadrupole degree of freedom. Panels (b)
and (c) give the corresponding octupole and hexadecapole
coordinates associated with each quadrupole configuration.
For guidance, the color scheme is chosen to display changing
quadrupoles. Two fission barriers are found in the quadrupole
degree of freedom (top left panel), peaking at β20 ≈ 0.50 and
0.86, respectively. The ground and isomeric states correspond
to the two minima in the PES next to these barriers.

Table II presents a comparison between various features of
the PES calculated in this work and previous literature. The
table also contains measurements of the fission barrier heights
and energy differences between the ground and the isomeric
states, as defined in Fig. 1. We compare our calculations to
recent Hartree-Fock-Bogoliubov (HFB) calculations using the
Gogny interaction [41], to older HF calculations employing
the Skyrme SIII parametrization [9], and to macroscopic-
microscopic calculations based on the shell-corrected Finite
Range Liquid-Drop Model (FRLDM) [10]. There is a general
agreement between the barrier geometries in the theoretical
methods. The older SIII calculations predict a large second
barrier height, most likely because of the assumption of axial
symmetry. HF calculations yield barriers higher than either
the experimental or the macroscopic-microscopic predictions,
perhaps caused by a lack of dynamical effects. The details of
the barrier shapes should be sufficiently well reproduced in
the present calculations to deal with the fast fission dynamics
beyond the second barrier, as well as to give a qualitative
description of the between-barrier dynamics.

Panel (b) of Fig. 2 shows a prominent octupole deformation
setting in at the second fission barrier, as would be expected
[38]. The relationship between the quadrupole and octupole
deformation parameters for the configurations along the PES
is explored in Fig. 3 (top panel). Although the calculations
have been performed constraining only one deformation
degree of freedom, the observed behavior is typical for
the optimum static fission pathway obtained in quadrupole-
octupole-constrained deformation surfaces calculated using
DFT [14,43]. Beyond the second fission barrier, octupole
degrees of freedom are explored. Panel (b) of Fig. 3 displays
the relationship between the quadrupole and hexadecapole
deformation parameters. Near the peaks of the first and second
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FIG. 2. (Color online) Resulting PES for 240Pu following a constraint of the quadrupole deformation parameter β20. The top panels display
the dependence of the constrained energy on the (a) quadrupole, (b) octupole, and (c) hexadecapole moments. Once the second barrier is
overcome, a significant octupole deformation (corresponding to mass asymmetry) develops. Bottom panels (d)–(k) display two-dimensional
(2D) slices of the 3D density for increasing quadrupole deformation. The isolines correspond to 0.05 particles/fm3. It is interesting to note
that, for states far beyond the second barrier, scission has not yet occurred.

barriers, the hexadecapole deformation sharply drops and
recovers subsequently. This corresponds to a transitioning
shape as the neck region of the nucleus thins.

The 3D calculations verify that triaxiality is explored at
the first fission barrier. The bottom panel of Fig. 3 shows
unambiguously a region of nonzero values of γ . Access to
these additional degrees of freedom lowers the calculated
barrier height with respect to axially symmetric calculations
[38]. We note that triaxiality is explored significantly in
the range 0.36 � β20 � 0.59, but it is virtually negligible
elsewhere.

The slices of the density in the lower panels of Fig. 2 display
an increasingly deformed shape as the quadrupole degree of

freedom grows. Interestingly, the nucleus has not fissioned
in the range of β20 considered, even for states beyond the
second fission barrier. Despite the emergence of a competing
fission pathway, a large selection of increasingly deformed
states have been obtained. These are useful as starting
points for our time-dependent calculations. We note that our
configurations explore a range of states, from configurations
with a quadrupole deformation less than that of the global
HF minimum to configurations well beyond the second fission
barrier.

When performing CHF calculations, we noticed that
beyond a quadrupole deformation of β20 = 1.25, the con-
figuration jumped abruptly to a competing two-fragment

TABLE II. Comparison of properties of the fission barrier for 240Pu from different calculations (defined in Fig. 1). In addition to our work,
we present the calculations of Flocard et al. [9], Rodrı́guez-Guzmán and Robledo [41], Möller et al. [10] and the experimentally inferred data
presented in Ref. [10].

EA EB EII Method Reference
(MeV) (MeV) (MeV)

8.25 7.68 3.04 HF + BCS, Skyrme SkM∗ This work
8 13 4 HF + BCS, Skyrme SIII Table 2 of Ref. [9]
9.30 8.40 3.10 HFB, Gogny D1M Fig. 5 of Ref. [41]
5.99 4.91 2.94 Shell-corrected FRLDM Table I of Ref. [10]
6.1 ± 0.3 6.0 ± 0.50 2.1 ± 0.6 Experiment Fig. 27 of Ref. [10] (Madland)
5.6 ± 0.2 5.1 ± 0.20 2.4 ± 0.3 Experiment Fig. 27 of Ref. [10] (Madland)
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FIG. 3. (Color online) (a) Octupole deformation as a function
of quadrupole deformation and (b) hexadecapole deformation as a
function of quadrupole deformation for the calculated PES of 240Pu.
The octupole deformation, corresponding to a mass asymmetry,
rapidly onsets after the second fission barrier is passed. Panel (c)
displays the corresponding γ deformation parameter.

fission pathway. This behavior, owing to the numerics as
the calculations converged, proved to be unavoidable. This
can be explained by considering the density slices presented
in Fig. 4. The masking procedure that is implemented in
the calculations around the one-fragment configuration does
not inhibit a transition to the two-fragment configuration, as
the two-fragment configuration fits inside the one-fragment
masking region.

The competing two-fragment fission pathway was explored,
starting from the state after the calculations jumped pathways.
From this configuration, the deformation was incrementally
reduced. This competing pathway is shown in Fig. 4 with solid
squares and may be compared to the original, one-fragment
pathway in solid circles. Once the quadrupole deformation
parameter is reduced below β20 = 1.01, the HF minimum
jumps back onto the original fission pathway. The one-
fragment pathway is also sometimes denoted as fission valley,
whereas the two-fragment pathway [41,52] has also been
referred to as the fusion valley [53,54].

The competing pathway, referred to hereafter as the
two-fragment pathway [41], displays remarkably different
configurations to that of the one-fragment pathway. Even
with identical quadrupole deformations [see panels (d) to
(g)], the octupole and hexadecapole deformations and total
energy differ significantly. It is exactly this behavior that

the authors of Refs. [10] and [48] identify as a flaw when
using CHF to explore the PES. Here we exploit this feature
to gain an insight on the competing fission pathway without
having to include a higher number of constraints in the CHF
calculations.

The fragments in the two-fragment pathway do not have
an integer particle number. For example, for the case of β20 =
1.19, the fragments have A1 = 107.14, Z1 = 43.14, and A2 =
132.85, Z2 = 50.85. We note, however, that all the fragments
in the two-fragment pathway correspond, to the nearest integer
particle number, to 107

43 Tc and 133
51 Sb. It would be instructive to

project the individual fragments onto a good particle number
[55], because this would give access to a mass distribution.
Our focus here is on the dynamics, though, so we postpone
this for future work.

