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Global performance of multireference density functional theory for low-lying states in sd-shell nuclei
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We present a comprehensive study of low-lying states in even-even Ne, Mg, Si, S, Ar isotopes with the
multireference density functional theory (MR-DFT) based on a relativistic point-coupling energy density
functional (EDF). Beyond mean-field (BMF) effects are taken into account by configuration mixing of both
particle-number and angular-momentum projected axially deformed states with generator coordinate method.
Global performance of the MR-DFT for the properties of both ground state and of the first 2+,4+ states is
examined, in comparison with previous studies based on nonrelativistic EDFs and available data. Our results
indicate that an EDF parametrized at the BMF level is demanded to achieve a quantitative description.
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I. INTRODUCTION

The combination of radioactive ion beans facilities and
γ -ray detectors have allowed one to measure the low-lying
excitation states of exotic nuclei far from β stability. In the past
decades, many interesting phenomena have been disclosed by
studying the low-lying states of sd-shell nuclei, which cover
three traditional neutron magic numbers N = 8,20,28 [1–5].
Among them, the first 2+ and 4+ states are of particular interest
since they provide rich information on the nuclear underlying
shell structure and collective properties. The measured very
low excitation energy of 2+

1 state and large transition strength
B(E2; 0+

1 → 2+
1 ) in neutron-rich 32Mg indicates the erosion

of the N = 20 shell gap [6]. A similar phenomenon has been
observed in 41,43P [7] and 40,42Si [8] which provide evidence
for the collapse of N = 28 shell gap. These findings are
consistent with other experimental measurements showing that
the spherical N = 28 shell gap is progressively reduced when
more and more protons are removed from 48Ca [9–16].

It is a challenge for nuclear models to describe the low-lying
states of sd-shell nuclei, where the underlying shell structure
changes rapidly when going from stable nuclei to dripline
nuclei. In particular, clustering appears to be a common
phenomenon in light nuclei [17–21]. It complicates the naive
pictures of the conventional shell model. In the pase decades,
the model space of the shell model for sd-shell nuclei has
been extended by including the pf shell to take into account
the effects of particle-hole excitations across the N = 20 shell
gap, which are relevant to reproduce the low-lying states of
neutron-rich nuclei in this mass region [22–28].

In the framework of nuclear density functional theory
(DFT) with a universal energy density functional (EDF) con-
structed phenomenologically based on the knowledge accumu-
lated within modern self-consistent mean-field models [29],
the dynamical correlations related to the restoration of broken
symmetries and to fluctuations of collective coordinates are
very important for the low-lying states of sd-shell nuclei.
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These effects can be taken into account by the implementation
of symmetry-conserved generator coordinate method (GCM)
into the DFT framework. This level of DFT is referred to as
multireference (MR)-DFT, where the many-body energy takes
the form of a functional of all mixed density matrices that are
constructed from a chosen set of nonorthogonal configurations.
In most of the studies, these configurations are generated by
the self-consistent mean-field calculations with constraints
on nuclear multipole moments. For example, by adopting
the configurations constrained to have axially symmetric
shapes, the low-lying states of some selected isotopes in
the sd shell have been studied [30–34]. In recent years,
the MR-DFT approaches have been extended significantly
by allowing for triaxially deformed configurations based on
either nonrelativistic [35,36] or relativistic EDFs [37], which
provide a state-of-the-art microscopic calculation of nuclear
low-lying states. Unfortunately, global application of the
MR-DFT with triaxiality for nuclear low-lying states is still
beyond the capabilities of current computers. Therefore, on
one hand, a Gaussian overlap approximation version of these
approaches, i.e., a five-dimensional collective Hamiltonian
(5DCH) method with the collective parameters determined
from self-consistent mean-field calculations is adopted for this
purpose, either based on the nonrelativistic finite-range Gogny
force D1S [38,39] or the relativistic point-coupling PC-PK1
force [40]. On the other hand, by assuming axial symmetry,
a global study of low-lying states for a large set of even-even
nuclei has also been carried out based on the nonrelativistic
Skyrme force SLy4 [41–43] or the Gogny D1S and D1M
forces [44]. In these global studies, however, little attention
has been paid to the low-lying states of light nuclei.

