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Background: A bound state of the �nn system has been reported, but at least three theoretical papers question
the existence of such a bound state.
Purpose: We address the alternative question of whether there might exist a resonance in the �nn system, using
a rank-one separable potential formulation of the Hamiltonian.
Methods: We examine the eigenvalues of the kernel of the Faddeev equation in the complex energy plane using
contour rotation to allow us to analytically continue the kernel onto the second energy sheet. The model �n

interaction is fitted to the �p scattering length and effective range.
Results: We follow the largest eigenvalue as the �n potentials are scaled and the �nn continuum is turned first
into a resonance, and then into a bound state of the system.
Conclusions: Because a change in the strength of the �n potential of as little as 5% will produce a �nn resonance,
we infer that an experiment of the 3H(e,e′K+) 3

�n type at JLAB could be used to constrain the properties of the
�n interaction.
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I. INTRODUCTION

A recent experiment has suggested that there is a bound state
of the �nn system [1], whereas several theoretical analyses
demonstrate that such a bound state cannot exist [2–4].
Because the hypertriton is a just bound T = 0 state
[B�( 3

�H) = 0.13 ± 0.05 MeV], we do not expect the T =
1 �nn system to be bound, because in going from the T = 0
state to the T = 1 state we must replace the 3S1 − 3D1 np
interaction, which supports a bound state, by the 1S0 nn
interaction that has an antibound state. The question we would
like to address is: Could there be a three-body resonance in the
T = 1 �nn system even though all the interactions are pre-
dominantly s wave? To examine this possibility, we consider
the �nn system with the pairwise interactions being rank-one
separable potentials that fit effective range parameters of the nn
system and those predicted by different Nijmegen one-boson
exchange potentials for the �n system [5,6], or the Jülich
one-boson exchange potential [7] and chiral �N potential [8].
The use of rank-one separable potentials allows us to very
simply analytically continue the Faddeev equations into the
second complex energy plane in search of resonance poles
by examining the eigenvalue spectrum of the kernel of the
Faddeev equations, as we did previously for �d scattering [9].

II. RANK-ONE SEPARABLE POTENTIALS

Because we will use rank-one separable potentials in this
study, we review briefly the rank-one Yamaguchi potential [10]
that will be used to fit the scattering length and effective range
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of the nn and �n interactions. This rank-one S-wave potential
has the form

V (k,k′) = g(k) C g(k′) with g(k) = 1

k2 + β2
, (1)

where C is the strength of the potential and β is the range of
the potential. The on-shell t matrix T (k0) for this potential is
given by

T (k0) = g(k0) τ (E+) g(k0), (2)

where the on-shell momentum k0 is defined in terms of the
energy E = k2

0
2μ

, with μ being the reduced mass. The function
τ (E+) is given by

τ (E+) =
{

C−1 − 2μ

∫ ∞

0
dk k2 [g(k)]2

k2
0 + iε − k2

}−1

. (3)

For the form factor g(k) defined in Eq. (1), the integral in
Eq. (3) becomes

2μ

∫ ∞

0
dk k2 [g(k)]2

k2
0 + iε − k2

= πμ(
k2

0 + β2
)2

(
k2

0 − β2

2β
− i k0

)
.

(4)

This allows us to write the on-shell t matrix as

T (k0) =
{

C−1
(
k2

0 + β2
) − πμ

(
k2

0 − β2

2β
− i k0

) }−1

.

(5)
Making use of the fact that the S-wave scattering amplitude
can be written in terms of the phase shifts as

f0(k0) = eiδ0 sin δ0 = 1

cot δ0 − i
= −πμk0 T (k0), (6)
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we can express k0 cot δ0 as

k0 cot δ0 = −β

2

(
1 + 2β3

πμC

)
+ 1

2β

(
1 − 4β3

πμC

)
k2

0 − k4
0

πμC

(7)

≈ −1

a
+ 1

2
r k2

0 . (8)

We now can extract by inspection the scattering length a and
the effective range r for the Yamaguchi potential obtaining

1

a
= β

2

(
1 + 2β3

πμC

)
and r = 1

β

(
1 − 4β3

πμC

)
. (9)