III. TIME EVOLUTION OF CONSTRAINED
HARTREE-FOCK STATES

The time evolution of the CHF states obtained for 240Pu
may be investigated using the TDHF method. This analysis
will focus on the states on the one-fragment fission pathway,
starting from configurations beyond the fission isomer (that
is, those with β20 > 0.68). We investigate the effect of
releasing the imposed shape constraints and time evolving the
constrained static states, to gain an insight of the deformation-
induced fission (DIF) process in TDHF.

Our TDHF calculations are performed in a larger grid
than that used to calculate the initial (static) state. In most
calculations, the Slater determinant solution to the CHF
problem is placed in a grid of dimension (423) points, ranging
from −20.5 to 20.5 fm in the x, y, and z directions. The BCS
occupations associated with each wave function remain frozen
throughout the dynamical simulation. This approximation
is relatively harsh, but provides a substantial computational
advantage. Our study represents a preliminary attempt to
gauge the potential of TDHF techniques in pre- and postfission
dynamics. As such, while time-dependent pairing effects are
likely to be relevant for quantitative predictions, we stay at
a relatively qualitative level. Comparisons with observables
should therefore be considered with care. We refer the reader
to Refs. [36,56,57] for details on more thorough treatments of
dynamical pairing effects.

During our calculations, nuclear fragments above particle
emission threshold will be created. Some single-particle wave
functions will thus be free to explore the entire space of the
calculation, up to the box boundaries. Our periodic boundary
conditions thus may cause artificial effects, especially in the
analysis of fragment vibrations. While spherical TDHF calcu-
lations can be performed in an analytic continuum [58,59], the
available numerical methods that can be applied to 3D cases
are computationally expensive and may not be suitable for
large-amplitude processes [60,61]. When analyzing nuclear
dynamics, we apply a spatial mask to ensure that observables
correspond only to the nuclei and not dripped particles. For
separated fragments, individual comoving masks are used.
Further details can be found in Ref. [50].

As one increases the β20 deformation of the t = 0 state,
different dynamics take place. Before the second barrier,
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FIG. 4. (Color online) Panels (a)–(c) One-fragment (solid circles) and two-fragment (solid squares) fission pathways for 240Pu. The arrows
in panel (a) show the direction in which the PES is explored. Beyond β20 = 1.25 the one-fragment pathway jumps into the two-fragment
pathway, and this state is used as the initial configuration for investigating the latter pathway. Sample density slices on the competing pathways
with the same β20 are shown in the panels (d), (e) and (f), (g). The isolines are separated by 0.05 particles/fm3.

no fission can occur without collective tunneling not open
to the TDHF method. For these initial configurations, we
see large-amplitude collective motion, which has its own
interest [50]. This suggests that the TDHF wave functions are
exploring a local minimum in multidimensional deformation
space and that there is an inhibition in rearranging substantially
the nuclear density while keeping the total energy constant.
As a matter of fact, the corresponding power spectra are in
qualitative agreement to those obtained in a giant-resonance
calculation. We do not explore these issues further here, as our
emphasis is on final fissioning states.

A. States between the one- and the two-fragment pathways

Beyond the peak of the static fission barrier, the time
evolution of several increasingly deformed initial states fail
to display fission within 9000 fm/c. The evolution of the
multipole deformation parameters for these states is presented
in Fig. 5.

Qualitatively, one observes dramatically different behavior
in the time evolution of the multipole deformations compared
to a giant-resonance-like behavior below the second barrier.
For most cases, the elongation is seen to increase rapidly during
the first 300 to 500 fm/c, indicated by an increase of β20. The
most extreme case is seen in the bottom left panel of the
figure, where the quadrupole deformation quickly increases
from β20 ≈ 1.07 to β20 ≈ 1.11.

Beyond the initial increase in elongation, Fig. 5 displays
slow, large-amplitude oscillations setting in. Compared to the
states below the static fission barrier, these oscillations are sub-
stantially slower. They therefore correspond to lower energy
modes in the power spectrum. For the initial configurations
with β20 = 0.89 and 0.95 [panels (a) to (f) in Fig. 5], the
behavior of the quadrupole deformation is more complex than
the other two cases (β20 = 1.01 and 1.07). The evolution of the
quadrupole deformation for these cases (β20 = 0.89 and 0.95)
shows a region of rapid increase, then an oscillation about
a plateau, then another rapid increase followed by another
plateau.

An octupole deformation (depicted in the center column
of Fig. 5) is observable in all cases. This is unsurprising in
itself, as the initial configurations are significantly octupole
deformed. However, an interesting feature is noticeable for
the evolution of the states with initial deformation β20 = 0.95
and 1.01. The changes in octupole deformation are roughly in
phase with either the evolution of the hexadecapole parameter
or both the quadrupole and the hexadecapole parameters. This
feature, in addition to the other differences observed, suggests
that the mechanism driving the dynamics of the multipole
deformations above and below the fission barrier is different.

The slow, large-amplitude oscillatory behavior of the
multipole deformation parameters (second row from bottom of
Fig. 5) suggests that, owing to the Coulomb repulsion between
the upper and lower lobes, the nucleus is attempting to fission.
This is in line with the macroscopic model of Bohr and Wheeler
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FIG. 5. (Color online) Time evolution of quadrupole (left column), octupole (center column), and hexadecapole (right column) multipole
parameters for initial states which are solutions to CHF calculations, with initial quadrupole deformation labeled on the right-hand side. All of
the initial states are deformed beyond the peak of the static fission barrier, β20 > 0.86.

[62], where the effect of the charge on an incompressible
liquid drop is a crucial ingredient to describe the fissioning
process. Within macroscopic liquid drop models, the surface
term competes with the repulsive Coulomb force to inhibit
fission; it costs energy to form an increasingly deformed shape.
The TDHF calculations present a similar behavior, but the
mechanism arises microscopically. Further calculations, not
shown here for brevity, confirm the relevant role of Coulomb
repulsion in the dynamics of these configurations [50].

Overall, there is significant evidence concerning the mech-
anism responsible for the slow, large-amplitude oscillations
of the nuclear shape observed on nonfissioning configurations
beyond the static fission barrier. The oscillations are driven
by a competition between the Coulomb force, trying to cause
fission, and the attractive nuclear potential terms in the energy
functional, countering this effect. When the states are evolved
in time, they explore significant collective motion in an attempt
to find a pathway towards fission. It can only be speculated
as to whether, with a long-enough time evolution, the states
would eventually fission. Panel (j) of Fig. 5 (evolution of a
state from β20 = 1.07) shows that the quadrupole deformation
oscillates around a gradually increasing average. This suggests
a final state that could eventually fission. The time scale for the
quadrupole increase is very slow, however. A TDHF calcula-
tion that explores the time evolution beyond t ≈ 10 000 fm/c
may begin to encounter numerical instabilities.

B. Intersection of the one- and two-fragment fission pathways

One striking characteristic of the static one- and two-
fragment pathways is the intersection point that separates the
initial states which fission upon time evolution from those
which do not. Figure 6 zooms into the area of the PES which
is relevant for these differences. We divide the PES into three
regimes. For configurations starting with a deformation below
the static fission barrier (β20 < 0.86), tunneling is required to
reach a fissioned state. This is forbidden in TDHF calculations,
in which collective coordinates behave semiclassically. We
therefore define a forbidden region below the barrier. Beyond
the barrier, in contrast, there is a region where fission is
inhibited. It will shortly be demonstrated in Sec. III C that,
beyond the intersection of the one and two-fragment pathways,
fission is allowed within the considered time scales of the
TDHF calculations. The line between β20 = 1.07 and 1.10
thus separates the inhibited and allowed regions for fission,
but the deformation itself does not correspond to a threshold in
the dynamic calculations. The bottom row of Fig. 5 indicates,
for example, that the state with an initial deformation just
below the separating line can evolve dynamically to a state
with deformations beyond this very same line, but without
fissioning.

