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Spin-polarized neutron-rich matter at different orders of chiral effective field theory
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Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on
predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field
theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions
and their cutoff dependence. We explore to what extent fully polarized neutron matter behaves (nearly) like a
free Fermi gas. We also consider the more general case of partial polarization in neutron matter as well as the
presence of a small proton fraction. In other words, in our calculations, we vary both spin and isospin asymmetries.
Confirming the findings of other microscopic calculations performed with different approaches, we report no
evidence for a transition to a polarized phase of neutron matter.
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I. INTRODUCTION

The equation of state (EoS) of highly neutron-rich matter
is a topic of current interest because of its many applications,
ranging from the physics of rare isotopes to the properties
of neutron stars. In spite of recent and fast-growing effort,
the density dependence of the symmetry energy, which plays
a chief role for the understanding of those systems, is not
sufficiently constrained, and, at the same time, theoretical
predictions show considerable model dependence.

Polarization properties of neutron and nuclear matter
have been studied extensively with a variety of theoretical
methods [1–25], often with contradictory conclusions. In the
study in Ref. [24], for instance, the possibility of phase
transitions into spin ordered states of symmetric nuclear matter
was explored based on the Gogny interaction [5] and the
Fermi liquid formalism. In that paper, the appearance of
an antiferromagnetic state (with opposite spins for neutrons
and protons) was predicted, whereas the transition to a
ferromagnetic state was not indicated. This is in contrast to
predictions based on Skyrme forces [25].

The properties of polarized neutron matter (NM) have
gathered much attention lately, in conjunction with the issue
of ferromagnetic instabilities together with the possibility of
strong magnetic fields in the interior of rotating neutron stars.
The presence of polarization would impact neutrino cross
sections and luminosities, resulting in a very different scenario
for neutron star cooling.

There are also other, equally important motivations to
undertake studies of polarized matter. In Ref. [26], for instance,
we focused on the spin degrees of freedom of symmetric
nuclear matter (SNM), having in mind a terrestrial scenario
as a possible “laboratory.” We paid particular attention to the
spin-dependent symmetry potential, namely the gradient be-
tween the single-nucleon potentials for upward and downward
polarized nucleons in SNM. The interest around this quantity
arises because of its natural interpretation as a spin-dependent

*fsammarr@uidaho.edu

nuclear optical potential, defined in perfect formal analogy to
the Lane potential [27] for the isospin degree of freedom in
isospin-asymmetric nuclear matter (IANM).

Whether one is interested in rapidly rotating pulsars or
more conventional laboratory nuclear physics, it is important to
consider both spin and isospin asymmetries. First, neutron star
matter contains a non-negligible proton fraction. Concerning
laboratory nuclear physics, one way to access information
related to the spin dependence of the nuclear interaction in
nuclear matter is the study of collective modes such as giant
resonances. Because a spin unsaturated system is usually also
isospin asymmetric, both degrees of freedom need to be taken
into account. For those reasons, in previous calculations [28]
we extended our predictions [26,29] to include matter with
different concentrations of neutrons and protons, where each
nucleon species can have definite spin polarization. Our
framework was based on the Dirac-Brueckner-Hartree-Fock
(DBHF) approach to nuclear matter together with a realistic
meson-theoretic potential. Our findings did not show evidence
of a phase transition to a ferromagnetic (FM) or antiferromag-
netic (AFM) state. This conclusion appears to be shared by
predictions of all microscopic models, such as those based
on conventional Brueckner-Hartree-Fock theory [16]. On the
other hand, calculations based on various parametrizations of
Skyrme forces result in different conclusions. For instance,
with the SLy4 and SLy5 forces and the Fermi liquid formalism
a phase transition to the AFM state is predicted in asymmetric
matter at a critical density equal to about 2–3 times normal
density [24]. Qualitative disagreement is also encountered with
other nonmicroscopic approaches such as relativistic Hartree-
Fock models based on effective meson-nucleon Lagrangians.
For instance, in Ref. [9] it was reported that the onset of
a ferromagnetic transition in neutron matter, and its critical
density, are crucially determined by the inclusion of isovector
mesons and the nature of their couplings.

The brief review given above summarizes many useful and
valid calculations. However, the problem common to all of
them, including microscopic approaches, is that it is essentially
impossible to estimate, in a statistically meaningful way, the
uncertainties associated with a particular prediction, or to
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quantify the error related to the approximations applied in
a particular model.

