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The experimental data from quasi-elastic electron scattering from 12C are reanalyzed in terms of a new
scaling variable suggested by the interacting relativistic Fermi gas with scalar and vector interactions, which
is known to generate a relativistic effective mass for the interacting nucleons. By choosing a mean value of
this relativistic effective mass m∗

N = 0.8mN , we observe that most of the data fall inside a region around the
inverse parabola-shaped universal scaling function of the relativistic Fermi gas. This suggests a method to select
the subset of data that highlight the quasi-elastic region, about two thirds of the total 2500 data. Regardless
of the momentum and energy transfer, this method automatically excludes the data that are not dominated by
the quasi-elastic process. The resulting band of data reflects deviations from perfect universality and can be
used to characterize experimentally the quasi-elastic peak, despite the manifest scaling violation. Moreover, we
show that the spread of the data around the scaling function can be interpreted as genuine fluctuations of the
effective mass M∗ ≡ m∗

N/mN ∼ 0.8 ± 0.1. Applying the same procedure we transport the scaling quasi-elastic
band into a theoretical prediction band for the neutrino-scattering cross section that is compatible with the recent
measurements and slightly more accurate.

DOI: 10.1103/PhysRevC.92.054607 PACS number(s): 24.10.Jv, 25.30.Fj, 25.30.Pt, 21.30.Fe

I. INTRODUCTION

Quasielastic (QE) electron scattering from nuclei has
experienced a revival from the practical need to gauge the
validity of the current models as applied to neutrino scattering
and oscillation experiments [1–5] (for recent reviews see
Refs. [6–9]). The conventional approach pursues a detailed
microscopic relativistic description of the inelastic processes
and then requires all the relevant mechanisms for the particular
Q2 kinematics. At present there is no compelling model able
to describe the world (e,e′) experiments. In the case of 12C,
taken as example here, the more than 2500 data available
spread over a huge (q,ω) kinematical region, reaching well
inside the relativistic regime. A crucial issue is to find which
electron data encode the maximum information to be applied to
neutrino scattering minimizing the systematic and theoretical
uncertainties in the relevant channel (quasi-elastic, pion emis-
sion, . . . ). The scaling approach provides an appealing and
unified framework to encompass coherently the large diversity
of data stemming from different experiments and kinematics.
In particular the superscaling approach (SuSA) has been
implemented along these lines to predict neutrino-scattering
cross sections from a longitudinal scaling function fL(ψ ′) fit
to electron data [10]. Moreover, the recent upgrade of the
SuSA-v2 [11] includes nuclear effects which are theoretically
inspired in a particular realization of the relativistic mean-field
(RMF) theory, by an additional transverse scaling function
fT (ψ ′) which is different from fL(ψ ′).
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A peculiar feature of the RMF is that it is the only
approach which reproduces the experimental scaling function
fL(ψ ′) for all the values of q after an ad hoc q-dependent
shift in energy is applied [12]. The theoretical origin of this
phenomenological shift has not been well understood [11].
This model incorporates a dynamical enhancement of lower
Dirac components, which is transmitted to the transverse
response, RT , improving the agreement with experimental
data. However, gauge invariance is violated and hence RT

still presents ambiguities [13]. Another difficulty of the RMF
and other finite nuclei models is that they break translational
invariance (attempts to restore it in a relativistic system were
explored in Refs. [14,15]).

The goal of this paper is to exploit the scaling idea from
a novel point of view connecting the RMF with the universal
scaling function of the relativistic Fermi gas (RFG)

f (ψ∗) = 3
4 (1 − ψ∗2)θ (1 − ψ∗2). (1)

Rather than constructing a yet-undetermined scaling function
we aim to propose a new scaling variable ψ∗ mapping the data
into a region around the above function. Inspired by the fact
that the mean-field theory provides a consistent and reasonable
description of the nuclear response in the quasi-elastic region
(already observed by Rosenfelder 35 years ago [16]) for a
range of kinematics, we propose to start from the interacting
RFG [17] including suitable vector and scalar potentials which
are inferred from the data into an effective mass m∗

N that gets
reduced in the nuclear medium. The effective mass encodes
relativistic dynamical effects relevant in this kinematical
region, alternative to other approaches like the one based on
the spectral function [18,19]. In fact, one of the motivations of
our approach, called here M∗ scaling (or M*S), was to provide
a framework enjoying the good features of the RMF without
incurring into the above-mentioned difficulties, unveiling the

0556-2813/2015/92(5)/054607(5) 054607-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.92.054607


J. E. AMARO, E. RUIZ ARRIOLA, AND I. RUIZ SIMO PHYSICAL REVIEW C 92, 054607 (2015)

m∗
N origin of the dynamical enhancement of both the lower

components and the transverse response function. The shift
of fL(ψ ′) is trivially obtained as a consequence of the m∗
dependence of the quasi-elastic peak position.

