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Nuclear excitation by electron transition (NEET) is predicted to be the dominant excitation process of the first
201Hg isomeric state in a laser heated plasma. This process may occur when the energy difference between a
nuclear transition and an atomic transition is close to zero, provided the quantum selection rules are fulfilled. At
local thermodynamic equilibrium, an average atom model may be used, in a first approach, to evaluate the NEET
rate in plasma. The statistical nature of the electronic transition spectrum is then described by the means of a
Gaussian distribution around the average atom configuration. However, using a continuous function to describe
the electronic spectrum is questionable in the framework of a resonant process, such as NEET. In order to get
an idea of when it can be relied upon to predict a NEET rate in plasma, we present in this paper a NEET rate
calculation using a model derived from detailed configuration accounting. This calculation allows us to define
a confidence interval of the NEET rate around its average atom mean value, which is the first step to design a
future experiment.
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I. INTRODUCTION

The understanding of the mechanisms to populate and
depopulate nuclear excited states in plasma is of paramount
interest to fundamental and applied aspects of nuclear science.
From diagnostics of hot dense plasmas to production of an
inverse population of nuclear levels, excitation of nuclei in
plasma has raised renewed interest in the scientific community
with the advent of intense lasers. Nuclear excitation in plasma
processes has been predicted a long time ago [1,2] and still
has not been observed in an experiment. Several attempts have
been made [3–7], but so far none have been successful. Several
excitation processes may contribute. Some involve particles
from the plasma, such as photons with photoexcitation or
free electrons with inelastic electron scattering [8] and nuclear
excitation by electron capture [9].

One of the most promising processes is nuclear excitation
by electron transition (NEET) [10]. NEET has already been
observed in an accelerator-based experiment on nonplasma
targets of 193Ir [11], 189Os [12], and 197Au [13]. In none
of these experiments were the atomic configurations close
to those encountered in a plasma environment. Because the
NEET rate depends on the electronic configuration, the NEET
probability can be enhanced by modifying the atomic environ-
ment of the nucleus. In hot dense plasmas, the thermodynamic
conditions strongly affect the electronic environment of the
ions. Thus, plasmas are ideal laboratories to observe these
modifications of nuclear rates. The NEET resonant feature lets
us expect higher transition rates [14] provided that a suitable
candidate nucleus can be found. 201Hg is one of those few
candidates as it has a low M1/E2 low-lying isomer at 1.565
keV with a relatively long half-life of 81 ns [15] (see Fig. 1)
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compared to the few nanosecond duration of a plasma heated
by a laser. Sakabe et al. [16] predicted the 4s1/2-3d3/2 atomic
transition is resonant with the nuclear transition of a singly
ionized atom. For higher charge states, transitions between
n = 6 and n = 4 atomic shells conveniently lie very close
to a 1.565-keV transition energy [15]. Due to the extremely
low width of the nuclear transition, resonant transition rates
are significantly harder to predict as a precise knowledge of
atomic transition energies is required. This kind of precision
is currently out of reach of all atomic physics models, and thus
approximations are required.

However, for heavy nuclei, this situation can be less
dramatic. Indeed, the large number of atomic configurations
is the origin of a huge number of electronic transition lines
which can be statistically regrouped under a small number
of broadened transitions. This is the basis of the ISOMEX
model [8,10,14], which relies on the relativistic average atom
model (RAAM) as will be detailed in Sec. II. Its main feature
is that populations of atomic shells are nonintegers, which
might result in an average atom quite far from the true atom.
The RAAM has the considerable advantage of its simplicity
allowing for making calculations in any plasma condition.
The statistical nature of the electronic spectrum can be taken
into account by using a Gaussian distribution of transitions
around the transition given by the RAAM. However, the use
of a continuous function to describe the electronic spectrum is
questionable in the framework of a resonant process, such as
NEET. In order to get an idea of when it can be relied upon to
predict a NEET rate in plasma, a more sophisticated approach
can be used, such as detailed configuration accounting (DCA).
This method will allow estimating a confidence interval of the
NEET rate around its mean value. However, a proper DCA
calculation requires diagonalizing the Hamiltonian operator in
each configuration subspace, which is a very time-consuming
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FIG. 1. (Color online) Partial level scheme of 201Hg.

process. In Sec. III of this paper we propose evaluating the
energy of each configuration using quantities obtained in the
framework of the RAAM but with true integer populations.
This will considerably lower computing times, making it a
viable alternative for allowing the study of NEET rates as a
function of thermodynamic conditions. Comparison of NEET
rates calculated with the DCA and RAAM model will help
to determine regions in the density-temperature plane where
predictions performed by the RAAM are relevant. Finally, we
will show that the uncertainties in the calculation of atomic
transition energies are likely to enhance the difficulty to make
an accurate prediction of the NEET rate and that only a
confidence interval of the NEET rate around its mean value
can be given.