Effective field theories (EFTs) have shown the way out
of this problem. Chiral effective field theory is a low-energy
realization of QCD [30,31] which fits unresolved nuclear
dynamics at short distances to the properties of two- and
few-nucleon systems. Together with a power counting, chiral
EFT provides a framework where two- and few-nucleon forces
are generated on an equal footing in a systematic and controlled
hierarchy.

Estimates of theoretical uncertainties [32] for calculations
of the equation of state of nuclear and neutron matter
have largely focused on varying the low-energy constants
and resolution scale at which nuclear dynamics are probed
[33–38]. In a recent work [39], we laid the foundations for
order-by-order calculations of nuclear many-body systems
by presenting consistent next-to-leading order (NLO) and
next-to-next-to-leading order (N2LO) chiral nuclear forces
whose relevant short-range three-nucleon forces (3NFs) are fit
to A = 3 binding energies and the lifetime of the triton [40].
We then assessed the accuracy with which infinite nuclear
and neutron matter properties and the isospin asymmetry
energy can be predicted from order-by-order calculations in
chiral effective field theory. In this paper, we apply the same
philosophy to study the equation of state of polarized neutron
matter.

Based on the literature mentioned above, a phase transition
to a polarized phase (at least up to normal densities) seems
unlikely, although the validity of such a conclusion must be
assessed in the context of EFT errors. Furthermore, polarized
neutron matter is a very interesting system for several reasons.
Because of the large neutron-neutron scattering length, NM
displays behaviors similar to those of a unitary Fermi gas.
In fact, up to nearly normal density, (unpolarized) neutron
matter is found to display the behavior of an S-wave super-
fluid [41,42]. The possibility of simulating low-density NM
with ultracold atoms near a Feshbach resonance [43] has
also been discussed. When the system is totally polarized,
it has been observed to behave like a weakly interacting Fermi
gas [44]. Here, we wish to explore to what extent and up to
what densities we are in agreement with such conclusions, and
how this and other observations depend on the chiral order and
the resolution scale.

In comparison with the calculations of Ref. [44] (where
3NFs and 4NFs up to N3LO were included), our present work
contains the following novelties:

(1) We consider both cutoff dependence and truncation
error for the purpose of uncertainty quantification of
chiral EFT. Although incomplete in the 3NF at N3LO,
our calculations are a substantial step in that direction.
We note, further, that the contribution from the 3NF at
N3LO was found to be very small in neutron matter for
the potentials in our perview [36]: about −0.5 MeV at
normal density. Here, we consider neutron matter or
highly neutron-rich matter.

(2) For the first time, we present results for both spin
and isospin asymmetries within the framework of
chiral forces. As discussed in Sec. III, these tools

are necessary to assess, for instance, the sensitivity of
the results (particularly, the potential onset of a phase
transition) to the presence of a proton fraction.

This paper is organized as follows: In the next section, we
present the formal aspects of the self-consistent calculation of
the energy per particle, which are, in general, applicable to
infinite matter with any degree of isospin and spin asymmetry.
We also describe our approach to two- and three-body chiral
forces. We provide expressions for the in-medium effective
three-body force suitable for the most general case of different
proton and neutron concentrations, where each species can be
polarized to a different degree. To the best of our knowledge,
this has not been reported before in the literature within the
framework of chiral forces. Results for polarized and partially
polarized NM, as well as for polarized neutron-rich matter in
the presence of a small proton fraction, are discussed in Sec. III.
Conclusions and future plans are summarized in Sec. IV.

II. FORMALISM

A. General aspects

In a spin-polarized and isospin asymmetric system with
fixed total density ρ, the partial densities of each species are

ρn = ρnu + ρnd , ρp = ρpu + ρpd , ρ = ρn + ρp , (1)

where u and d refer to up and down spin polarizations,
respectively, of protons (p) or neutrons (n). The isospin and
spin asymmetries α, βn, and βp are defined in a natural
way:

α = ρn − ρp

ρ
, βn = ρnu − ρnd

ρn

, βp = ρpu − ρpd

ρp

. (2)

The density of each individual component can be related to
the total density by

ρnu = (1 + βn)(1 + α)
ρ

4
, ρnd = (1 − βn)(1 + α)

ρ

4
,

(3)
ρpu = (1 + βp)(1 − α)

ρ

4
, ρpd = (1 − βp)(1 − α)

ρ

4
,

where each partial density is related to the corresponding Fermi
momentum through ρτσ = (kτσ

F )3/(6π2). The average Fermi
momentum and the total density are related in the usual way
as ρ = (2k3