We can eliminate the strength of the potential and get a
quadratics in β with a solution

β = 1

2r

[
3 ±

√
9 − 16

r

a

]
. (10)

Because a can be negative, we must take the + sign to get a
positive β. Therefore, we have

β = 1

2r

[
3 +

√
9 − 16

r

a

]
. (11)

We now can solve for the strength of the Yamaguchi potential
to obtain

C = 4 β3

πμ (1 − β r)
. (12)

For the 1S0 np system with scattering length as = −23.715 fm
and effective range rs = 2.73 fm, the parameters of the
Yamaguchi potential are

βnp = 1.1525fm−1 and Cnp = −0.3817fm−2. (13)

On the other hand, for the nn system we have a singlet
scattering length and effective range [12] of as = −18.9 ± 0.4
fm and rs = 2.75 ± 0.11 fm, which results in Yamaguchi
potential parameters given by

βnn = 1.1574fm and Cnn = −0.37986fm−2. (14)

TABLE I. The effective range parameters for the �n and �p

systems as given by the Nijmegen model D potential [5]. Also
included in the table are the parameters of the Yamaguchi potential
determined from the effective range parameters. In addition we report
the closest pole to the real axis as extracted from the full amplitude
T (k0).

�p �n

as − 1.77 ± 0.28 − 2.03 ± 0.32
rs 3.78 ± 0.35 3.66 ± 0.32
Pole − 0.3439 i − 0.3155 i
βs fm−1 1.2659 1.2503
Cs fm−2 − 0.2642 − 0.2692

at − 2.06 ± 0.12 − 1.84 ± 0.10
rt 3.18 ± 0.12 3.32 ± 0.11
Pole − 0.3231 i − 0.3479 i
βt fm−1 1.3844 1.3786
Ct fm−2 − 0.3844 − 0.3608

The effective range parameters for the Nijmegen model D
hyperon-nucleon potential [5] suggest that there is some charge
symmetry breaking in the data. Therefore, we consider rank-
one Yamaguchi potential fits to the singlet and triplet effective
range parameters for both the �n and �p systems. In Table I
we provide the effective range parameters as reported by the
Nijmegen group [5] and the parameters of the corresponding
Yamaguchi [10] potentials. Note that the poles of the amplitude
are on the negative imaginary axis; i.e., there are no bound
states in the �n and �p systems.

III. HYPERTRITON

Before proceeding with our investigation of the �nn
system, we compare the results of our code with those of our
previous examination of the hypertriton [11]. Here we consider
only the �np system with no �N − �N coupling. We make
use of the NN and �N potentials defined in Tables IV and VI
of Ref. [11]. For the case when both the np and �N potential
have a tensor force (i.e., 3S1 − 3D1) we obtain a binding energy
of 2.326 MeV to be compared with 2.329 MeV of Ref. [11].

Next, we establish the fact that using a separable potential
yielding the effective range parameters for the NN and �N
interaction is not a drastic approximation. Here we use the
recent tabulation of the effective range parameters of the chiral
models for the �N interaction and the corresponding hyper-
triton binding energies in Table 6 of Ref. [8]. The agreement
(see Table II) between the result using the Yamaguchi potential
and the more exact calculation for the binding energy of 3

�H
is reasonable considering that the calculations are based on
the Yamaguchi potential with and without the tensor coupling
in the NN interaction. As anticipated, the inclusion of the
tensor force in the 3S1 − 3D1 NN interaction improves the
agreement with the more exact calculation. Note that we have
not included any �N -�N coupling or any three-body forces
in the calculation.

Having established the validity of using a Yamaguchi-type
potential to calculate the hypertriton binding energy, we turn
in the next section to investigate the possible existence of a
resonance in the T = 1 channel (i.e., the �nn system). The
advantage of using a Yamaguchi-type potential is that we can
analytically continue the Faddeev equations onto the second
sheet of the complex energy plane with minimal effort.