Of course, there have been numerous attempts to determine
the effective mass [20,21], but this depends on details of the
dynamics. Thus, by proceeding directly from the data we
avoid specifying the mean field explicitly. On the other hand,
a phenomenological determination of m∗

N suffers from the
uncertainties on the bulk of the data which should contribute
most significantly. Therefore, we will from the beginning
accept that this effective mass is determined up to a sensible
uncertainty, defined precisely by a suitable selection of the
large database, to be explained below in detail. One of the main
advantages of this rather simple approach is not only its ease of
implementation, but also that we are free from the traditional
objections regarding gauge invariance or violations of partially
conserved axial vector current (PCAC). We expect in this way
to account for the most relevant uncertainties regarding the
predictive power of the model.

II. FORMALISM

We follow closely the notation introduced in Ref. [22].
The quasi-elastic electroweak cross section is proportional to
the hadronic tensor or response function for single-nucleon
excitations transferring momentum q and energy ω, which in
the Fermi gas reads

Wμν(q,ω) = V

(2π )3

∫
d3pδ(E′ − E − ω)

(m∗
N )2

EE′

× 2wμν
s.n.(p

′,p)θ (kF − p)θ (p′ − kF ), (2)

where E = (p2 + m∗
N

2)1/2 is the initial nucleon energy in
the mean field. The final momentum of the nucleon is
p′ = p + q and its energy is E′ = (p′2 + m∗

N
2)1/2. Note that

initial and final nucleons have the same effective mass m∗
N .

The volume V = 3π2N/k3
F of the system is related to the

Fermi momentum kF and proportional to the number N of
protons and/or neutrons participating in the process. Finally,
the electroweak interaction mechanism is implicit in the
single-nucleon tensor:

wμν
s.n.(p

′,p) = 1

2

∑
ss ′

Jμ∗(p′,p)J ν(p′,p), (3)

where Jμ∗ is the electroweak current matrix element between
free positive-energy Dirac spinors, with mass m∗

N and nor-
malized to uu = 1. In the case of electron scattering we are
involved with the electromagnetic current matrix element

J
μ
s ′s(p

′,p) = us ′ (p′)
[
F1(Q2)γ μ + F2(Q2)iσμν Qν

2mN

]
us(p),

(4)

where F1 and F2 are, respectively, the Dirac and Pauli
electromagnetic form factors of proton or neutron.

In the case of (e,e′) the quasi-elastic cross section is written
in Rosenbluth form

dσ

d
′dε′ = σMott(vLRL + vT RT ), (5)

where σMott is the Mott cross section, vL = Q4/q4, and vT =
tan2(θ/2) − Q2/(2q2), with θ being the scattering angle. The
nuclear longitudinal and transverse response functions are the
following components of the hadronic tensor in a coordinate
system with the z axis in the q direction (longitudinal):

RL(q,ω) = W 00, (6)

RT (q,ω) = W 11 + W 22. (7)

In the RFG the nuclear response functions can be written in
the factorized form for K = L,T as

RK = GKf (ψ∗), (8)

GK = �
(
ZU

p
K + NUn

K

)
, (9)

where f (ψ∗) is given in Eq. (1) and ψ∗ is defined below.
Moreover,

� = ξF

m∗
Nη3

F κ
, (10)

and the single-nucleon response functions are

UL = κ2

τ

[
(G∗

E)2 + (G∗
E)2 + τ (G∗

M )2

1 + τ
�

]
, (11)

UT = 2τ (G∗
M )2 + (G∗

E)2 + τ (G∗
M )2

1 + τ
�, (12)

where the quantity � has been introduced:

� = τ

κ2
ξF (1 − ψ∗2)

[
κ

√
1 + 1

τ
+ ξF

3
(1 − ψ∗2)

]
. (13)

Dimensionless variables have been introduced measuring
the energy and momentum in units of m∗

N ; namely, λ =
ω/(2m∗

N ), κ = q/(2m∗
N ), τ = κ2 − λ2, ηF = kF /m∗

N , and
ξF = (1 + η2

F )1/2 − 1. Note that usually [22] these variables
are defined with respect to the nucleon mass mN instead of
the m∗

N . The same can be said with respect to the electric and
magnetic form factors, which are modified in the medium due
to the effective mass according to

G∗
E = F1 − τ

m∗
N

mN

F2, (14)

G∗
M = F1 + m∗

N

mN

F2. (15)

One should still stress that F1 and F2 can depend on M∗ [23].
We stick here to the phenomenologically successful CC2
prescription that reproduces the experimental superscaling
function [13]. Using the CC1 operator obtained through the
Gordon reduction produces the same effects as in the RMF
of Ref. [13]. The same modification of form factors in the
medium was explored in Ref. [24]. For the free form factors
we use the Galster parametrization.