F )/(3π2).
The single-particle potential of a nucleon in a particular τσ

state, Uτσ , is the solution of a set of four coupled equations

Unu = Unu,nu + Unu,nd + Unu,pu + Unu,pd , (4)

Und = Und,nu + Und,nd + Und,pu + Und,pd , (5)

Upu = Upu,nu + Upu,nd + Upu,pu + Upu,pd , (6)

Upd = Upd,nu + Upd,nd + Upd,pu + Upd,pd, (7)

to be solved self-consistently along with the effective inter-
action, the G matrix. (The latter will be discussed in the
next two subsections.) In the above equations, each Uτσ,τ ′σ ′

term on the right-hand side contains the appropriate (spin
and isospin dependent) part of the interaction, Gτσ,′τ ′σ ′ . More
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specifically,

Uτσ,τ ′σ ′(�k) =
∫

|�q|<kτ ′σ ′
F

d3q

(2π )3
〈τσ,τ ′σ ′|G(�k,�q)|τσ,τ ′σ ′〉, (8)

where the integration goes over the Fermi seas of protons and neutrons with spin up and spin down, and

〈τσ,τ ′σ ′|G(�k,�q)|στ,σ ′τ ′〉

=
∑

L,L′,S,J,M,ML,T

∣∣∣∣
〈

1

2
σ ;

1

2
σ ′

∣∣∣∣S(σ + σ ′)
〉∣∣∣∣

2∣∣∣∣
〈

1

2
τ ;

1

2
τ ′

∣∣∣∣T (τ + τ ′)
〉∣∣∣∣

2

〈LML; S(σ + σ ′)|JM〉〈L′ML; S(σ + σ ′)|JM〉

× iL
′−LY ∗

L′,ML
(k̂rel)YL,ML

(k̂rel)〈LSJ |G(krel,Kc.m.)|L′SJ 〉. (9)

The G matrix that appears in the formulas above is
constructed from the two-nucleon potential and the effective
density-dependent 3NF, as explained later.

The need to separate the interaction by spin components
brings along angular dependence, with the result that the
single-particle potential depends also on the direction of
the momentum, although such dependence was found to be
weak [29]. The G-matrix equation is solved using partial wave
decomposition and the matrix elements are then summed as in
Eq. (9) to provide the new matrix elements in the representation
needed for Eq. (8), namely with spin and isospin components
explicitly projected out. Furthermore, the scattering equation
is solved using relative and center-of-mass coordinates, �krel and
�Kc.m., since the former is a natural coordinate for the evaluation

of the nuclear potential. Those are then easily related to the
momenta of the two particles, �k and �q, in order to perform
the integration indicated in Eq. (8). Notice that solving the
G-matrix equation requires knowledge of the single-particle
potential, which in turn requires knowledge of the effective
interaction. Hence, Eqs. (4)–(7) together with the G-matrix
equation constitute a rather lengthy self-consistency problem,
the solution of which yields the single-nucleon potentials in
each τσ channel.

The kernel of the G-matrix equation contains the Pauli
operator for scattering of two particles with two different Fermi
momenta, kτσ

F and kτ ′σ ′
F , which is defined in analogy with the

one for isospin-asymmetric matter [45],

Qτσ,τ ′σ ′(k,q,kτσ
F ,kτ ′σ ′

F ) =
{

1 if k > kτσ
F and q > kτ ′σ ′

F

0 otherwise.

(10)

The Pauli operator is expressed in terms of �krel and �Kc.m. and
angle averaged in the usual way. We then proceed with the
calculation of the energy per nucleon in the particle-particle
ladder approximation, namely the leading-order contribution
in the hole-line expansion. (See Ref. [39], and references
therein for a discussion of the uncertainty associated with this
approximation.)

Once a self-consistent solution for Eqs. (4)–(7) has been ob-
tained, the average potential energy for a given τσ component
can be calculated. A final average over all τσ components
provides, along with the kinetic energy Kτσ , the average
energy per particle E/A in spin-polarized isospin-asymmetric

nuclear matter. Specifically,

E

A
=

∑
σ=u,d

∑
τ=n,p

1

ρ

∫
|�k|<kτσ

F

d3k

(2π )3

(
Kτσ (k) + 1

2
Uτσ (k)

)
,

(11)

where E/A is a function of ρ, α, βn, and βp, with α = 1 in the
present case. All calculations are conducted including values
of the total angular momentum J from 0 to 15.

B. Chiral two-body potentials

In this section we discuss in some detail the features
of the nucleon-nucleon (NN ) potentials we use for these
calculations.