IV. POTENTIAL RESONANCES IN THE �nn SYSTEM

To investigate the possibility of a �nn resonance, we must
analytically continue the Faddeev equations for this system
onto the second energy sheet, and examine the eigenvalue
of the kernel on this exposed second Riemann sheet [13].
For Yamaguchi-type pairwise interactions with two identical
Fermions, the homogenous Faddeev integral equations take
the form [9]

λn(E) φn,kα
(q,E) =

∑
kβ

∫ ∞

0
dq ′KJT

kα,kβ
(q,q ′; E) φn;kβ

(q ′,E),

(15)
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TABLE II. Comparison of the binding energy of the hypertriton using a chiral interaction or boson-exchange interaction with results for
separable potentials that yield the same effective range parameters. The final three lines are the results for Yamaguchi NN with 7%, 4%, and
0% D-state probability for the deuteron. The �N potentials are those that fit the effective range parameters in the table with no tensor force.
Also included in the table are the Yamaguchi parameters for the �N potentials used to calculate the binding energy of 3

�H.

�N Potential Chiral (� = 600) Nijmegen model D Jülich04 Nijmegen NSC97f

as − 2.91 − 2.03 − 2.56 − 2.60
rs 2.78 3.66 2.74 3.05
βs 1.4259 1.2503 1.4802 1.3557
Cs − 0.4818 − 0.2692 − 0.5228 − 0.3915

at − 1.54 − 1.84 − 1.67 − 1.72
rt 2.72 3.32 2.93 3.32
βt 1.6735 1.3786 1.5510 1.4029
Ct − 0.6500 − 0.3608 − 0.5186 − 0.3719

B.E. ( 3
�H) 2.30 – 2.27 2.30

B.E. (YY PD = 7%) 2.77 2.31 2.65 2.55
B.E. (YY PD = 4%) 2.88 2.33 2.75 2.62
B.E. (Y PD = 0%) 3.01 2.37 2.87 2.73

where the kernel of the integral equations is given by

KJT
kα,kβ

(q,q ′; E) = ZJT
kα,kβ

(q,q ′; E) τkβ
[E − εβ(q ′)] q ′2, (16)

with ZJT
kα,kβ

being the Born amplitude for the exchange of
particle γ and τkβ

being the quasiparticle propagator for the
pair γα that was defined in Eq. (3). Here ε(q) is the energy
of the spectator particle. In Eq. (15) the sum on the right-hand
side is over all three-body channels for a given total angular
momentum J and isospin T , and λn(E) is the nth eigenvalue of
the kernel at energy E. The position of the resonance pole is the
energy E at which the largest eigenvalue of the kernel is one.
Because resonances lie on the second energy sheet, we need
to analytically continue Eqs. (15) and (16) onto that energy
sheet. This is achieved by considering the transformation

q → q e−iθ q ′ → q ′ e−iθ with θ > 0. (17)

This transformation exposes a section of the second energy
plane between the ray defined by |arg E| = 2θ and the real
axis. Thus, the part of the second Riemann sheet that is exposed
is determined by how large we can make θ . The limitation on
the rotation angle θ is imposed by the singularities of the
kernel [13,14]. Since both q and q ′ are rotated by the same
angle, the Born amplitude ZJT

kα,kβ
requires that θ < π

2 [15],
which gives us the region �(E) < 0 on the second Riemann
sheet. The other source of singularity of the kernel is the
quasiparticle propagator τkβ

[E − εβ(q ′)]. Because we have
no nn or �n bound states, the quasiparticle propagator τkβ

has the two-body subsystem threshold branch point, and that
generates the three-body threshold at E = 0. As a result, the
only limitation on the contour rotation is that due to the Born
amplitude. We therefore can perform any rotation with θ < π

2 .
Making use of the 1S0 nn potential defined in Eq. (14) and

the 1S0 and 3S1 �n potentials defined in Table I, we searched
in the complex energy plane for the largest eigenvalue of the
kernel having a value of one. We discovered such a resonance
pole at

E = −0.154–0.753 i MeV with an eigenvalue

λ(E) = 1.0000–0.0001 i. (18)