In the long haul, these calculations will be used to design
a laser experiment. In laser-created plasmas, propagation of
the laser beam in the plasma is possible only below a limiting
density, the so-called critical density which, for a wavelength
of 1.06 μm, is around 10−2 g cm−3. The laser deposits most
of its energy at this density; therefore, most of the results
presented in this paper have been performed around this
density. Moreover, in the present case, the plasma is assumed
to be in local thermodynamic equilibrium (LTE): The density
is high enough to thermalize the plasma by electron-ion
collisions whereas the photons may still escape from it. It is
possible to locally define a temperature and a density, and the
probabilities of the atomic level occupations and configuration
probabilities can be calculated using a Fermi-Dirac distribution
and Boltzmann’s law.

II. THE AVERAGE ATOM MODEL

The average atom model we use is similar to the one
proposed by Rozsnyai [17]. In this model, the average atom
is a fictitious atom whose properties are the average atomic
properties of all atoms in plasma. This model solves the
Dirac equation for bound electrons with boundary conditions
on the wave functions dictated by plasma density. Frac-
tional populations of electronic shells are determined by a
Fermi-Dirac statistics under the thermodynamic equilibrium
hypothesis. For given plasma temperature and density, this
model delivers several quantities, such as the average wave
functions, populations or charge state, the latter being plotted
as a function of temperature in Fig. 2 for densities of 10−3 and
10−2 g cm−3.
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FIG. 2. (Color online) The RAAM average charge state of 201Hg
at 10−3 and 10−2 g cm−3 as a function of plasma temperature.

In the present paper, we neglect dynamical screening
and many particle effects. The first one is known to have
an impact on the radiative spectra [18], through channel
mixing and configuration interaction. A proper description of
dynamic screening would require a full quantum-mechanical
description of both bound and free electronic states [19] and
the use of Green’s function approaches or related techniques.
Such formalisms are not included in our model. Nevertheless,
their impact on the NEET rate is expected to be much smaller
than other approximations of the statistical methods used here.
In addition, investigating multicenter effects would imply a
breakdown of the average-atom picture in the central field
model. However, such effects should not play a significant role
in the plasmas we consider since they are mostly important for
dense strongly coupled plasmas.

A. Average transition energy

To evaluate a NEET rate under plasma conditions with
the RAAM, the key parameter is the average atomic transition
energy, which should be as close as possible to the nuclear one.
Its expression has been slightly improved from the expression
previously used in Ref. [10].

In the RAAM, it is not straightforward to define the average
transition energy between two configurations because the atom
is described by a single average configuration. For our purpose
we calculate the average transition energy by considering
real electronic configurations. During a NEET transition, an
electron is transferred from orbital α to orbital β between
initial and final configurations Ci and Cf ,

Ci = (n1�1j1)N1 (n2�2j2)N2 · · · (nβ�βjβ)Nβ · · · (nα�αjα)Nα ,

Cf = (n1�1j1)N1 (n2�2j2)N2 · · · (nβ�βjβ)Nβ+1 · · · (1)

(nα�αjα)Nα−1,

where nk and �k , respectively, are the principal quantum
number and the orbital momentum of orbital k,jk = �k ±
1/2, and Nk is its integer population. The energy of any

054609-2



NUCLEAR EXCITATION BY ELECTRON TRANSITION . . . PHYSICAL REVIEW C 92, 054609 (2015)

configuration C can be calculated by [20]

E(C) =
∑

k

NkUk + 1

2

∑
k

∑
k′

Nk(Nk′ − δkk′)Vkk′

+
∑

k

NkVk�, (2)

where Uk contains the kinetic energy and the electron-nucleus
interaction of the electron in the k orbital,Vkk′ is the bound-
bound electron interaction energy, and Vk� is the free-bound
interaction under the Thomas-Fermi approximation [21,22].
Free-free interactions have been neglected as they do not play
a significant part when dealing with NEET transitions which
involve bound-bound atomic transitions. In the RAAM, these
energies are replaced by their average values, and the transition
energy can be easily deduced

hνα→β = (Ūα − Ūβ) − (V̄αα − V̄βα) +
∑

k

Nk(V̄αk − V̄βk)