It is worth mentioning that the techniques of projection and
GCM have also been implemented into the antisymmetrized
molecular dynamics that uses a localized spherical [45]
or triaxially deformed [46] Gaussian as the single-particle
wave packet based on the Gogny force. This method has
been applied to study many excited states in light nuclei
and turns out to be very successful for describing clustering
structures [47]. Besides, in recent years a shell-model–like
multiconfiguration approach has been developed based on the
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Gogny D1S force by mixing a set of symmetry-conserved
orthogonal multiparticle-multihole configurations [48]. This
method was examined very recently by applying to study
the low-lying states of sd-shell nuclei [49]. It has been
shown that the standard deviation from experimental data
is about 0.5 MeV for two-nucleon separation energies and
about 0.4 MeV for excitation energies. However, the binding
energies and E2 transition strengths were poorly described.

In this work, we carry out a comprehensive study of sd-shell
nuclei with a multireference covariant DFT [50,51], which is
an extended version of the model that has been applied to the
low-lying states of carbon [52] and magnesium isotopes [53]
by implementing an additional technique of particle number
projection. For simplicity, the configurations of the present
global study are restricted to have axial symmetry considering
the fact that the triaxiality effect turns out to be marginal
in the ground state [54] and the first 2+,4+ states in light
nuclei [52,53]. To examine the global performance of the
MR-DFT approach, the results are discussed in comparison
with previous similar studies based on nonrelativistic EDFs
and available data. The purpose of this work is to address the
following questions: (1) How are the nuclear properties modi-
fied by the beyond-mean-field (BMF) effect of projections and
configuration mixing? (2) How good is the MR-DFT for the
low-lying states of light nuclei?

The paper is arranged as follows. In Sec. II, we present
a brief introduction to the framework of the MR-CDFT.
In Sec. III, the ground-state properties including binding
energy, separate energy, density distribution, charge radii, and
the excitation energies of 2+

1 ,4+
1 states, electric quadrupole

transition strengths from 0+
1 state to 2+

1 state, spectroscopic
quadrupole moments and neutron-proton decoupling factors
of the 2+

1 state are discussed in comparison with available data.
A summary of our findings and an outlook are given in Sec. IV.

II. THE MULTIREFERENCE COVARIANT DENSITY
FUNCTIONAL THEORY

A. Relativistic mean-field calculation with point-coupling
effective interaction

We start from a nonlinear point-coupling effective La-
grangian that determines the energy functional of a nuclear
system in terms of local single-nucleon densities and currents

ERMF =
∫

d rERMF(r)

=
∫

d r
∑

k

v2
k ψ̄k(r)(−iγ∇ + m)ψk(r)

+
∫

d r
(
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2
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3
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4
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2
ρS�ρS

+ αV

2
jμjμ + γV
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(jμjμ)2 + δV
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2
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μ
T V (jT V )μ + δT V

2
j

μ
T V �(jT V )μ

+ αT S

2
ρ2

T S +δT S

2
ρT S�ρT S + e

2
jμ
p Aμ

)
, (1)

where the coupling constants αi,βi,γi,δi are determined in the
optimization of the EDF for the properties of several finite
nuclei and nuclear matter [55–57]. Aμ is the four-component
electromagnetic field, and the densities ρi and currents j

μ
i

are bilinear combinations of Dirac spinor field of nucleon,
namely, ψ̄�iψ with i = S,V,T V representing the symmetry
of the coupling. The subscript S stands for isoscalar-scalar
(�S = 1), V for isoscalar-vector (�V = γ μ), and T V for
isovector-vector (�T V = γ μt3) type of coupling characterized
by their transformation properties in isospin and in space-time.
The densities and currents,

ρS(r) =
∑

k

v2
k ψ̄k(r)ψk(r), (2a)

ρT S(r) =
∑

k

v2
k ψ̄k(r)τ3ψk(r), (2b)

jμ(r) =
∑

k

v2
k ψ̄k(r)γ μψk(r), (2c)

j
μ
T V (r) =

∑
k

v2
k ψ̄k(r)γ μτ3ψk(r), (2d)

are calculated in the no-sea approximation, i.e., the summation
in Eqs. (2a)–(2d) runs over all occupied states in the Fermi sea.
v2

k denotes the occupation probability of the kth single-nucleon
state.