An intuitive explanation may be given for the significance
of the intersection point of the pathways on the PES with regard
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FIG. 6. (Color online) Static one- and two-fragment fission path-
ways (solid circles and squares, respectively). For TDHF calculations,
three regions may be defined when following the one-fragment
pathway. In a first region, fission is forbidden within TDHF time
scales. Beyond the maximum in the PES at β20 = 0.86, the time scale
for fission is inhibiting. Finally, beyond the crossing of two pathways
at β20 = 1.085, fission is allowed. See text for more details.

to fission occurring upon time evolution. In TDHF, the total
energy is conserved. It is because of the inclusion of excitations
(internal and translational) that nuclear configurations may
change upon time evolution. For the states which undergo
fission (allowed region in Fig. 6, β20 > 1.085), for a given
value of β20, the two-fragment state is more bound than the
one-fragment state. In consequence, the one-fragment state
can evolve into a two-fragment configuration at a constant β20

by releasing nuclear potential energy into excitation energy.
Of course, the picture is not really that simple because the
significance of the static PES becomes less clear in the dynamic
case. In general, configurations which do not correspond to
the static fission pathways will be explored. Further, a slight
change of configuration will be required to move from the static
one-fragment state to a fissioned configuration. In other words,
the exact configurations on the two-fragment pathway cannot
be reached dynamically from the one-fragment pathway, but an
excited two-fragment configuration of a similar deformation
can. The reasoning presented is that, as the static two-fragment
state is more bound than the corresponding one-fragment state,
the optimum TDHF trajectory is to evolve the one-fragment
static state towards an excited fissioned configuration by
undergoing only a modest rearrangement of the nuclear shape.

In contrast, in the inhibited region of Fig. 6 (0.86 � β20 �
1.085), for a given β20 in the one-fragment pathway, the
two-fragment state with the same β20 is less bound. Owing
to energy conservation, the one-fragment state cannot move
to the two-fragment state at the same β20. The only way to
reach a two-fragment solution of equal binding energy (or an
excited configuration with greater binding energy) is through
a significant change in deformation and rearrangement of the
nuclear state, which accounts for the inhibiting time scale for
fission to occur. It may be that the presented calculations lack
the degrees of freedom necessary to allow a fissioning path to
be found in this window at all and that a method beyond basic
TDHF, including either collisions [63] or dynamical pairing

effects [36], is needed to reach the fissioned configuration.
Further investigation of the link between static and dynamic
configurations applying density-constrained TDHF [35,64],
would certainly be of interest. This method allows the
dynamic configurations to be “frozen,” removing internal
and collective excitations, thus bridging between static and
dynamic configurations.

In our frozen BCS approach, however, the lack of dynamical
single-particle occupation effects could be particularly impor-
tant in this region of the PES. Relatively compact initial states
can have substantially different single-particle structure as
compared to the real fissioning fragments. The dynamical final
state that we generate is therefore only an approximation to the
real one, which will be captured better in simulations including
time-dependent superfluidity [36]. While the dynamics in the
interface between the inhibited and allowed regions can be
considered somewhat artificial, we expect these effects to be
less important for initial states well into the allowed regime,
β20 > 1.15. There, the structure of the prefission system is
already reminiscent of a two-fragment state, and dynamical
rearrangement of single-particle orbits is likely to be less
important.

C. Fissioning states

For the static states with a quadrupole deformation at and
beyond the threshold of β20 = 1.10, binary fission is seen
to occur as the wave functions are evolved in time. The
calculations to obtain the data for this Section were performed
in a larger grid of size 48 × 48 × 160 points, corresponding to
−79.5 to 79.5 fm in the z direction and −23.5 to 23.5 fm in the
x and y directions. The calculations were set to end once the
separation of the center of mass of the two fragments exceeded
100 fm. This cutoff avoids spurious effects associated with the
fragments approaching the grid boundaries.

Figure 7 shows the typical time evolution of the particle
density for the fissioning case by presenting 2D slices of the 3D
density at various times for the state with initial deformation
β20 = 1.19. It is difficult to establish exactly the scission point
in a calculation involving quantum mechanical wave functions
and densities. We take an operational approach and define
“scission” as the point when the minimum density between
the fragments along the principal axis of the system is less
than 0.05 particles/fm3. As we shall see in the following, this
also corresponds to the point where a sizable collective energy
develops as the fission products begin spatially separating.
For the case where the initial quadrupole deformation is
β20 = 1.19 (presented in Fig. 7), it takes between 775 and
800 fm/c for the density between the two fragments to drop
below this threshold. Figure 8 displays sample current vectors
corresponding to the particle density slices of Fig. 7. The
current vectors display the system smoothly transitioning into
a two-fragment configuration. There is no dramatic rearrange-
ment of the density during time evolution. Throughout the
calculation, the currents in the two preformed fragments are
clearly distinguishable and do not interact with one another.
The central region has negligible current, and the two lobes
stretch against each other. The magnitude of the current vectors
in Fig. 8 gradually increases as the fission occurs. Beyond
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FIG. 7. (Color online) Slices of the total particle density for various times, starting from the static case with β20 = 1.19. It takes between
775 and 800 fm/c for scission (as defined in the text) to occur. The isolines are separated by 0.05 particles/fm3.

the point of scission, they increase rapidly as the fragments
accelerate away from one another.

States with increasingly large initial deformations fission in
a qualitatively similar way. We now proceed to compare their
fission outcomes in terms of macroscopic observables. The
states with static deformation β20 = 1.10, 1.13, 1.19, and 1.25
were evolved in time to investigate the fission of the different
initial configurations. The time evolution of the multipole
moments for these states are shown in Fig. 9. Different nuclear
shapes are explored as the nucleus evolves from the various
static states. Other than the case with initial β20 = 1.25, we
find that as β20 and β40 increase, the octupole deformation, as
reflected in β30, remains virtually constant. Here and in the
following discussion, we sharply cut off the time evolution at
the point of scission. An analysis of the postscission fragments
is presented in Sec. IV.

The chosen dynamic pathway towards fission, depending
on how the particles rearrange during the time evolution,
may have significant consequences upon the properties of
the postfission system. This will produce a range of fission
fragments dependent on the initial configuration which is time
evolved. Once again, this differs from the static case, where
CHF calculations following the one-fragment fission pathway
will only produce one resulting fissioned configuration. The
distribution of fission products obtained with TDHF is in line
with experimental investigations (see Sec. IV).

The time scale required for the initial configuration to
fission varies. The least elongated case, with β20 = 1.10, takes
tscission ≈ 1250 fm/c for scission to occur. Figure 9 shows the
quadrupole deformation increasing rapidly for approximately
600 fm/c [panel (a), solid line]. Between 600–1200 fm/c,
the rate of increase in quadrupole deformation reduces as the
nucleons rearrange out of the neck into the upper and lower
fragments. Small oscillations in the octupole deformation
can be seen as the system transitions into the preferred
configuration. Beyond 1200 fm/c, the neck rapidly vanishes
as the fragments take form and begin to separate, resulting
in an acceleration in the increase of the quadrupole and
hexadecapole parameters.