All low-momentum interactions are limited in calculations
of the EoS to densities where the characteristic momentum
scale (on the order of the Fermi momentum) is below the scale
set by the momentum-space cutoff � in the NN potential
regulating function, which for chiral NN forces typically has
the form

f (p′,p) = exp[−(p′/�)2n − (p/�)2n], (12)

where � � 500 MeV is associated with the onset of favorable
perturbative properties [37,38].

Although designed to reproduce similar NN scattering
phase shifts, NN potentials with different regulator functions
will yield different predictions in the nuclear many-body
problem due to their different off-shell behavior. On the other
hand, appropriate readjustment of the low-energy constants
that appear in the nuclear many-body forces is expected to
reduce the dependence on the regulator function [37].

In the present investigation we consider NN potentials at
order (q/�χ )2, (q/�χ )3, and (q/�χ )4 in the chiral power
counting, where q denotes the small scale set by external
nucleon momenta or the pion mass and �χ is the chiral
symmetry breaking scale. Chiral NN potentials at NLO and
N2LO, corresponding to (q/�χ )2 and (q/�χ )3, have been
constructed previously in Ref. [46] for cutoffs ranging from
� = 450 to about 800 MeV. With varying chiral order and
cutoff scale, the low-energy constants in the two-nucleon
sector are refitted to elastic NN scattering phase shifts and
properties of the deuteron. The low-energy constants c1,3,4

associated with the ππNN contact couplings of the L(2)
πN

chiral Lagrangian are given in Table I. We note that the ci can
be extracted from πN or NN scattering data. The potentials
we use here [47,48] follow the second path. At N2LO, taking
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TABLE I. Values of n and low-energy constants of the dimension-
two πN Lagrangian, c1,3,4, at each order and for each type of cutoff
in the regulator function given in Eq. (12). None of the ci’s appears
at NLO. The low-energy constants are given in units of GeV−1.

NLO � (MeV) n c1 c3 c4

450 2
500 2
600 2

N2LO � (MeV) n c1 c3 c4

450 3 −0.81 −3.40 3.40
500 3 −0.81 −3.40 3.40
600 3 −0.81 −3.40 3.40

N3LO � (MeV) n c1 c3 c4

450 3 −0.81 −3.40 3.40
500 2 −0.81 −3.20 5.40
600 2 −0.81 −3.20 5.40

the range determined in analyses of elastic πN scattering as a
starting point, values were chosen to best reproduce NN data
at that order. At N3LO, high precision required a stronger
adjustment of c4 depending on the regulator function and
cutoff. The fitting procedure is discussed in Ref. [48], where
it is noted that the larger value for c4 has, overall, a very small
impact but lowers the 3

F2 phase shift for a better agreement
with the phase shift analysis.

In Ref. [46], it was found that the two-body scattering phase
shifts can be described well at NLO up to a laboratory energy
of about 100 MeV, while the N2LO potential fits the data up
to 200 MeV. Interestingly, in the latter case the χ2/datum
was found to be essentially cutoff independent for variations
of � between 450 and approximately 800 MeV. Finally, we
also use NN potentials constructed at next-to-next-to-next-to-
leading order (N3LO) [47,48], with low-energy constants c1,3,4

as displayed in Table I.
Although N2LO calculations can achieve sufficient accu-

racy in selected partial wave channels up to Elab = 200 MeV,
only the N3LO interactions achieve the level of high-precision
potentials, characterized by a χ2/datum � 1.

At the two-body level, each time the chiral order is
increased, the NN contact terms and/or the two-pion-exchange
contributions proportional to the low-energy constants c1,3,4

are refitted. We recall that at N2LO no new NN contact terms
are generated, and therefore improved cutoff independence in
the NN phase shifts [39] is due to changes in the two-pion-
exchange contributions. At N2LO, subleading ππNN vertices
enter into the chiral NN potential. These terms encode the
important physics of correlated two-pion exchange and the
excitation of intermediate 
(1232) isobar states. Therefore, at
this order it is possible to obtain a realistic description of the
NN interaction at intermediate range, traditionally generated
through the exchange of a fictitious σ meson of medium mass.
At N3LO in the chiral power counting, 15 additional NN
contact terms (bringing the total number to 24 at N3LO) result
in a much improved description of NN scattering phase shifts.

(a) (b) (c)

FIG. 1. Diagrams for the chiral three-nucleon interaction at
N2LO. In neutron matter, only diagram (a) contributes.