+ (V̄α� − V̄β�). (3)

Relation (3) can be reexpressed as

hνα→β = hν α→β +
∑

k

(V̄αk − V̄βk)(Nk − N̄k), (4)

where Nk is the average noninteger population and hν α→β is
the average atomic transition energy,

hν α→β = (Ūα − Ūβ) − (V̄αα − V̄βα) +
∑

k

(V̄αk − V̄βk)N̄k

+ (V̄α� − V̄β�). (5)

The main difference with the expression published in
Ref. [10] lies in the averaging process and the inclusion of
the free-bound interaction. Here averaging is restricted to
configurations with at least an electron in orbital α and a
hole in orbital β. This expression provides a better result
for radiative spectrum calculation. The transition energy
difference between expression (5) and its old counterpart [10]
is around 10 eV in the 201Hg transitions of interest and could
be up to 100 eV if inner shells were involved.

B. NEET rate within the average atom model

The influence of the huge number of electronic con-
figurations on the average transition energy is taken into
account by a Gaussian-shaped broadening around the average
transition energy [22]. Coupled with the RAAM, this NEET
rate evaluation model will be labeled as average atom Gaussian
(AAG) in this paper. This gives a NEET rate from initial orbital
α to final orbital β [10],

λ̄NEET
α→β (ρ,T )

= 2π

�
N̄α(1 − p̄β)|W̄αβ |2 1√

2πσαβ

exp

(
− δ̄2

αβ

2σ 2
αβ

)
, (6)

where ρ and T, respectively, are the density and the temperature
of the plasma, p̄β = N̄β/gβ is the average probability of
occupation in the final orbital β defined as the ratio between
the average population N̄β and the degeneracy gβ , and δ̄αβ is

the average mismatch defined as the energy difference between
the average atomic and nuclear (�Enuc) transition energies,

δ̄αβ = hνα→β − �Enuc. (7)

|W̄αβ |2 is the squared nucleus-atom matrix coupling element
[10] whose expression is given, for a πL electromagnetic
transition by

|W̄αβ |2 = 4πe2k2L+2
N

〈
jαL

1

2
0

∣∣∣∣jβ

1

2

〉2 1

[L(2L + 1)!!]2

× |R̄αβ(πL)|2Bg→e(πL), (8)

where e is the electron charge, kN is the wave number
associated with the nuclear transition, Bg→e(πL) is its reduced
transition probability from the ground (g) to the excited (e)
state, and R̄αβ(πL) is the radial integral.

For an electric transition, the radial integral is as
follows:

R̄αβ(EL) =
∫ ∞

0
{L(P̄αP̄β + Q̄αQ̄β)hL(kNr)

+ [(κα − κβ − L)P̄αQ̄β +(κα−κβ +L)Q̄αP̄β]

×hL−1(kNr)}dr, (9)

and for a magnetic transition,

R̄αβ(ML) = (κα + κβ)
∫ ∞

0
[P̄αQ̄β + Q̄αP̄β]hL(kNr)dr.

(10)

κα and κβ are the relativistic quantum numbers of orbitals α
and β whose wave-function large and small components are
denoted by P̄ and Q̄, and hL is Hankel’s function of the first
kind and of the order L [23].

σαβ is the Gaussian standard deviation [21],

σαβ =
∑

k

∑
k′

(V̄αk − V̄βk)(w−1)kk′(V̄αk′ − V̄βk′ ), (11)

where the w matrix is defined by [21]

wkk′ = V̄kk′

kBT
+ δkk′

N̄k(1 − p̄k)
. (12)

Equation (12) behavior can be easily apprehended in
two extreme cases. At very low temperature (T → 0), the
electronic configuration gets closer to the fundamental one, so
the standard deviation on the electronic occupation is minimal.
For the highest temperatures (T → ∞), the electrostatic inter-
action between electrons is minimal: The standard deviation
becomes larger because electrons can occupy all available
states.

Figure 3 shows the NEET rate as a function of either
temperature (a) or average charge state (b) at 10−2 g cm−3 for
the four main contributing atomic transitions. The total NEET
rate includes these four transitions and all other transitions
otherwise not represented.