For more deformed initial states, the time taken to fis-
sion is significantly shorter. This can be explained as the
initial configuration has fewer particles in the neck region.
Upon time evolution, less rearrangement is required for the
two fragments to take form, and the Coulomb interaction
rapidly drives the configuration to fission. The most ex-
treme case investigated here is that with initial deformation
β20 = 1.25. Panel (k) of Fig. 2 shows the initial density
for this state. Two fragments are already taking form, con-
nected only by a thin elongated neck. This narrow structure
rapidly dissipates into the top and bottom fragments upon
time evolution and within tscission ≈ 400 fm/c the system
fissions.
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FIG. 8. (Color online) Current vectors corresponding to the slices of the particle density presented in Fig. 7. The vectors have been
normalized to the same scale in each panel to a visually instructive length. Note that the dimensions of the grid exceed what is presented in
these panels.

The evolution of the decomposed contributions to the
energy density functional for the fissioning cases are presented
in Fig. 10. The decomposed energy density functional for the
entire two-fragment system is shown. The total energy of the
two separate fission fragments will be analyzed separately in
Sec. IV. Figure 10 displays the evolution of the energy density
functional up to and beyond the point of scission. The total
energy, shown on the panel (i), is, in principle, conserved
within the TDHF calculations. For these fission calculations,
the fluctuations during the time evolution are less than 4 MeV.

The dynamic calculations allow for both translational
motion and internal excitations. In the fissioning case, the
nuclear binding energy is expected to be transformed mainly
into the translational kinetic energy of the fragments. The
nuclear collective kinetic energy is conventionally defined
within TDHF as

Ecoll. kin. = �
2

2m

∫
d r

j (r)2

ρ(r)
, (2)

where ρ(r) is the particle density and j (r) is the current density
[30]. This collective kinetic energy contains contributions from
internal excitations of the nucleus, such as resonances, as well
as the translational kinetic energy of the postfission fragments.
It is presented in panel (h) of Fig. 10. The total kinetic energy

is shown separately, in panel (g). It is difficult to untangle the
collective excitation energy attributed to the internal excitation
of the fission fragments, from that attributed to translational
motion. In fission reactions, the energy release is typically
attributed to be ≈80% in the form of translational energy,
and the other ≈20% is released in the form of γ rays, prompt
neutron emission, and radioactive decays of the fragments [65].
In our TDHF calculations, only part of these effects can be
described. The degrees of freedom to allow fission fragments in
hot resonance states to decay by particle emission, for instance,
are included. We demonstrate that the excitation energy of the
fissioned system in the TDHF simulations is dominated by
the translational kinetic energy, with a small contribution from
internal collective excitation of the fragments. This will be
discussed in Sec. IV C.

During the time evolution, the individual components of the
energy functional may be examined separately. The physical
interpretation of the evolution of each term of the integrated
energy functional shown in Fig. 10 may not necessarily be
simple. It is useful to identify which densities contribute to
the separate terms to qualitatively explain the behavior of the
energy functional.

(i) E0 and E3 terms. These terms, proportional to the
Skyrme parameters t0 and t3, are the central terms
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FIG. 9. (Color online) Time evolution of (a) quadrupole, (b)
octupole, and (c) hexadecapole deformation parameters for various
static configurations observed to fission upon time evolution. The
evolution is stopped at the scission point, as defined in the text.

of the functional. They are attractive and repulsive,
respectively [see panels (a) and (d)], providing a
similar functional form with an expected cancellation
between them. They depend upon the particle density.
As the nucleus approaches scission, the E0 term is
reduced in strength, thanks to the small, unfavorable
density that briefly exists in the neck region. There
is then a sudden increase in biding as separate, more
stable fragments are formed. After this, the energy
contributions oscillate with a smaller magnitude than
the changes during the fission process, corresponding
to the excited collective motion of the fragments

(ii) E1 term. The E1, shown in panel (b), term contains
contributions from the kinetic, particle, and current
densities. The time evolution of this term is qualita-
tively similar to the E0 and E3 contributions, with the
same sign as the E3 term but an absolute smaller scale.
This suggests the that density that governs the E0 and
E3 terms, the particle density, is also the most relevant
contribution driving the E1 term.

(iii) E2 term. The E2 contribution in panel (c) contains the
Laplacian of the particle density and is commonly
associated with a surface term. As the particles
rearrange into the two fission fragments, this term
increases in magnitude, i.e., gives an overall more
repulsive contribution to the entire system. This can
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FIG. 10. (Color online) Evolution of the decomposed energy
density functional for the fissioning systems. The calculations are
terminated when the fragments are separated by 100 fm. For
reference, the vertical lines in the panels corresponding to kinetic
energies show the corresponding scission points. The total energy is
conserved within fluctuations no greater than 4 MeV.

be explained by the two-fragment system having a
combined surface fraction which is greater than that
of the initial configuration. The gain in energy for this
term up to the point of scission is dependent upon the
deformation of the initial configuration. It can increase
by as much as 45 MeV for the static configuration with
β20 = 1.10.

(iv) Coulomb term. The Coulomb energy depicted in panel
(f) is determined from the distribution of the charged
protons. The magnitude of the repulsive Coulomb term
slowly decreases as the nucleus elongates. The overall
reduction is of the order of 200 MeV as the system
evolves. At the point of scission, the rate at which the
term reduces rapidly accelerates, as the two charged
fragments separate from one another in coordinate
space. At infinite fragment separation, the Coulomb
term will reduce to the contributions of the Coulomb
energy for each nucleus, without further interactions.

(v) Kinetic and collective kinetic terms. The kinetic
energy can be determined from integrating the kinetic
density. As mentioned above, the contribution to
this energy from collective motion (assumed to be
predominantly translational beyond scission, rather
than internal collective excitation) can be decomposed
according to Eq. (2) and we show it in panel (h).
The collective energy is initially small, as it is only
associated with the internal currents as the nucleus
slowly rearranges into a fissioned configuration. The
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state with initial deformation β20 = 1.10 shows the
most gradual transition to fission. An initial rapid
increase and a saturation in the collective energy
is seen before scission, which corresponds to the
(previously discussed) rapid initial elongation, then
extended rearrangement phase as the configuration
evolves (see Fig. 9). In contrast, the state with
β20 = 1.25 is already close to the point of scission,
so that the Coulomb interaction between the two
lobes rapidly drives the configuration to the scission
point (within the first few hundred fm/c), where
translational motion rapidly accelerates once the neck
ruptures. This shorter time scale could explain the
more extreme behavior observed in the evolution of
the other terms in the energy functional as the particles
in the neck have less time to rearrange into the two
fragments. At the point of scission, the collective
kinetic energy rapidly increases at a rate similar to
that of the reduction in the Coulomb energy. The
threshold collective kinetic energy associated with the
scission point is between 6 and 8 MeV in all the
cases presented. The vertical lines corresponding to
the scission points are displayed in panels (g) and (h)
of Fig. 10. The definition adopted for scission [66] is
justified by considering the rapid increase of collective
kinetic energy at this point. The gain in the total kinetic
energy beyond the scission point can be attributed to
the gain in collective energy and is of the order of 150
MeV in the time considered. This relates to the loss
in Coulomb energy beyond the point of scission, as
would be expected.