However, because the �(E) < 0, this pole does not correspond
to a resonance; it lies below the break-up threshold.
Nevertheless, because the pole resides just below the
threshold, we may ask the question: How easy is it to convert
this pole into a true resonance or even into a bound state of
the �nn system? To explore this question we have scaled the
strength of the �n potential in both the 1S0 and 3S1 channels
by a factor s and followed the path of this pole as it turns first
into a resonance and then into a bound state. In Table III we
give the energy of the pole and the corresponding eigenvalue
of the kernel as we increase s in value. From this table we
observe that a change of strength of as little as 7% produces
a resonance above the three-body threshold, and a change
of 35% will give us a bound �nn system. For the resonance
appearing just above threshold and corresponding to s = 1.075

TABLE III. We tabulate the energy E at which the largest
eigenvalue of the kernel is λ(E) = 1 as we scale the �n potential
strength by the factor s.

s E (MeV) λ(E)

1.000 − 0.154–0.753 i 1.0000–0.0001 i

1.025 − 0.085–0.685 i 1.0000–0.0001 i

1.050 − 0.026–0.618 i 1.0000+0.0001 i
1.075 0.024–0.550 i 1.0000+0.0000 i
1.100 0.063–0.483 i 1.0000–0.0001 i

1.125 0.095–0.418 i 1.0000+0.0001 i
1.150 0.116–0.353 i 1.0000+0.0001 i
1.175 0.130–0.291 i 1.0000+0.0001 i
1.200 0.135–0.232 i 1.0000–0.0000 i

1.225 0.132–0.177 i 1.0000+0.0000 i
1.250 0.121–0.126 i 1.0000–0.0001 i

1.275 0.102–0.081 i 1.0000+0.0000 i
1.300 0.077–0.043 i 1.0000–0.0000 i

1.325 0.043–0.014 i 1.0000+0.0046 i
1.350 0.000–0.000 i 1.0000+0.0000 i
1.375 − 0.069–0.000 i Bound state
1.400 − 0.158+0.000 i Bound state
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FIG. 1. Trajectory of the resonance pole as one varies the strength
of the �N interaction. In this case we have used the NN and �N

interaction for Tables IV and VI of Ref. [11] with a tensor interaction
for the �N potential.

with E = 0.024–0.550i MeV, the singlet �n scattering length
becomes as = −2.409 fm and the effective range becomes
rs = 3.462 fm, which are closer to the values coming from
the other three models given in Table II. For the threshold
bound state corresponding to s = 1.350, the singlet scattering
length and effective range would be −4.922 fm and 2.919 fm,
which seem to be ruled out by �p scattering data unless there
exists a sizable charge symmetry breaking. Clearly ours is not
a precision analysis, and the actual answer will depend on a
more detailed model for the �n and nn interactions.

As a measure of the uncertainty in our results, we consid-
ered the �nn system with the NN and �N interactions in
Tables IV and VI of Ref. [11] with a tensor force in the �N
potential. In this case the resonance pole for s = 1.0 lies at

E = −0.107–0.622 i MeV with an eigenvalue

λ(E) = 1.0000–0.0000 i. (19)

Then an increase in the strength scale s of 5% will produce
a resonance at E = 0.024–0.455 i MeV, while an increase in
strength of 25% will produce a threshold bound state in the
�nn system. In Fig. 1 we plot the trajectory of the resonance
pole as one increases the strength of the �N interaction.
This illustrates how the subthreshold resonance turns into a
bound state as one increases the strength of the potential,
with unit scaling s = 1.0 corresponding to a sub threshold
resonance at E = −0.107–0.622 i MeV and with increasing
steps (dots) of �s = 0.025 to obtain a bound state with energy
E = −0.068 MeV at s = 1.250 and E = −0.195 MeV for
s = 1.275.