Two regions exhibit a higher NEET rate between 103 and
104 s−1: around 230–240-eV plasma temperature (Q̄ ≈ 42+)
at about 7 · 103 s−1 and around 340 eV (Q̄ ≈ 50+) with
a slightly higher NEET rate at 9 · 103 s−1. Four resonant
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FIG. 3. (Color online) NEET rate as a function of (a) the temperature and (b) the average charge state calculated with the AAG model at
10−2 g cm−3.

transitions contribute most of the NEET rate: 6s1/2-4s1/2

and 6p3/2-4p1/2 for charge states between 42+ and 44+ and
6p3/2-4p3/2 and 6p1/2-4p3/2 for 49+ and 50+. Modifications
of the transition energy in expression (5) do not change
substantially the results obtained with the model described
in Ref. [10] and used in Refs. [14,15].

This calculation can be expanded to encompass the whole
density-charge state plane as shown in Fig. 4.

White sectors above or below the map either have not been
calculated or lie outside the temperature range of interest. The
NEET rate exhibits a general increase as a function of density.
For higher densities, a higher temperature is required to get the
same charge state, which gives a higher number of electrons in
the NEET initial atomic subshell. On top of this global increase
in the NEET rate as a function of density, both sets of resonant
transitions can be clearly seen. The average charge state of
their maximum slowly decreases as a function of density.
This behavior is consistent with thermodynamic variations of
the resonance conditions as was shown in Ref. [10]. Anyway
resonant average charge states do not vary much for densities
around 10−2 g cm−3, which is the critical density reached in a
laser experiment. Such a map will be a useful tool if coupled
to a hydrodynamic code to predict a number of nuclei excited

FIG. 4. (Color online) NEET rate map with the AAG model in
an LTE plasma. Dotted lines are the two thermodynamical regions
that will be detailed in the following to check the validity of the AAG
model for NEET rate calculations.

by NEET in a laser shot with an appropriate correction [24] in
order to include deviations from the LTE.

This map has been built under the AAG model hypothesis.
In next part, we will detail where on this density-temperature
plane the AAG model can be trusted and where its validity can
be questioned based on two calculations performed at densities
of 10−3 and 10−2 g cm−3 (dotted lines in Fig. 4).

III. NEET RATE BEYOND THE AVERAGE ATOM MODEL

A. Model description

The AAG model assumes that the electronic spectrum
is described by a continuous function, in other words that
the average separation in energy between the most intense
transitions is much smaller than their width. If this assumption
is probably more valid for high-density plasmas and low charge
states, for expanded plasma it is generally not fulfilled even
at critical density. So an estimation of the uncertainty due
to this hypothesis is required. This obvious limitation of the
AAG model is its continuous approach to describe a resonant
process. In this context, a DCA method can allow estimating
the variation of the NEET rate due to uncertainties on both
the nuclear and the atomic transition energies. The aim of this
paper is not to develop a more efficient model but to evaluate
something akin to an error bar around the average atom NEET
rate and thus to obtain a confidence interval around the average
atom prediction.

DCA computing times can quickly become unmanageable
when dealing with charge states as low as 40+ in mercury.
Therefore, the energy of an electronic configuration is evalu-
ated as in Eq. (2) with average values of Uk , Vkk′ , and Vk�,

E(C) =
∑

k

NkUk + 1

2

∑
k

∑
k′

Nk(Nk′ − δkk′)V kk′

+
∑

k

NkV k�, (13)

where now Nk is the integer population in the k orbital. This is
equivalent to approximating that all atomic configurations are
calculated within the same average electronic potential which
is also used to derive the average wave functions required to
calculate the atom nucleus matrix coupling element. Thus all
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configuration energies are calculated using the Hamiltonian
operator of the average atom and not of the real configuration.
Transition energy from initial orbital α to final orbital β is still
calculated by the energy difference between the initial and the
final configurations,

hνi
α→β = E

(
C

αβ
i

) − E
(
C

αβ
f

)
. (14)

There is now one different transition energy for each
available initial configuration Ci , hence the notations hνi

α→β

and C
αβ
i . The final configuration C

αβ
f is unequivocally defined

by initial configuration C
αβ
i and α to β transition.