(vi) Spin-orbit term. The spin-orbit potential is important
for the single-particle structure. Spin-orbit partner
levels combine, when fully occupied, to give a total
zero-energy contribution, so the contributions reflect
the changing of the single-particle levels and the
change of meaning of spin-orbit partners in the parent
nucleus to the daughter nuclei. One therefore expects
this contribution to be relevant in determining the
structural details of the final fission fragments. The
final approximately constant values observed in panel
(e) following scission correspond to the sum of the
two independent spin-orbit terms of the separate
fragments. The notably different behavior of the term
for the state with initial deformation β20 = 1.25,
compared to the others, suggests that different shell
effects are acting. Indeed, the masses of the fission
products are significantly different for this case (see
Sec. IV A). The spin-orbit term also has significant
contributions from time-odd densities, so that the
evolution can explore configurations which may not be
accessible on the static PES. Overall, the term varies
by less than 30 MeV during time evolution.

In experimental studies of fission, it is customary to measure
the kinetic energy of the fission fragments. We can find an
analogous observable within TDHF by making use of the
collective kinetic energy, defined by Eq. (2), and assuming that
the translational kinetic energy dominates this term. Referring

to Fig. 10, the collective kinetic energy and Coulomb energy
are both expected to plateau as the separation of the two
fragments becomes large. Unfortunately, the Coulomb force
is long ranged. Because increasing the dimensions of the
numerical grid is extremely computationally expensive, we
take an alternative perspective. We extrapolate the collective
kinetic energies to large times to estimate the asymptotic value
of the collective energy as the separation r tends to ∞.

A simple approximation to the time-dependent behavior can
be made from classical mechanics. Let us assume two pointlike
fragments with charges Zu and Zl and masses Mu and Ml . If
the two fragments fission from a ground state because of the
Coulomb force and convert all this energy into translational
kinetic energy, energy conservation implies

1

2
Muv

2
u + 1

2
Mlv

2
l = κ

ZuZl

r
. (3)

Here Mi , vi , and Zi are the mass, velocity, and charge of each
fragment (i = u for upper and i = l for lower fragment). The
constant κ is the Coulomb constant. As momentum must be
conserved,

Muvu + Mlvl = 0, (4)

Eq. (3) may be rewritten, substituting for vu

v2
l

(
M2

l

Mu

+ Ml

)
= 2κ

ZuZl

r
. (5)

For a given fissioned system, Mu, Ml, Zu, and Zl are constant.
A differential equation for dr

dt
(= vl) can be formed,

dr

dt
=

√
	

r
, (6)

where all the constants are combined into 	. Performing the
integration ∫ r

r0

r1/2dr =
∫ t

t0

√
	dt (7)

allows the solution

r3/2 = r
3/2
0 + 3

2

√
	(t − t0) (8)

to be written. According to this approximation, the distance
between the two fission fragments, r , is approximately
proportional to t2/3. By assuming that the loss in Coulomb
energy is equal to the gain in collective kinetic energy (that is,
ECoul = Ecoll. kin.), a fit of the form

f (t) = a + b

(t − c)3/2
(9)

can be performed to interpolate the collective kinetic energy
to asymptotically large values of t . Figure 11 shows a sample
interpolation of the collective kinetic energy assuming the
above form for the case of initial deformation β20 = 1.10. The
fit is performed over three time ranges: once the centers of mass
are separated beyond 30, 50, and 60 fm, respectively. As the
separation tends to ∞, the fit parameter a can be interpreted as
the final collective kinetic energy. Table III contains the values
obtained for each of the fissioning cases with different distance
fits. As a crude method to represent the uncertainty in the final
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FIG. 11. (Color online) Fits to the obtained collective kinetic
energy for the initial state with deformation β20 = 1.10. Fits are
performed over three different ranges: from the point where the
separation of the fragments exceeds 30, 50, and 60 fm, respectively.

collective energy value, we present the mean and the standard
deviation of the three interpolation fits.

The values shown in Table III demonstrate that the resulting
collective kinetic energy varies by about 10% depending upon
the region of the data the fit is performed to. In this very crude
model, fragment deformation, particle emission (discussed in
the next section) or tidal effects associated with the extended
nature of the nuclei are not accounted for. This suggests that
the results obtained from the interpolation method should
serve only as illustrative values. We note that an alternative
method, based on computing the collective kinetic energy
from the center-of-mass momenta of each fragment, provides
quantitatively similar results.

In comparison to the experimentally measured kinetic
energy of the fissioning systems displayed in Table IV, the
theoretical values presented in Table III are of a similar order
of magnitude. The crude theoretical estimates are about 5
to 25 MeV larger in all cases. We note, however, that the
experimental values correspond to an average kinetic energy.
We only have access to a single fissioning event per static state,
and a larger sample of theoretical results would be required
to enable a quantitative comparison. Further discussion of
methods to deduce the energy released by the fission reaction
within TDHF is presented in Sec. IV B.

TABLE III. Interpolated total kinetic energy corresponding to
different initial configurations. The fit of Eq. (9) has been performed
once the fragment separation exceeds 30, 50, and 60 fm.

Static Collective KE Collective KE Collective KE Mean
deformation (30-fm fit) (50-fm fit) (60-fm fit) ±s.d.
β20 (MeV) (MeV) (MeV) (MeV)

1.10 210.3 206.5 203.4 206(4)
1.13 210.8 200.0 193.7 202(8)
1.19 205.8 196.8 191.3 198(8)
1.25 193.4 180.8 176.3 183(9)

TABLE IV. Measured total kinetic energies from experi-
ments on spontaneous fission, thermal neutron-induced fission and
photo-fission.

Method Kinetic energy (MeV) Reference

240Pu(s.f.) 178.85 ± 0.30 [2]
240Pu(s.f.) 179.00 ± 0.08 [3]
239Pu(nth,f ) 177.69 [2]
239Pu(nth,f ) 177.65 ± 0.01 [3]
240Pu(γ,f ) (12 MeV) 176.39 ± 0.24 [2]
240Pu(γ,f ) (15 MeV) 175.80 ± 0.24 [2]
240Pu(γ,f ) (20 MeV) 175.15 ± 0.24 [2]
240Pu(γ,f ) (30 MeV) 174.98 ± 0.31 [2]

IV. FRAGMENT ANALYSIS

Beyond the point of scission, we consider a two-fragment
system. The published distribution of SKY3D has some capacity
to analyze two-fragment dynamics [30], and a version has been
modified further to investigate the fissioning system and extract
some useful observables [50].

A. Mass distributions

As the postfission fragments are excited, they may decay by
particle emission. TDHF displays this decay by the spreading
of the single-particle wave functions from the region of central
density, corresponding to the nucleus. When masking the
region around the nucleus, this decay results in a reduction
in the integrated particle density over time. For the cases of
DIF examined in this paper, this decay is of the order of 0.1–0.2
particles during the whole postscission time evolution.

To compare to experimental studies, we identify the number
of particles in each fragment prior to any particle emission.
This is done by integrating the total density in each half of the
numerical grid separated by the dividing plane immediately
after the scission point. The integral is performed without
any masking. An uncertainty in the particle number of the
fragments may be associated with the fluctuation of this
measurement throughout time evolution, which is less than
0.05 particles for all the considered cases. We are thus
confident that the fission fragments that we produce have a
good average mass number.