C. The three-nucleon force

The leading three-nucleon force makes its appearance
at third order in the chiral power counting and contains
three contributions: the long-range two-pion-exchange part
with ππNN vertex proportional to the low-energy constants
c1,c3,c4, the medium-range one-pion exchange diagram pro-
portional to the low-energy constant cD , and finally the short-
range contact term proportional to cE . The corresponding
diagrams are shown in Fig. 1, labeled as (a), (b), and
(c), respectively. Diagrams (b) and (c) vanish in neutron
matter, while all three terms contribute in symmetric nuclear
matter [49,50].

Although efforts are in progress to incorporate potentially
important N3LO 3NF contributions [51–53] both in neutron
and nuclear matter equations of state and the fitting of the rel-
evant low-energy constants, the “N3LO” study reported in this
paper is limited to the inclusion of the N2LO three-body force
together with the N3LO two-body force, an approximation that
is commonly used in the literature. The associated uncertain-
ties for neutron matter have been investigated in Ref. [39].

To facilitate the inclusion of 3NFs in the particle-particle
ladder calculation, we employ the density-dependent NN
interaction derived in Refs. [49,54] from the N2LO chiral
three-body force. This effective interaction is obtained by
summing one particle line over the occupied states in the
Fermi sea. Neglecting small contributions [50] from terms
depending on the center-of-mass momentum, the resulting NN
interaction can be expressed in analytical form with operator
structures identical to those of free-space NN interactions, and
which are therefore included on the same footing as two-body
forces. The small uncertainty associated with the use of these
effective density-dependent 3NFs was discussed in Ref. [39].

(1) (2) (3)

(4)
(5) (6)

FIG. 2. Diagrams for the in-medium NN interactions corre-
sponding to V med,i

NN (i = 1, . . . ,6) given in the text.
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For the case of polarized isospin-asymmetric matter, the
expressions from Ref. [49] are to be extended to include four

different Fermi momenta, namely those of upward(downward)
polarized neutrons(protons), as described below.

Using the notation established above to indicate the Fermi momenta of spin-up and spin-down neutrons or protons, the
neutron and proton densities are given by ρn = [(knu

F )3 + (knd
F )3]/6π2 and ρp = [(kpu

F )3 + (kpd
F )3]/6π2. Concerning kinematics,

we consider elastic scattering process N1( �p ) + N2(− �p ) → N1( �p + �q ) + N2(− �p − �q ) in the center-of-mass frame.
Following the notation of Ref. [49], we can distinguish between six effective density-dependent NN interactions, represented

by the diagrams (1) to (6) in Fig. 2. They are the following:
The Pauli blocked pion self-energy [diagram (1)] is

V
med,1
NN = g2

A

2f 4
π

�τ1 · �τ2
�σ1 · �q �σ2 · �q(
m2

π + q2
)2

(
2c1m

2
π + c3q

2)(ρp + ρn). (13)

The Pauli blocked vertex correction [diagram (2)] is

V
med,2
NN = g2

A

16π2f 4
π

�τ1 · �τ2
�σ1 · �q �σ2 · �q
m2

π + q2

{−4c1m
2
π [�+

0 (p) + �+
1 (p)] − (c3 + c4)

× [q2(�+
0 (p) + 2�+

1 (p) + �+
3 (p)) + 4�+

2 (p)] + 4c4
[
2π2(ρp + ρn) − m2

π�+
0 (p)

]}

+ g2
A

32π2f 4
π

(
τ 3

1 + τ 3
2

) �σ1 · �q �σ2 · �q
m2

π + q2

{−4c1m
2
π [�−

0 (p) + �−
1 (p)] + (c4 − c3)

× [q2(�−
0 (p) + 2�−

1 (p) + �−
3 (p)) + 4�−

2 (p)] + 4c4
[
2π2(ρn − ρp) + m2

π�−
0 (p)

]}

+ g2
A

16π2f 4
π

(
τ 3

1 − τ 3
2

)
i(�σ1 − �σ2) · ( �p × �q )

1

m2
π + 4p2 − q2

× {
4c1m

2
π [�−

0 (p) + �−
1 (p)] + c3(4p2 − q2)[�−

0 (p) + 2�−
1 (p) + �−

3 (p)]
}
, (14)

The last contribution, proportional to (τ 3
1 − τ 3

2 ), leads to spin-singlet and spin-triplet mixing in the medium. It has been Fierz
transformed to bring it into the form of the antisymmetric spin-orbit operator i(�σ1 − �σ2) · ( �p × �q ). Terms which break rotational
invariance in momentum-space due to the spin-polarization of the nuclear medium in the z-direction have been discarded.