Individual configuration probabilities are calculated with
the grand canonical partition function as the number of bound
electrons changes with each configuration,

P (C) = gC exp
[−E(C)−μ

∑
k Nk

kBT

]
∑

j gCj
exp

[−E(Cj )−μ
∑

k Nk,j

kBT

] . (15)

gC is the statistical weight of configuration C, μ is the
chemical potential that outcomes from the RAAM calculation
of electroneutrality, and E is the configuration energy. The
introduction of the bound-free electron interaction in Sec. II A
has a more significant effect on these probabilities as on the
atomic transition energy.

The method exposed in this paper has been named ADAM

(French acronym for au-delà de l’atome moyen, which can be
translated into beyond average atom). It combines a DCA
calculation with quick computing times as the electronic
potential, and the atomic wave functions are only calculated
once for each density and temperature couple instead of once
per configuration.

B. Configuration selection

Even with reduced computing times, high-Z ions with
large numbers of bound electrons still represent a challenge.
A configuration selection is therefore mandatory in order to
restrict calculations to a smaller number of configurations that
really matter. The RAAM provides tools for this.

The first restriction consists in allowing electrons populat-
ing only a limited number of atomic orbitals. In this paper, the
NEET transitions involve electrons transiting from the n = 6
to the n = 4 shells. Therefore electrons are allowed to populate
all orbitals up to and including the n = 6 shell.

Configurations are first selected according to their charge
states by restricting the charge state to be not too far away
from the average,

Q̄ − δQ � Q � Q̄ + δQ. (16)

In most cases adopting δQ = 3 encompasses around 99%
of the total charge state distribution.

We further restrict population on each subshell by allowing
only a small variation of the subshell population around the
average value from the RAAM,

N̄k − ησk � Nk � N̄k + ησk, (17)

where σk is the standard variation of the population of orbital
k. An upper value for this parameter can be derived under the

hypothesis of independent particles by a binomial variance,

σ 2
k = gkp̄k(1 − p̄k), (18)

where gk is orbital k degeneracy and p̄k is its average
probability. The parameter η has been chosen at a value of
3. Larger values have been considered in this paper [24], but
they do not significantly alter the results presented hereafter.

In most cases, the configuration number is still too large,
and further restrictions must be enforced. Each configuration
probability is given by the above Eq. (15), but it cannot be
evaluated for a given configuration without the knowledge of
all other configuration energies. However an estimation of this
probability can be derived from the RAAM with a binomial
distribution,

PB(C) = Anorm

Norb∏
k=1

(
gk

Nk

)
p̄

Nk

k (1 − p̄k)gk−Nk , (19)

where Norb is the total number of orbitals and Anorm is a
normalization constant. This estimate can be used to select
only the most probable configurations. For this purpose all
configurations are sorted out by decreasing probabilities. For
an atomic transition from orbital α to β, we define index ilast

as the higher index, such as

ilast∑
i=1

PB

(
C

αβ
i

)
� (1 − ε)

Nαβ∑
i=1

PB

(
C

αβ
i

)
, (20)

where Nαβ is the total number of configurations allowing an
α to β transition which means at least one electron in the
subshell α and one hole in the subshell β. The ε coefficient
has been taken at 1% in this paper in a similar way as in
Ref. [25]. This selection is performed individually for each
atomic transition. However one must keep in mind that the
configuration probability will ultimately be calculated with
the partition function through expression (15) and not by using
binomial probabilities from (19). The denominator from (15) is
calculated by truncating the summation with a similar criterion
as (20).

C. Validation with an atomic spectrum calculation

The main advantage of the calculation method of ADAM

is to avoid the resolution of the Dirac equation for each
configuration. In this case, the calculation time is much
shorter. To estimate the error introduced by this approach,
we compare the E2 radiative spectrum of the 6p1/2-4p3/2

transition calculated by ADAM to the same spectrum where
the Hamiltonian of each configuration has been calculated.
The total average energy of the configuration is determined
by a multiconfiguration Dirac-Fock (MCDF) code [26] which
implements the energy average level calculation as defined by
Grant [27,29] and Bruneau [28] (this method is called here
CNFM). The plasma temperature and density are chosen at
316 eV and 10−2 g cm−3, respectively, giving a plasma average
charge state of 48.88+. This radiative spectrum is calculated
by the relation below,