One can plot a similar trajectory for different �n in-
teractions with the starting point corresponding for s = 1.0

0.0 0.1 0.2

0.0

Re[E]

Im
[E

]

Mod D
Chiral
 NSC97f
Julich04

FIG. 2. (Color online) Trajectory of the resonance pole as one
varies the strength of the �n interaction. In this case we use the
same nn potential given in Eq. (14) for all four curves. The �n

potentials correspond to Yamaguchi fits as given in Table II with Mod
D for Nijmegen model D, Chiral for chiral (� = 600), NSC97f for
Nijmegen NSC97f, and Jülich04 for the Jülich one boson exchange
potential. (In scaling the �n potential we have insured that no two-
body bound state is formed. For example, for Mod D the scaling of
the potential by s = 1.35 moved the two-body pole closest to the real
axis from k = −0.315 i fm to k = −0.164 i fm.)

depending on the scattering lengths and effective ranges of the
�n potential. In Fig. 2 we plot four different trajectories for the
resonance pole. In each case we use the same nn potential given
in Eq. (14). For the �n interaction we use the 1S0 and 3S1

(i.e., no tensor force) that fit the effective range and scattering
length from either the chiral model or meson exchange model.
The Yamaguchi fits to these potentials are given in Table II
and are: Mod D for a fit to Nijmegen model D [5], Chiral for a
fit to chiral (� = 600) [8], and NSC97f for a fit to Nijmegen
NSC97f [6], and Jülich04 for the Jülich one boson exchange
potential [7]. We first observe that all the curves are similar
in that they trace the same shape as one varies the strength of
the �n interaction. However, the starting points for the four
curves corresponding to s = 1.0 are all different, suggesting
that a pole at a given energy will require a different scaling.
This is illustrated in Table IV where we state the energy of
the pole for s = 1.0 for the four different �n potential curves
plotted in Fig. 2. This demonstrates that the Jülich04 model
gives a pole closest to being a resonance, while the model D
pole is farthest from being a resonance.

The above trajectory for the pole in the �nn amplitude, as
one changes the strength s of the �n potential, is interesting
if we compare it with the equivalent situation in two-body
scattering, where a bound-state pole on the first energy sheet
moves onto the second energy sheet, and often is referred

TABLE IV. The position of the pole of the �nn amplitude for the four different �n potentials considered in Fig. 2.

Potential Mod D Chiral NSC97f Jülich04

Pole energy (MeV) −0.154–0.753 i −0.114–0.782 i −0.120–0.730 i −0.097–0.758 i
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FIG. 3. (Color online) We plot the variation in the singlet (red)
and triplet (blue) effective range parameters for Nijmegen model
D with variation in the scaling s between s = 1.0 and s = 1.275
in intervals of �s = 0.025. Also included are the effective range
parameters of the four potentials considered in Table II.

to as an antibound state, as the strength of the interaction
is reduced. On the other hand, in the three-body system the
bound-state pole turns into a resonance as the strength of the
interaction is reduced. This difference is a result of the fact
that in the two-body problem one has a square root branch
point at E = 0, while for the three-body system we have a log
branch point at E = 0. In the two-body system one has two
Riemann energy sheets, while for the three-body system, with
no bound state in the two-body subsystem, one has an infinity
of Riemann energy sheets. As a result the bound state moves
continuously onto the second sheet and becomes a resonance
once the strength of the interaction is insufficient to support
a three-body bound state. If the strength of the interaction is
further weakened, the resonance pole becomes a subthreshold
resonance, moving to a region in the complex second Riemann
sheet Re(E) < 0 where standard experiment cannot probe.

We should point out that this pole trajectory is similar
to that of the three-neutron case, but the scaling factor is
quite different [16]. In particular, for the three-neutron system,
where the Pauli exclusion principle plays a significant role, one
needs a substantial scaling factor to generate a resonance. In
contrast, for the �nn system, where there is no Pauli blocking,
the required change in the strength of the �n potential lies
within the experimental uncertainty for this interaction. To
illustrate this, we plot in Fig. 3 the changes in the �n effective
range parameters as one scales the potential. Here, we plot the

variation of the singlet and triplet effective range parameters
for Nijmegen model D as function of s for s = 1.0, . . . ,1.275
in intervals of �s = 0.025. Also included in Fig. 3 are the
effective range parameters for the potentials in Table II. It is
clear from Fig. 3 that scaling the �n potential to generate a
resonance in the �nn system does not require a change that is
substantially different from the variation among the parameters
for the different potentials. This suggests that one may be able
to use this observation to place an experimental constraint on
the �n interaction.