These fragment masses can be compared directly to exper-
imental data. Table V displays the resulting fission fragment
masses obtained from this theoretical study. We note that these
can hardly be considered distributions, but rather should be
taken as indications of what dynamical calculations can con-
tribute to fission studies. The two-fragment static configuration
is included for comparison. It is important to stress that this
differs from the deformation-induced fragments. It produces
more symmetric states, which brings it closer to experimental
results of neutron-induced fission. The table also includes the
particle number rounded to the nearest integer. It would be of
interest to project the individual fragments onto the particle
number [55], to obtain a mass number distribution, although
this would not necessarily agree with experiments [36].
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TABLE V. Fission fragments obtained from evolving initial static configurations from the one-
fragment fission pathway. The uncertainties in the particle numbers are a conservative estimate
related to the fluctuation in the particle number in the region of the grid corresponding to the separate
fragments throughout time evolution. The result from the static two-fragment pathway for β20 = 1.19
is included for comparison.

Static Heavy fragment Light fragment Heavy fragment Light fragment
deformation β20 A,Z A,Z (Integer) (Integer)

1.10 136.33(5), 52.78(5) 103.67(5), 41.23(5) 136
53 I 104

41 Nb
1.13 135.02(5), 52.23(5) 104.98(5), 41.77(5) 135

52 Te 105
42 Mo

1.19 136.13(5), 52.70(5) 103.87(5), 41.30(5) 136
53 I 104

41 Nb
1.25 143.70(5), 55.65(5) 96.30(5), 38.35(5) 144

55 Cs 96
38Sr

1.19(2f) 132.81, 50.84 107.04, 43.13 133
51 Sb 107

43 Tc

Further, Table VI contains experimental data taken from
Refs. [2,3], listing the most likely masses of the fission
fragments. The references study various fission processes
in 240Pu, including spontaneous fission, thermal neutron-
induced fission, and various energy photon-induced fission
reactions. The spontaneous fission data has been included for
completeness.

We emphasize that fission produces a range of masses.
The values quoted in Table VI correspond only to the most
likely fissioned configuration. This is a crude comparison
of experimental data to theoretical calculations. A more
meaningful comparison would go through a characterization
of the full mass distribution, in line with the recently proposed
method of Ref. [39]. While we cannot at present produce a
full mass distribution from projection into particle numbers,
we can use each of the four different fission cases to build
a schematic fission fragment mass distribution. Referring to
Fig. 12, which displays data for neutron-induced fission at low
energies in panel (a), the obtained theoretical values in panel
(b) fall well within the experimentally obtained mass distri-
bution. With the limited data set available, the TDHF results
seem to be consistent with the experimental data. Figure 12
also includes for comparison the adiabatic, constrained static
result of the two-fission pathway. All in all, dynamical
effects seem to induce a larger mass asymmetry in the fission
fragments.

TABLE VI. Experimentally measured average masses following
the fission 240Pu. The measurements for neutron-induced fission were
taken before neutron emission of the fissioned fragments.

Method Heavy fragment Light fragment Reference

240Pu(s.f.) 138.74 ± 0.20 101.26 ± 0.20 [2]
240Pu(s.f.) 138.96 ± 0.04 101.31 ± 0.04 [3]
239Pu(nth,f ) 139.67 100.33 [2]
239Pu(nth,f ) 139.73 ± 0.01 100.27 ± 0.01 [3]
240Pu(γ,f ) (12 MeV) 139.88 ± 0.14 100.12 ± 0.14 [2]
240Pu(γ,f ) (15 MeV) 139.92 ± 0.09 100.08 ± 0.09 [2]
240Pu(γ,f ) (20 MeV) 139.84 ± 0.08 100.16 ± 0.08 [2]
240Pu(γ,f ) (30 MeV) 139.71 ± 0.14 100.29 ± 0.14 [2]

B. Energy of fission fragments

By applying masks around the spatial regions of the fission
fragments, the energy density functional corresponding to
each individual fragment may be obtained. We note, however,
that the interpretation of the results is not as simple as
in the two-fragment case. The nuclear part of the energy
density functional is short ranged. We therefore expect that an
integral in the spatial region corresponding to the individual
fragments will be a faithful representation of the nuclear part
of the energy density. The Coulomb interaction, however,
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FIG. 12. (Color online) (a) Experimental independent fission
yields for neutron-induced fission at E = 0.0253 eV. The data are
from Ref. [67]. (b) Theoretical mass fragment distributions. The
red bars correspond to the binned TDHF results and the blue bar
corresponds to the static two-fragment mass split. See text for more
details.
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FIG. 13. (Color online) Summed energy density functionals for
the region of space corresponding to the (a) heavy and (b) light fission
fragments. The quadrupole deformation of the initial state is labeled.
The drift in the energy can be attributed mainly to the Coulomb
interaction between the two fragments. See text for more details.

is long ranged. As well as the Coulomb interaction within
the individual fragments, there is a contribution from the
interaction with one another. This contribution is missing in the
present two-fragment integral. Further, the fragments decay
by particle emission, which imparts some time dependence
upon the integrated energy corresponding to the individual
fragments.

The time evolution of the total integrated energy functional
corresponding to the heavy and light (lower) fission fragments
is shown in panels (a) and (b) of Fig. 13, respectively. The
time measurement at tsep = 0 begins when the fragments are
sufficiently separated such that the masks no longer overlap. To
a good approximation, the fragment total energies are constant
over time. A slight drift is observed in the time evolution, owing
to the long-range effects of the Coulomb interaction as well
as particle decay. We only provide the total integrated energy
of the postfission fragments in Fig. 13. The evolution of the
decomposed terms corresponding to the individual fragments
shows no remarkable behavior. Hereafter the fragment energy
at the cutoff time is denoted as E∗.

The total energies of the two fragments provide an al-
ternative way of computing their collective kinetic energies.
The total excitation energies of the fragments is the sum of
their translational and internal collective kinetic energies. If
we subtract the total integrated energy to the corresponding
ground-state energy, we obtain a new estimate for the fragment
excitation energy. This method complements the approach of
interpolating the total collective kinetic energy of the system,
as presented in Sec. III C. As long as the ground-state and the
fragment energies are qualitatively correct, this second method
should produce comparable results.

The solver SKY3D has thus been applied to deduce the
ground states of the fission fragments to the nearest integer
particle number. The result for the ground-state energy of
these isotopes is presented in column 4 of Table VII. Here it is
debatable whether the energy functional in SKY3D contains all
the terms required to calculate odd-odd and odd-even nuclei.
The full time-odd contribution is presented in Ref. [68], and the
functional in SKY3D does not include all these terms. However,
as the functional used for the static calculations is consistent
with that applied to dynamic calculations, Galilean invariance
is conserved. The functional used in SKY3D therefore satisfies
all the invariance properties required to perform static calcu-
lations of odd-odd and odd-even nuclei, even if the functional
is not in its most “complete” form. We also note that pairing
has been neglected in these calculations. The total pairing
contribution to the energy functional is typically of the order of
0–10 MeV, which is small compared to the excitation energies
in the fissioning case.