SRad
α→β =

∑
Ci

αβ

P
(
C

αβ
i

)
Aα→βNα

(
1 − Nβ

gβ

)
�α→β(hν), (21)
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FIG. 5. (Color online) E2 radiative spectrum of the 6p1/2-4p3/2

transition calculated with ADAM (black line) and in CNFM (red line)
at a plasma temperature and density of 316 eV and 10−2 g cm−3,
respectively, with δQ = 2.

where Nα and Nβ are the populations of orbitals α and β

in configuration C
αβ
i , gβ is the β orbital degeneracy, Aα→β

represents the one-particle transition rate [30], and �α→β(hν)
is the transition profile. For each transition a Lorentz profile
of 100-meV half-width at half maximum has been arbitrarily
chosen. Figure 5 presents the E2 radiative spectrum of the
6p1/2 − 4p3/2 transition calculated by the two approaches in
which the K, L, and M shells are closed.

Both spectra are very close to each other with an energy
shift of a little less than 2 eV for charge states between 47+
and 51+ for one of the main resonant transitions: 6p1/2-4p3/2.
This can be extrapolated to lower charge states and/or to other
atomic transitions at the price of longer computing times as the
number of configurations rises significantly. This comparison
was only performed for δQ = 2 for the sake of shortening
computing times. So this pretty good agreement means using
average wave functions to calculate matrix elements will not
modify strongly their values.

D. NEET rate calculations

The DCA NEET rate for an atomic transition from orbital
α to β is [10] as follows:

λNEET
α→β =

∑
C

αβ
t

P
(
C

αβ
i

)�α

�
Nα

(
1 − Nβ

gβ

)

×
(

1 + �β

�α

) |Wαβ |2

δ2
αβ + (�α+�β)2

4

, (22)

where �α and �β are the energy width of orbitals α and β.
The total NEET rate is calculated by summing over all M1

and E2 atomic transitions,

λNEET =
∑
α,β

λNEET
α→β . (23)

In our thermodynamic domain of interest, between 10−3

and 10−1 g cm−3, collisional widths are generally the dominant
broadening process. Collisional half-widths for an orbital with
quantum numbers n and � are estimated using the Dimitrijević
and Konjević numerical expression [31–33] and corrected by
Peyrusse [34],

�n� = Ne

4π

3

�
3

m
3/2
e

√
2π

3

1

kBT

(
0.9 − 1.1

Q

)(
3n

2Q

)2

× (n2 − �2 − � − 1), (24)

where Ne is the electronic density, T is the plasma electronic
temperature, and Q is the charge state of the ion. For example
the collisional half-widths for orbitals 6p1/2 and 4p3/2 for a
mercury ion with a charge state of 49+, a plasma temperature
of 316 eV, and a density of 10−2 g cm−3 are 14 and 8 meV,
respectively. The radiative rate of an E1 transition from the
P shell to the N shell is on the order of a few 1012 s−1. The
corresponding width of about 0.6 meV is negligible compared
to the collisional widths. At 10−3 g cm−3, the domination of
the collisions contribution to the total width is not so clear, but
it at least gives a minimum effect.

Figure 6 shows the variation of the NEET rate with the
temperature (a) and the average charge state (b) in DCA and
AAG calculation at 10−2 g cm−3 plasma density with δQ = 3.
This ensures that more than 99% of the cumulated probabilities
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FIG. 6. (Color online) NEET rate with ADAM and AAG models at 10−2 g cm−3 as a function of (a) temperature and (b) the average charge
state with δQ = 3.
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FIG. 7. (Color online) NEET rate with ADAM and AAG models at 10−3 g cm−3 as a function of (a) temperature and (b) the average charge
state with δQ = 3.

of charge states are taken into account. Two different zones can
be distinguished. For a temperature below 260 eV (Q̄ � 45 ),
ADAM rates exhibit a nearly continuous behavior close to the
AAG rates. The charge is low enough, the total number of
transitions between configurations is high, transition energies
are separated by amounts smaller than the atomic widths, and
overlap between transitions can occur.

Above 260 eV, the ADAM NEET rate exhibits a more erratic
behavior. Atomic transitions are less numerous, and overlaps
become rarer. Most points are under the AAG rate. NEET
rates are now highly dependent on the proximity of the atomic
transition energy from the nuclear transition energy.