V. CONCLUSIONS

In this analysis we have made use of Yamaguchi separable
potentials that fit the effective range parameters of the NN
interaction and the �N interaction as predicted by different
models, which reproduce the limited low-energy scattering
data for the �p system. Use of the Yamaguchi potential allows
us to explore the complex energy plane for the �nn system
seeking resonance poles. Although none of the potentials
examined predict a resonance pole, we show that a scaling
of the �n interaction by as little as ∼5% could produce a
resonance in the �nn system, and a scaling of ∼25% would
produce a �nn bound state. This suggests that one may use
photoproduction (electroproduction) of the �nn system as a
tool to examine the strength of the �n interaction. In particular,
K+ electroproduction from tritium at JLab would be a means
to explore for a possible �nn resonance in the final state; mod-
eling the position and shape of such a resonance would provide
constraints on the properties of the unmeasured �n interaction.
A more detailed analysis of the �nn system based on more
realistic interactions including tensor forces, coupling of �N
to �N , and a three-body force might suggest how sensitive the
energy of the resonance is to the details of the �n interaction.

Note added. Following the completion of this work, it
came to our attention that Belyaev et al. [17] had earlier
explored the nn� bound-state and resonance problem. They
worked in coordinate space using hyperspherical harmonics
at lowest order and searched for the zero in the Jost function.
They found no bound state but did see a broad resonance
(width greater than 2 MeV); to obtain a bound state they
required a scaling factor of 1.5, about twice that which we
found necessary to generate a threshold bound state.

ACKNOWLEDGMENT

The work of B.F.G. was performed under the auspices
of the National Nuclear Security Administration of the U.S.
Department of Energy at Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396.

[1] C. Rappold et al., Search for evidence of 3
�n by observing

d + π− and t + π− final states in the reaction of 6Li + 12C at
2A GeV, Phys. Rev. C 88, 041001(R) (2013).

[2] H. Garcilazo and A. Valcarce, Nonexistence of a �nn bound
state, Phys. Rev. C 89, 057001 (2014).

[3] E. Hiyama, S. Ohnishi, B. F. Gibson, and Th. A. Rijken, Three-
body structure of the nn� system with �N − �N coupling,
Phys. Rev. C 89, 061302(R) (2014).

[4] A. Gal and H. Garcilazo, Is there a bound 3
�n?, Phys. Lett. B

736, 93 (2014).

054608-5

http://dx.doi.org/10.1103/PhysRevC.88.041001
http://dx.doi.org/10.1103/PhysRevC.88.041001
http://dx.doi.org/10.1103/PhysRevC.88.041001
http://dx.doi.org/10.1103/PhysRevC.88.041001
http://dx.doi.org/10.1103/PhysRevC.89.057001
http://dx.doi.org/10.1103/PhysRevC.89.057001
http://dx.doi.org/10.1103/PhysRevC.89.057001
http://dx.doi.org/10.1103/PhysRevC.89.057001
http://dx.doi.org/10.1103/PhysRevC.89.061302
http://dx.doi.org/10.1103/PhysRevC.89.061302
http://dx.doi.org/10.1103/PhysRevC.89.061302
http://dx.doi.org/10.1103/PhysRevC.89.061302
http://dx.doi.org/10.1016/j.physletb.2014.07.009
http://dx.doi.org/10.1016/j.physletb.2014.07.009
http://dx.doi.org/10.1016/j.physletb.2014.07.009
http://dx.doi.org/10.1016/j.physletb.2014.07.009


IRAJ R. AFNAN AND BENJAMIN F. GIBSON PHYSICAL REVIEW C 92, 054608 (2015)

[5] M. M. Nagels, T. A. Rijken, and J. J. de Swart, Baryon-
baryon scattering in a one-boson-exchange-potential ap-
proach, II. Hypron-nucleon scattering, Phys. Rev. D 15, 2547
(1977).

[6] T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Soft-core hypron-
nucleon potentials, Phys. Rev. C 59, 21 (1999).

[7] J. Haidenbauer and Ulf-G. Meißner, Jülich hypron-nucleon
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