We have access to two measurements of the total excitation
energy of the systems, either by interpolating the evolution of
the collective kinetic energy or by comparing the ground-state
fragment energies to the excited fragment energies. Figure 14
displays the mean interpolated collective kinetic energies
(circles) presented in Table III. We compare these to the total
fragment excitation energy (�Eheavy frag. + �Elight frag.) for
each fissioning case (triangles). The error bars in the values of
�E display an uncertainty of 10 MeV, a conservative estimate
for typical pairing correlations, possible deformation energies,
and also that only nearest-integer nuclei are considered. For
the interpolated collective energy, the values presented are
the mean of the three interpolations performed at different
fragment separations. We present a preliminary, rough estimate
of the error of this calculation, obtained from the standard
deviation of these three data points (see Table III).

Figure 14 shows that within the error bars, the results
from the two techniques produce consistent values of the

TABLE VII. Comparison of the fission fragment energies to the ground-state energy calculated using the SkM∗

interaction. The fragment total energy at the cutoff time is denoted by E∗ (see Fig. 13), the ground-state energy by
Egs, and the difference (E∗ − Egs) by �E. See text for more details.

Static β20 Heavy E∗ Egs �E Light E∗ Egs �E

fragment (MeV) (MeV) (MeV) fragment (MeV) (MeV) (MeV)

1.10 136
53 I −1029.22 −1118.31 89.09 104

41 Nb −747.86 −854.54 106.68
1.13 135

52 Te −1023.81 −1110.24 86.43 105
42 Mo −757.38 −865.71 108.33

1.19 136
53 I −1034.23 −1118.31 84.04 104

41 Nb −749.41 −854.54 105.13
1.25 144

55 Cs −1090.17 −1162.47 72.30 96
38Sr −697.78 −796.94 99.16
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FIG. 14. (Color online) Comparison of the summed �E from
Table VII (solid circles) to the mean interpolated collective kinetic
energy from Table III) (solid triangles) for each of the fissioning
cases. Indicative error bars are displayed. See text for details.

energy released in the fission process. A smaller error for both
predictions could be achieved by performing the calculations
up to the point where the Coulomb interaction is negligible,
and obtaining ground-state energies incorporating pairing
correlations. As mentioned, the energies presented here are
measures of the total excitation energy of the system. We note
that this includes both excitation energy of the fragments and
their relative motion, in contrast to the experimental definition
that often neglects the latter. Section IV C will demonstrate
a technique which may be used to decouple the translational
kinetic energy from the internal collective excitation energy of
the two separate fragments. These will provide further insight
into the excitation mechanisms in TDHF fragment formation.

Figure 15 shows experimental measurements of the kinetic
energy reproduced from Ref. [3] for thermal neutron-induced
fission in 240Pu. The range of collective kinetic energies
deduced in this section are marked with a shaded box. By
attributing the deduced total excitation energies solely to
translational kinetic energy, this assumes that the internal
collective excitation of the fragments are comparatively small.
This will be demonstrated shortly. Despite the limited sample
of theoretical data, the results agree with the experimental
range of values. In particular, our results fall well within the
experimental distribution.
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FIG. 15. (Color online) Experimental kinetic energy distribution
taken from Ref. [3]. The shaded box corresponds to the extremes of
the range of kinetic energy values displayed in Fig. 14.

C. Collective excitation modes of fission fragments

As mentioned, the excitation energy of the fission fragments
is assumed to be dominated by translational kinetic energy.
However, as well as translational motion, the fragments
undergo collective vibrations because of internal excitation.
The collective excitation modes of the fragments may be
investigated using both the time and the frequency domains. To
perform Fourier analysis, we make use of the spectral power
function

Pζ (ω) = [Re ζ (ω)]2 + [Im ζ (ω)]2, (10)

where ζ (ω) is the Fourier transform of the moment of interest.
Unfortunately, owing to the limitations in the numerical grid
size (the z direction spanned 160 grid points, ranging from
−79.5 to 79.5 fm), a signal corresponding to the evolution
of the multipole parameters of the individual fragments could
only be measured for approximately 1000 fm/c before the grid
boundaries were approached. For a signal of this length, the
resolution of the calculated power spectrum is of the order
�ω = π

Tobs
≈ 0.6 MeV [69].

To extend the time evolution domain and consequently im-
prove energy resolution, we adopted the following approach.
Rather than performing the calculations in an impractically
large numerical grid, a Galilean transformation is applied to
each fission fragment. The boost momentum is chosen to
cancel the corresponding linear momenta of each fragment.
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FIG. 16. (Color online) Decomposed contributions to the energy
of the system for the case with initial deformation β20 = 1.25.
A Galilean transformation has been applied to remove the linear
momentum of the individual fragments once the separation between
the fragment center of mass reaches 100 fm. The calculation is
terminated once the separation exceeds 105 fm.
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FIG. 17. (Color online) Evolution of (a) quadrupole, (b) oc-
tupole, and (c) hexadecapole deformation parameters for the heavy
fission fragment. The initial deformation was β20 = 1.25. The
measurement time is significantly extended by applying the Galilean
transformation to remove the linear momentum of the fragments. See
text for more details.

After boosting, the two fragments remain approximately still
in the box, and their excitation modes can be studied for a
much longer period. The evolution of the configuration with
an initial β20 = 1.25 is presented as an example of this new
method.

Inside the masked regions of space corresponding to
the fragments, the linear momentum may be calculated by
integrating the current density:

pfrag =
∫

d r j (r). (11)

This momentum therefore has units of velocity [30]. The linear
momentum of the fragments may then be instantaneously
removed by applying a Galilean boost to the single-particle
wave functions,

ϕ̄(r) = exp

(
i

pfrag · r

Afrag

)
ϕ(r), (12)

where Afrag is the integrated particle density corresponding to
the fragment and ϕ(r) are the single-particle wave functions.
The Galilean transformation should be applied in the masked
region of space with the corresponding momentum for each
fragment. The effect of the transformation is to effectively
boost the particles in the opposite direction with the exact
momentum they are propagating with through the grid.
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FIG. 18. (Color online) Evolution of (a) quadrupole, (b) oc-
tupole, and (c) hexadecapole deformation parameters for the light
fission fragment. The initial deformation is β20 = 1.25.

Figure 16 shows the decomposed energy functional for the
fissioning case with initial β20 = 1.25. The Galilean transform
was applied when the separation of the fragments reached
100 fm (corresponding to t ≈ 1900 fm/c), and the calculation
terminated at separation 105 fm. Upon application of the
transformation, panel (j), corresponding to the total energy,
displays a decrease of approximately 140 MeV. This mirrors
the drop in collective kinetic energy by the same amount,
which corresponds to an instantaneous removal of excitation
energy owing to translational motion. This demonstrates that
the total excitation energy is dominated by contributions from
translational motion, rather than internal collective excitations.
As for the other energy contributions, the nuclear and Coulomb
energies remain unaltered before and after the boost is applied
around t ≈ 1900 fm/c. This is to be expected because these
terms are all Galilean invariant.

The collective kinetic energy drops instantaneously to
≈1.1 MeV following the transformation, as seen in inset
panel (i). Because the translational energy has been removed at
this point, the remaining collective energy can be interpreted
as the sum of the internal excitation energy shared between
the two fragments. Reference [18] discusses an alternative
method to deduce the internal collective excitation energy
of the fragments, but the method applied assumes a priori
knowledge of the fission products of the system.