At the lower density of 10−3 g cm−3 as shown in Fig. 7,
the general behavior on the whole temperature range is the
same as occurs for the higher temperatures at 10−2 g cm−3.
The atomic widths are always lower as their main contributor
is still only the collisional width, which is proportional
to the density. Adding radiative widths, which are almost
independent of density, should not have large consequences
on the 10−3-g cm−3 behavior. In addition a given charge state
requires a lower temperature than for higher density. This
induces a lower population of the atomic shells which lowers
the number of electronic configurations. Lower atomic widths
combined with a lower number of electronic configurations
explain a lack of overlap between transitions and ADAM NEET
rates further from AAG rates at the highest temperatures.

E. NEET rate variations due to energy uncertainties

A correct evaluation of the NEET rate under specific
thermodynamic conditions would require the exact knowledge
of both the atomic transition energies and the nuclear transition
energy. Here exact means with a precision at least better than
collisional widths. However such knowledge is not available
and will not be in the foreseeable future. In the case of
201Hg the nuclear transition energy is already known with a
very good uncertainty of 1 eV [35]. Therefore, the biggest
uncertainty lies in the calculated atomic transition energy.
Indeed, the calculation method used in ADAM leads to a
variation of the atomic transition energy as a function of
the plasma temperature. This variation is not realistic because
the energy of an atomic transition depends on the electronic
configuration and only very weakly on the plasma temperature.

This variation is due to the use of the quantities Uk and V kk′

that outcome from the AAM calculation. Figure 8 shows
the variation of the atomic transition energy for two real
configurations of the 42+ and 44+ charge states as a function of
the average charge state of the plasma (which is directly related
to the plasma temperature). Transition energies calculated in
the CNFM method are also reported.

When the average charge state of the plasma is close to
the charge state of the real configuration (42+ and 44+) the
energy of the atomic transition calculated with ADAM is no
more than a few eV away from the CNFM calculation (see
Sec. III C).Within a charge state variation of δQ = 3 the
calculated transition energy varies by around 10 eV. This
illustrates the uncertainty on the atomic transition energy
calculated with the ADAM model. On the other hand, best
state-of-the-art atomic physics models, such as the MCDF
class of models [26], usually calculate a relative transition
energy precision of a few 10−3 [25]. This would translate here
into a precision of a few eV. From both these uncertainties we
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FIG. 8. (Color online) Variation of the 6s1/2-4s1/2 transition en-
ergy as a function of the average charge state of the plasma calculated
with ADAM. Transitions energies calculated in the CNFM method (see
Sec. III C) are also reported.
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FIG. 9. (Color online) NEET rate as a function of the atomic energy uncertainty � for a temperature of (a) 230 eV and (b) 350 eV at
10−2 g cm−3.

conservatively adopt a value of 10 eV on the atomic transition
energy.

Therefore to get an uncertainty on the NEET rate we must
have a look at NEET rate variations within an interval of 10
eV around the mean value of the mismatch,

λNEET
α→β (�) =

∑
C

αβ
i

P
(
C

αβ
i

)�α

�
Nα

(
1 − Nβ

gβ

)

×
(

1 + �β

�α

) |Wαβ |2
(δαβ + �)2 + (�α+�β )2

4

, (25)

where � is the atomic energy uncertainty parameter [36].
This is shown in Fig. 9 for temperatures of (a) 230 eV and

(b) 350 eV and a density of 10−2 g cm−3.
As expected from the analysis of Fig. 6, NEET rate

fluctuations are much lower at 230 eV (Q̄ = 42.45) than at
350 eV (Q̄ = 50.36). Fluctuations remain within an order of
magnitude at 230 eV whereas they span over nearly four
orders of magnitude at 350 eV. This is confirmed by the
NEET rate (more precisely its decimal logarithm) distributions
shown in Fig. 10. The NEET rate distribution is narrower
at a temperature of 230 eV, and the asymmetry is more
pronounced at 350 eV. In this paper, we define a confidence

interval as the centered interval spanning exactly 70% of the
total distribution. The dashed vertical line is the median value
of distribution (50% of the distribution is below and 50% is
above). Both straight vertical lines are the boundaries of the
confidence interval. The red error bar above the blue curve is
the interval as will be plotted in Fig. 11 below.