Next, we give the expression for the Pauli blocked two-pion exchange [diagram (3)]:

V
med,3
NN = g2

A

32π2f 4
π

{−12c1m
2
π

[
2�+

0 (p) − (
2m2

π + q2
)
G+

0 (p,q)
]

− 3c3
[
8π2(ρp + ρn) − 4

(
2m2

π + q2
)
�+

0 (p) − 2q2�+
1 (p) + (

2m2
π + q2

)2
G+

0 (p,q)
]

+ 4c4 �τ1 · �τ2 (�σ1 · �σ2 q2 − �σ1 · �q �σ2 · �q )G+
2 (p,q)

− (3c3 + c4 �τ1 · �τ2) i(�σ1 + �σ2) · (�q × �p )
[
2�+

0 (p) + 2�+
1 (p) − (

2m2
π + q2

)
× (G+

0 (p,q) + 2G+
1 (p,q))

] − 12c1m
2
π i(�σ1 + �σ2) · (�q × �p )[G+

0 (p,q) + 2G+
1 (p,q)]

+ 4c4 �τ1 · �τ2 �σ1 · (�q × �p ) �σ2 · (�q × �p )[G+
0 (p,q) + 4G+

1 (p,q) + 4G+
3 (p,q)]

}

+ g2
A

64π2f 4
π

(
τ 3

1 + τ 3
2

){
4c1m

2
π

[
2�−

0 (p) − (
2m2

π + q2
)
G−

0 (p,q)
]

+ c3
[
8π2(ρp − ρn) − 4

(
2m2

π + q2
)
�−

0 (p) − 2q2�−
1 (p) + (

2m2
π + q2

)2
G−

0 (p,q)
]

− 4c4 (�σ1 · �σ2 q2 − �σ1 · �q �σ2 · �q )G−
2 (p,q)

+ (c3 + c4) i(�σ1 + �σ2) · (�q × �p )
[
2�−

0 (p) + 2�−
1 (p) − (

2m2
π + q2

)
× (G−

0 (p,q) + 2G−
1 (p,q))

] + 4c1m
2
π i(�σ1 + �σ2) · (�q × �p )[G−

0 (p,q) + 2G−
1 (p,q)]

− 4c4 �σ1 · (�q × �p ) �σ2 · (�q × �p )[G−
0 (p,q) + 4G−

1 (p,q) + 4G−
3 (p,q)]

}
. (15)

The loop functions �±
j (p) and G±

j (p,q) with a superscript + or − are given by

�±
j (p) = 1

2 [�j (p,kpu) + �j (p,kpd )] ± 1
2 [�j (p,knu) + �j (p,knd )], (16)

G±
j (p,q) = 1

2 [Gj (p,q,kpu) + Gj (p,q,kpd )] ± 1
2 [Gj (p,q,knu) + Gj (p,q,knd )], (17)

where �j (p,kf ) and G(p,q,kf ) are defined in Eqs. (13)–(16) and Eqs. (18)–(22) of Ref. [49].
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Now we present the contributions from the 1π -exchange 3NF proportional to the low-energy constant cD . The vertex correction
to 1π exchange linear in proton and neutron densities is [diagram (4)]

V
med,4
NN = gAcD

16f 4
π �χ

[−2�τ1 · �τ2(ρp + ρn) + (
τ 3

1 + τ 3
2

)
(ρp − ρn)

] �σ1 · �q �σ2 · �q
m2

π + q2
. (18)

Pauli blocking in the vertex correction [diagram (5)] contributes in the form

V
med,5
NN = gAcD

32π2f 4
π �χ

{
�τ1 · �τ2

[
2�σ1 · �σ2 �+

2 (p) +
(

�σ1 · �σ2

(
2p2 − q2

2

)
+ �σ1 · �q �σ2 · �q

×
(

1 − 2p2

q2

)
− 2

q2
�σ1 · (�q × �p ) �σ2 · (�q × �p )

)
[�+

0 (p) + 2�+
1 (p) + �+

3 (p)]

]
+ 12π2(ρp + ρn) − 6m2

π�+
0 (p)

}

+ gAcD

64π2f 4
π �χ

(
τ 3

1 + τ 3
2

){
2�σ1 · �σ2 �−

2 (p) +
[
�σ1 · �σ2

(
2p2 − q2

2

)
+ �σ1 · �q �σ2 · �q

×
(

1 − 2p2

q2

)
− 2

q2
�σ1 · (�q × �p ) �σ2 · (�q × �p )

]
[�−

0 (p) + 2�−
1 (p) + �−

3 (p)] + 4π2(ρn − ρp) + 2m2
π�−

0 (p)