The internal collective excitation energy is very small
compared to the total excitation energy released in the fission
process, which is ≈180 MeV (see Fig. 14; β20 = 1.25).
This justifies the previous assumption that the final collective
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FIG. 19. (Color online) Power spectra corresponding to Fig. 17
(heavy fission fragment). The resolution is significantly improved
owing to the longer measurement time available with the use of
Galilean transformations to remove the linear momentum of the
fragments.

excitation energy deduced in TDHF is dominantly translational
kinetic energy, so it may therefore be compared to the
experimentally measured kinetic energies (Fig. 15). Further,
the energy functional contributions (Fig. 16) may be compared
to these in Fig. 10, where the calculation was terminated at
the point where the transformation is applied in this case.
Figure 16 demonstrates that the nuclear potential part of the
energy functional is unaffected by the transformation. The
calculation was performed in a grid of identical dimensions
to those presented in Fig. 10 (48 × 48 × 160 points), and
the time elapsed has effectively doubled from those previous
calculations. As the measurement time of the postfission
fragments has been elongated, the resolution of the resulting
power spectra will be enhanced accordingly.

We note that the Coulomb interaction is long-ranged, so
that even at a separation of 100 fm there is an interaction
between the fragments. Translational motion resumes after
the Galilean transformation is applied, and the translational
kinetic energy slowly increases. This can be seen by the
gradual increase of the collective kinetic energy in Fig. 16
following the transformation. Therefore, the center-of-mass
separation eventually reaches 105 fm and the calculation is
terminated. We note that, in principle, one could reapply
the Galilean transformation at every iteration to extend the
total time and improve energy resolution. This artificially
prolonged Coulomb interaction between the fragments does
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FIG. 20. (Color online) Power spectra corresponding to Fig. 18
(light fission fragment).

not alter significantly the dynamics of the fragments. Any
potential adverse effects have not been studied in detail, and
alternate methods can also be applied to mitigate this increased
Coulomb interaction [70,71].

The evolution of the multipole deformation parameters for
the two fragments are shown in Figs. 17 and 18, corresponding
to the heavy and light fragments, respectively. The correspond-
ing power spectra are shown in Figs. 19 and 20. Let us stress
that the resolution of the spectra is ≈0.4 MeV, a significant
improvement with respect to what would be obtained without
extending the measurement time.

The evolution of the multipole fragments is qualitatively
similar for both fragments. The quadrupole oscillations are
centered around values of β20 ≈ 0.18 and 0.35 for the
heavy and light fragments, respectively. The corresponding
hexadecapole moments oscillate in phase with the quadrupole
deformation around central, nonzero values. The correspond-
ing octupole deformations, in contrast, are modulated around
a zero value, and it is difficult to ascribe a final octupole
deformation for these (excited) fragments. While the specific
deformations might not be particularly relevant, the excitation
patterns of the multipoles provide information on the collective
vibrations of both fragments. We note that, whereas a pattern
of well defined, relatively rapid oscillations are found for the
light fragment, the heavy fragment multipoles have a more
erratic time evolution.

These features are reflected in the corresponding power
spectra. We insist here that these can be obtained only with
the required resolution after a boost has been performed on

054610-18



FISSION DYNAMICS WITHIN TIME-DEPENDENT . . . PHYSICAL REVIEW C 92, 054610 (2015)

both fragments. Within the resulting spectra presented for the
heavy fragment in Fig. 19, there is a well-defined peak for
each multipole parameter between ≈1 and 3 MeV. For the
light fragment, in contrast, Fig. 20 shows a very well-defined
peak for each multipole parameter between 4 and 6 MeV.
The latter reflects the very well-defined oscillations in the mo-
ments observed earlier. We speculate that these well-defined
oscillations correspond to collective excitations within the two
fragments. It would be of interest to compare the excitation
modes obtained for the postfission fragments to standard
calculations of resonances in the corresponding nuclei. This
would give access to a microscopic understanding of the
fragment excitation properties, including their temperatures
and phonon structure.

V. CONCLUSIONS

We have presented an analysis of the fission process using
TDHF techniques as implemented in SKY3D. Starting from
the calculated one-fragment quadrupole-constrained PES, the
dynamics of fission were investigated. Deformation-induced
fission was explored by releasing the quadrupole constraint and
time-evolving a selection of states situated below, around and
beyond the second static fission barrier. Three behaviors were
observed. The states with a quadrupole deformation below the
peak of the fission barrier undergo vibrations corresponding to
a collective giant resonance. For these states, DIF is forbidden
in TDHF, because a collective tunneling through the barrier
must occur to reach a fissioned configuration.

A different behavior is observed for the evolution of states
which are situated beyond the peak of the second static fission
barrier, but before the critical point where the static one- and
two-fragment pathways intercept. Upon time evolution up to
9000 fm/c, these states also fail to fission, but the dynamics are
not typical of collective giant resonant modes. The repulsive
Coulomb force attempts to drive the configuration towards a
fission point, but owing to the competition with the attractive
terms in the energy functional, scission does not occur. DIF
is inhibited for these initial configurations, and it can only
be speculated if these states would eventually fission with a
longer time evolution.

For states with a static deformation exceeding the inter-
section of the one- and two-fragment fission pathways, DIF
was observed upon time evolution. We interpret that, because
a static two-fragment configuration exists with greater bind-
ing energy than the one-fragment configuration, it becomes
energetically possible for the one-fragment configurations to
evolve to fission with only a modest rearrangement of the
densities. The evolution of the prefission fragment displays
a rearrangement of the densities up until around the point of
scission. At this point, the Coulomb repulsion between the

preformed fragments overpowers the nuclear potential, and
translational motion sets in as the fission products rapidly ac-
celerate away from one another. The time scale for DIF varies
depending upon the deformation of the initial state. The least
deformed configuration demonstrates a density rearrangement
phase lasting approximately 1500 fm/c, whereas the most
deformed configuration is initially close to the point of scission
and the neck ruptures within 100–200 fm/c.

A selection of fission products was observed for the
various initial configurations considered. When compared
to experimental measurements of neutron-induced fission
processes, the agreement of the calculated fragment masses
demonstrates promising results, although several effects,
particularly dynamical pairing, are missing in our approach.
The energy released is shown to be dominantly translational
kinetic energy, and agreement between theory and experiment
was found to be reasonable when comparing the calculated
and measured kinetic energies of the postfissioned systems.
We have pioneered a method to remove translational kinetic
energy of the postscission fragments to provide details of their
internal excitations.

This initial investigation into fission induced by deforma-
tion effects using time-dependent techniques has provided in-
sightful results on the interplay between structure and dynam-
ics in the fission process. We have also devised a set of useful
computational analysis tools for the postscission fragments.
Deformation-induced fission, however, provides a limited
amount of two-fragment configurations. Further extensions
of the present research involving particle-number projection
could provide access to more relevant mass distributions.
Moreover, a refined step-by-step linear momentum removal
could help extend the time length and energy resolution of the
two-fragment excitation data.

The present analysis is relevant for a variety of fission
processes. Spontaneous fission would presumably tunnel the
system across the PES barrier into random states within the
“allowed” region. These would subsequently decay into the
two-fission pathway. One can, in principle, explore a wider
landscape of fission fragments by exciting nuclei along their
fission paths [50]. This theoretical approach can be linked more
naturally to induced fission, where the energy deposited by
external probes induces the fission process. We plan to explore
this approach using TDHF techniques in the near future.
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