The amplitude of these fluctuations has been formalized in
Fig. 11 for densitoes of 10−2 and 10−3 g cm−3. For a density
of 10−2 g cm2, below 260 eV the ADAM NEET rate exhibits
a small uncertainty around a factor of 2, and except for the
lowest temperatures, the AAG NEET rate lies within the
70% interval. Compared to the other sources of uncertainties
to design an experiment (local thermodynamic equilibrium
hypothesis, hydrodynamics . . . ) this factor of 2 is low, and the
AAG model can be considered as valid for a NEET calculation.
For higher temperatures, above 260 eV, the uncertainty gets
higher, and the AAG NEET rate only lies at the upper edge
of the confidence interval. Above this threshold, it lies above
the ADAM average NEET rate by something a little smaller
than one order of magnitude. The large uncertainty given by
ADAM exhibits a more erratic behavior. At 10−3 g cm−3, the
ADAM average NEET rate is always smaller than the AAG
calculations: around a factor 4 for temperature less than 230 eV
up to two orders of magnitudes for the highest temperature.
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FIG. 10. (Color online) NEET rate distributions for temperatures of (a) 230 eV and (b) 350 eV at 10−2 g cm−3 with confidence interval
superimposed on (b).

054609-8



NUCLEAR EXCITATION BY ELECTRON TRANSITION . . . PHYSICAL REVIEW C 92, 054609 (2015)

0.15 0.20 0.25 0.30 0.35 0.40
Temperature (keV)

10
-1

10
0

10
1

10
2

10
3

10
4

N
E

E
T

 r
at

e 
(s

-1
)

AAG
ADAM mean

10
-3

 g cm
-3(a)

0.20 0.25 0.30 0.35 0.40
Temperature (keV)

10
1

10
2

10
3

10
4

10
5

N
E

E
T

 r
at

e 
(s

-1
)

AAG
ADAM mean

10
-2

 g cm
-3(b)

FIG. 11. (Color online) NEET rate fluctuations calculated with the ADAM model at (a) 10−3 g cm−3 and (b) 10−2 g cm−3 as a function of
temperature.

In the meantime, the uncertainty increases to more than one
order of magnitude.

The main issue of the ADAM method is the variation of the
transition energy with the plasma temperature. To reduce this
effect, it would be possible to use, for each atomic transition
and for each real charge state, a potential calculated for the
most likely configuration. This would greatly reduce the fluctu-
ations of the ADAM calculation due to this artifact and improve
the estimations of the uncertainties around the AAG model.

IV. CONCLUSION

We presented in this paper, the calculation of a NEET
rate based on a DCA model. The energy of an atomic
configuration has been obtained by a development around
the average configuration energy calculated in the framework
of the RAAM. The main advantage of this new calculation
method, the so-called ADAM model, is to avoid solving the
Dirac equation for each configuration. Configurations are
selected according to their charge states two or three units
away from the average charge state. We have compared a
radiative spectrum calculated with the ADAM model and with a
calculation where the Hamiltonian for each configuration has
been calculated. We have shown that when the average charge
state of the plasma is not too far from the charge state of
the detailed configuration, the energy of the atomic transition
calculated with ADAM is no more than a few eV away from the
more realistic calculation.

Using the ADAM model, we succeeded in evaluating
variations of the NEET rate around the RAAM value due to
the uncertainties on the atomic transition energies. As in our

previous works [10,14,15], in the RAAM the influence of the
huge number of electronic configurations is taken into account
statistically by a Gaussian-shaped broadening around the
average transition energy. This continuous approach (AAG)
to describe a resonant process may be a severe limitation
of this model if the density of the transition energies is
not large enough to ensure an overlap between transitions
broadened by electronic collisions. We have shown that the
ADAM NEET rate exhibits a small fluctuation around a factor
of 2 for temperatures less than 260 eV at 10−2 g cm−3 giving
confidence in the AAG calculation in this region. However
beyond 260 eV, although both models AAG and ADAM agree
within a 70% confidence interval, the ADAM rate exhibits quite
large fluctuations making it difficult to conclude on the validity
of the AAG within this domain. When the density is lower,
the difference between the results of the two models is more
important: The average NEET rate of the ADAM code is always
smaller than the AAG.

However this study tells us that if the density is greater
than 10−2 g cm−3 we can be confident on the AAG NEET
rate calculations for average charge states around 42+. For
lower densities, the uncertainty is much higher, and no clear
conclusion can be drawn. A more realistic detailed model,
taking into account atomic configuration mixing would be
required to allow improving the uncertainties around the AAG
in the low-density region.
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