To define the scaling variable ψ∗, we first introduce the
minimum energy allowed for a nucleon inside the nucleus to
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absorb the virtual photon (in units of m∗
N ):

ε0 = Max

{
κ

√
1 + 1

τ
− λ, εF − 2λ

}
, (16)

where εF = (1 + η2
F )1/2 is the Fermi energy in units of m∗

N .
The scaling variable is defined by

ψ∗ =
√

ε0 − 1

εF − 1
sgn(λ − τ ). (17)

Note that ψ∗ < 0 for λ < τ (the left side of the quasi-elastic
peak). The meaning of ψ∗2 is the following: it is the minimum
kinetic energy of the initial nucleon divided by the kinetic
Fermi energy.

III. RESULTS

Starting with the experimental (e,e′) cross section we
compute the experimental scaling function fexpt

fexpt =
(

dσ
d
′dε′

)
expt

σMott(vLGL + vT GT )
, (18)

which would correspond to the function f (ψ∗) in the relativis-
tic Fermi gas model.

We summarize the results of our M*S analysis in Fig. 1(a).
We plot the experimental scaling function for the bulk of 12C
data [25,26] as a function of the scaling variable ψ∗. We take

M∗ = m∗
N

mN

= 0.8. (19)

We see that a large fraction of the data collapse into a
data cloud surrounding the RFG scaling function, given by
Eq. (1). Other choices of m∗

N are possible but the clustering
substantially detunes from the RFG. So we interpret this
pattern as the kinematic regions highlighting the effective
Fermi-gas behavior of the data. This collapse of data resolves
two issues simultaneously: On the theoretical side it provides
an operational definition of the relativistic effective mass,
whereas on the experimental side provides an operational
definition of the quasi-elastic peak behavior.

The observed scaling is not perfect in the sense that the
blur of data presents a finite width, but the width is roughly
homogeneous as seen in Fig. 2. There we select the data
that are clustered on a coarse-grain scale according to a
method inspired by the visual and conventional Gaussian
low-pass filtering (Gaussian blur) [27]. Due to the discrete,
heterogeneous, and finite nature of the data in our case we use
instead a constant weighting function. This function measures
the density of points clustered above a given threshold m,
inside a circle of radius r centered at the experimental point,
plus minus the experimental error. In the figure we show four
situations corresponding to r = 0.1, and for illustration the
result of applying our low-pass filtering method to four values
of m = 20, 25, 30, and 40. The parameter m measures the
minimum number of experimental points surrounding each
datum in the cloud. Note that we discard the surrounding points
that do not verify the above condition. As we can see the shape
defined by the data cloud, seen as a shaded band in the scale of

(a)
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∗ )
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1

0.5

0

RFG
M∗ = 0.8 ± 0.1(b)

ψ∗

f
(ψ

∗ )

6543210-1-2-3

2

1.5

1

0.5

0

FIG. 1. (Color online) (a) M∗ scaling analysis of the experi-
mental data of 12C as a function of the scaling variable ψ∗ for
M∗ = m∗

N/mN = 0.8 compared to the RFG parabola. (b) RFG
Monte Carlo simulation of QE data with a Gaussian distribution
of relativistic effective mass quotient around M∗ = 0.8 ± 0.1. The
Fermi momentum is fixed to kF = 225 MeV/c.

the figure, presents a stable pattern around the relativistic Fermi
gas when the threshold value increases, even if the number of
surviving points decreases. This stability around the Fermi-gas
result is triggered by the chosen value of M∗. Note that the
number of data involved in these plots is around 1500, but the
scaling violation (defined as the width of the shaded band) is
manifest.

This pattern in the M*S plot, which emerges as a realization
of a universal quasi-elastic peak, is a global property of the
set of data and suggests an alternative interpretation in terms
of fluctuations of M∗. One could propose a statistical model
where each point in the cloud samples a quasi-elastic event
with a slightly different effective mass around the mean value
0.8. This fluctuation does not simulate the nuclear effects
beyond the impulse approximation (finite-size effects, short-
range NN correlations, long-range RPA, meson-exchange
currents, � excitation, pion emission, two-particle emission,
final-state interaction). However the fluctuations are of the
same order of magnitude as these effects. Actually they are
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FIG. 2. (Color online) Experimental data selection in terms of the
scaling variable ψ∗, obtained with different choices of the number m

of points inside a circle with radius r = 0.1.