}
. (19)

The contribution from the contact 3NF proportional to the low-energy constant cE is [diagram (6)]

V
med,6
NN = 3cE

4f 4
π �χ

[−2(ρp + ρn) + (ρp − ρn)
(
τ 3

1 + τ 3
2

)]
. (20)

Partial wave matrix elements with J � 1 of the antisymmetric spin-orbit term, which occur in Eq. (14), mix spin-singlet and
spin-triplet states, and these can be calculated for on-shell kinematics in the center-of-mass frame as

〈J0J |i(�σ1 − �σ2) · ( �p × �q )F (q2)|J1J 〉 = 〈J1J |i(�σ1 − �σ2) · ( �p × �q )F (p2,q2)|J0J 〉

=
√

J (J + 1)

2J + 1

∫ 1

−1
dz p2F (p2,2p2(1 − z))[PJ−1(z) − PJ+1(z)]. (21)

However, because of the small size of this contribution,
particularly for small proton fractions, we neglect this term
in the present calculations.

III. RESULTS AND DISCUSSION

We show in Fig. 3 the energy per particle in fully polarized
neutron matter as a function of density. The yellow and red
bands represent the predictions of complete calculations at
second and third order, respectively, of chiral effective field
theory, while the blue band shows the predictions obtained
with the exploratory N3LO calculation as described above.
For each band, the width is obtained by changing the cutoff
between 450 MeV and 600 MeV.

At N2LO and N3LO, cutoff dependence is generally mod-
erate up to saturation density. At NLO, the cutoff dependence
is practically negligible throughout. In unpolarized neutron
matter, on the other hand, the largest cutoff dependence was
seen at NLO [39]. This suggests that, in unpolarized NM, the
larger cutoff sensitivity at NLO is mostly due to singlet states,
particularly 1

S0, which are absent from the polarized system.
At the same time, 3NFs do not appear at NLO, implying that
most of the cutoff dependence in polarized NM at N2LO and
N3LO is caused by the 3NF contributions.

Clearly, the variations associated with changing the cutoff
are not a good indicator of the uncertainty at a given order of
chiral effective field theory, as the results from one order to
the other do not overlap. Furthermore, the predictions do not
show a good convergence pattern, although some indication

of slow convergence can be seen when moving from N2LO to
our N3LO calculation.
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FIG. 3. (Color online) Energy per neutron in fully polarized
neutron matter as a function of density. The yellow and red bands
represent the uncertainties due to cutoff variations obtained in the
complete calculations at NLO and N2LO, respectively. The blue band
is the result of the same cutoff variations applied to our exploratory
N3LO calculation; see text for details. The dotted curve shows the
energy of the free Fermi gas.
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TABLE II. Ratio of the energy per particle of a free Fermi gas to
the energy per particle of polarized neutron matter around saturation
density at N3LO (as described in the text) and for different values of
the cutoff.

Density (fm−3) � (MeV) EFFG/E

0.15 450 0.95
500 0.92
600 0.95

0.17 450 0.95
500 0.91
600 0.93

As can be concluded from Table II, the predictions from the
N3LO calculation are close to the free Fermi gas energy, at least
up to saturation densities. Our results with the N3LO (� =
500 MeV) potential are in good agreement with those from
Ref. [44] using the same potential as well as three- and
four-nucleon forces at N3LO. With regard to the similarity
with the free Fermi gas, it is interesting to include some
additional considerations. As mentioned in the Introduction,
many-fermion systems with large scattering lengths offer the
opportunity to model low-density neutron matter. In the unitary
limit (that is, when the system can support a bound state at zero
energy), the scattering length approaches infinity. The system
then becomes scale independent and the ground-state energy
is determined by a single universal parameter, known as the
Bertsch parameter, ξ . The latter is defined as the ratio of the
energy per particle of the unitary gas to that of the free Fermi
gas. In Ref. [55], using a contact interaction proportional to
the diverging scattering length, ann → ∞, and resumming the
combined particle-particle and hole-hole ladder diagrams to all
orders, it was found that ξ increases from approximately 0.5 to
1.0 as the spin asymmetry of neutron matter, βn, is increased
from 0 (unpolarized) to 1 (fully polarized).