small enough to retain the points in the neighborhood of the
quasi-elastic region, which could be treated perturbatively
in a microscopic framework beyond the RFG. The largest
deviations of the quasi-elastic cloud from the perfect parabola
occur only around its edges, where the Fermi gas is zero and
hence the resulting signal cannot be accounted for by a change
of m∗

N .
To justify the above assumption, we carried out a calculation

by using a family of RFGs with slightly different m∗
N to

generate a random point for each single experimental datum at
the very same kinematics. Thus we take a random M∗ around
the optimal mean value 0.8 in a Monte Carlo sampling. The
results of this simulation are shown in Fig. 1(b). To generate the
pseudodata we use a Gaussian distribution with a width σ =
0.1, representing the fluctuation of M∗ = 0.8 ± 0.1, which
nicely resembles the fluctuations seen in the cloud of the
experimental data. This procedure automatically selects those
pseudodata attributable to genuine quasi-elastic interpretation
(based on the Fermi-gas definition) and zeros those kinematics
that are forbidden.

Our main observation is that, by choosing the optimum
relativistic effective mass, a RFG-like scaling of the data can
be obtained in the quasi-elastic region, covering more than
1500 data. This implies a tradeoff between the experimental
uncertainty to what extent a datum is close to quasi-elastic
and the importance of the physical effects beyond the impulse
approximation that contribute to the quasi-elastic mechanism.
With this procedure a way to estimate what information is
contained in the data about the quasi-elastic peak emerges.

From our analysis a phenomenological scaling function
could be also obtained exactly in the same way as in the
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FIG. 3. (Color online) Total QE neutrino cross section of 12C
per neutron as a function of the neutrino energy for different
relativistic effective masses generated in a Monte Carlo simulation.
The experimental data are from NOMAD [1] and MiniBooNE [2].
We take the axial dipole mass MA = 1 GeV.

superscaling analysis. We have not tried to parametrize this
function, which could be done from the data of Fig. 2. The
resulting scaling function is asymmetrical and very similar to
the longitudinal superscaling function, but with a different
normalization, including the tail. Therefore the tail of the
scaling function is a property of the quasi-elastic interaction.

The information extracted here about the quasi-elastic
(e,e′) cross section of 12C can be straightforwardly used to
readily make predictions for other reactions like CC neutrino
scattering from the same nucleus. In Fig. 3 we show the
calculations of the (νμ,μ−) cross section as a function of
incident neutrino energy. There we show the effective RFG
results with m∗

N = 0.8mN . The cloud of points correspond to
incorporating the same fluctuations ±0.1 of M∗ as in the Monte
Carlo simulation depicted in Fig. 1(b). For comparison we also
show the results of the conventional RFG. The effective mass
produces an enhancement of the lower Dirac components, and
hence also of both the vector and axial transverse responses,
and of the theoretical cross section, which, thanks to the
fluctuations, becomes compatible with the data for all the
kinematics. In our case the fluctuations of the theoretical band
are about 10%, as naively expected from the input uncertainty
of the effective mass. We note that the sampling in the lower
panel of Fig. 3 uses a smaller binning of 1 MeV as opposed to
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the upper panel where 100 MeV is used instead. The clustering
of these equidistant binnings arises naturally from the log scale.

For high Q the vector form factors deviate from the
conventional dipole behavior [28], which could affect, in
principle, any model’s predictions. However, this would only
be appreciable in the differential cross section; the integrated
σ , even for NOMAD kinematics, is only sensitive to the
kinematical regions where the product of form factors and
phase space is large. We have numerically checked that the
contribution from Q2 above 1 to 2 (GeV/c)2 is negligible,
because of the rapid fall of the nucleon form factors. As a
matter of fact one can ignore the electric neutron form factor
completely after integration.

Note that the set of data of unfolded energy-dependent
charged-current quasi-elastic (CCQE) cross-section model
suffer from uncertainties driven by the model dependence
of the neutrino energy reconstruction. The comparison of
Fig. 3 is merely indicative for illustration purposes of the
kind of predictions that the present approach can provide for
proper flux-averaged doubly differential cross sections. These
comparison will be presented in a forthcoming presentation.

IV. CONCLUSIONS

At present there is no model able to reproduce the 2500 data
points from 12C(e,e′) experiments. Due to the impossibility to
fit the quasi-elastic peak or other regions with the experimental
accuracy, in the present approach, we have shown that instead
of making an extremely detailed analysis of the particular
reaction, which may be well beyond the present validation
possibilities, it is possible to isolate those data contributing to
the simplest possible physics we are interested in and use that
information to make predictions with the maximum allowed
precision, since one cannot distinguish the theoretical noise
from the experimental signal.
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