In Fig. 4, for our N3LO calculation, we compare predictions
(along with their cutoff variations) of the energy per neutron
in unpolarized NM (green band), partially polarized NM (pink
band), and fully polarized NM (blue band). For the partially
polarized case, the value of βn [see Eq. (2)] is equal to 0.5, cor-
responding to 75% of the neutrons being polarized in one di-
rection and 25% in the opposite direction; see Eqs. (3) and (4).
Clearly, a lesser degree of spin asymmetry (as compared to the
ferromagnetic case) yields considerably more attraction. (At
βn = 1 interactions all together become very small.) There
is definitely no sign of a phase transition, particularly to a
ferromagnetic state, nor an indication that such transition may
occur at higher densities. This is consistent with what we
observed earlier [28] with meson-theoretic interactions.

As a baseline comparison, we also include, for the unpolar-
ized case, predictions based on a different approach, shown by
the black dotted line in Fig. 4. These are taken from Ref. [56]
and are based on the Argonne v18 two-nucleon interaction plus
the Urbana IX three-body force, using variational methods.
The predictions are overall in reasonable agreement with our
green band, although those from Ref. [56] show more repulsion
as compared to the softer chiral interactions.
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FIG. 4. (Color online) Energy per neutron in pure neutron matter
as a function of density at N3LO. From lowest to highest curve:
unpolarized NM; partially polarized NM, with βn = 0.5; fully
polarized NM (βn = 1). The width of each band shows the uncertainty
from varying the cutoff between 450 and 600 MeV. The black dotted
line shows the predictions for the equation of state of unpolarized
neutron matter from Ref. [56].

Most typically, models which do predict spin instability of
neutron matter find the phase transition to occur at densities
a few times normal density. Such high densities are outside
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FIG. 5. (Color online) Energy per nucleon in neutron-rich matter
as a function of density at N3LO and different conditions of isospin
and spin polarization. The brighter blue band labeled as “0.8, 1.0”
displays the results for neutron-rich matter with a proton fraction
equal to 10% (α = 0.8) and fully polarized neutron (βn = 1.0). The
brighter green band labeled as “0.8, 0.0” refers to neutron-rich matter
with the same proton fraction and no polarization (βn = 0.0). The
protons are unpolarized. For comparison, we also include the bands
(darker blue and darker green) already shown in the previous figure,
which refer to pure neutron matter (α = 1) with fully polarized (βn =
1) or unpolarized (βn = 0) neutrons. The bands are obtained varying
the cutoff between 450 and 600 MeV.
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the domain of chiral effective field theory. With some effective
forces, though, it was found [17] that a small fraction of protons
can significantly reduce the onset of the threshold density for a
phase transition to a spin-polarized state of neutron-rich matter.
We explored this scenario by adding a small fraction of protons
to fully polarized or unpolarized neutrons. From Eqs. (1)–(3),
a proton fraction of 10% is obtained with α = 0.8. The results
are displayed in Fig. 5, where a crossing of the bands labeled
with “0.8, 1.0” and “0.8, 0.0”, respectively, would indicate a
phase transition. Thus we conclude that such transition is not
predicted with chiral forces. By extrapolation, a transition to
a polarized state would also appear very unlikely at higher
densities.

IV. CONCLUSIONS AND OUTLOOK

We have calculated the equation of state of (fully and par-
tially) polarized neutron-rich matter. We performed complete
calculations at second and third order of chiral effective field
theory and calculations employing the N3LO 2NF plus the
leading 3NF. Results with both spin and isospin asymmetries
are presented for the first time with chiral forces.

In all calculations, the cutoff dependence is moderate
and definitely underestimates the uncertainty of each order.
Concerning the latter, we do not see a satisfactory convergence

pattern. The missing 3NFs are most likely not the main cause
of uncertainty at N3LO, since Ref. [44] has demonstrated that
large cancelations take place between the 2π -exchange 3NF
and the π -ring 3NF at N3LO, while other 3NF contributions are
very small (about 0.1–0.2 MeV). Clearly a calculation at N4LO
is absolutely necessary to get a realistic indication of the EFT
error at N3LO. Such effort is in progress. If such calculation
displays a reasonable convergence pattern, it will be strong
evidence that polarized neutron matter, indeed, behaves nearly
like a free Fermi gas, at least up to normal densities.

In our N3LO calculation, the energies of the unpolarized
system at normal density are close to 16 MeV for all cutoffs,
whereas those in the polarized case are approximately 60 MeV.
Thus, even in the presence of the large uncertainties discussed
above, a phase transition to a ferromagnetic state can be
excluded. This conclusion remaind valid in the presence of
a small proton fraction.
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135, 361 (1984).
[9] S. Marcos, R. Niembro, M. L. Quelle, and J. Navarro, Phys.

Lett. B 271, 277 (1991).
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