Because of charge conservation, only the third component
of the isovector densities and currents contributes to the
nucleon self-energies. In this work we only consider even-even
nuclei, i.e., time-reversal invariance is assumed, which implies
that the spatial components of the single-nucleon currents
vanish in the mean-field states [58–60]. The single-nucleon
wave functions are obtained as self-consistent solutions of the
Dirac equation

[α · p + V0(r) + β(m + S(r))]ψk(r) = εkψk(r) , (3)

where the scalar and vector potentials

S(r) = �S(r) + τ3�T S(r), (4)

V μ(r) = �μ(r) + τ3�
μ
T V (r), (5)

contain the nucleon isoscalar-scalar, isovector-scalar,
isoscalar-vector, and isovector-vector self-energies defined,
respectively, by the following relations:

�S = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (6a)

�T S = αT SρT S + δT S�ρT S, (6b)

�μ = αV jμ + γV (jνj
ν)jμ + δV �jμ − eAμ 1 − τ3

2
, (6c)

�
μ
T V = αT V j

μ
T V + δT V �j

μ
T V . (6d)

To generate the mean-field wave functions |(β)〉 with
different deformation parameters β,γ , a quadratic constraint
on the mass quadrupole moments is added in the variation of
the energy function

ERMF +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)2 , (7)
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where C2μ is a stiffness parameter and 〈Q̂2μ〉 denotes the
expectation value of the mass quadrupole moment operator

Q̂20 =
√

5

16π
(2z2 − x2 − y2), Q̂22 =

√
15

32π
(x2 − y2).

(8)

In Eq. (7), q2μ is the quadrupole moment of mean-field state
to be obtained. Since we are restricted to axially deformed
configurations, the q22 is set to zero, corresponding to the
deformation parameter γ = 180◦ and 0◦. The deformation
parameter β is related to the expectation values of the
mass quadrupole moment operator by β = 4π

3AR2 〈Q̂20〉 with
R = 1.2A1/3 (fm).

B. Beyond mean-field calculation with symmetry-restored
generator coordinate method

The wave function of nuclear low-lying states is given
by configuration mixing of angular-momentum and particle-
number projected axial relativistic mean-field wave functions∣∣�JNZ

α

〉 =
∑

β

f J
α (β)P̂ J

MK=0P̂
N P̂ Z|(β)〉 , (9)

where α labels different collective states for a given angular
momentum J . The P̂ N , P̂ Z , and P̂ J

MK are projection operators
onto neutron number N , proton number Z, and angular
momentum J , respectively. The |(β)〉s are a set of Slater
determinants of quasiparticle wave functions from the previous
deformation constrained RMF+BCS calculation. The weight
functions f J

α (β) are determined by minimizing the energy of
the collective state with respect to the weight function. This
leads to the Hill-Wheeler-Griffin equation [61–63]∑

β ′

[HJ (β,β ′) − EJ
α N J (β,β ′)

]
f J

α (β ′) = 0, (10)

where N J (β,β ′) = 〈(β)|P̂ J
00P̂

N P̂ Z|(β)〉 and HJ (β,β ′) =
〈(β)|Ĥ P̂ J

00P̂
N P̂ Z|(β)〉 are the energy kernel and the norm

kernel, respectively. In our calculation, the prescription of
mixed densities is used to calculate the energy kernel [37].
As the projected mean-field states do not form an orthogonal
basis and the expansion coefficients f J

α (β) in Eq. (9) are not
orthogonal, a set of orthonormal collective wave functions
gJ

α (β) related with weight function is usually constructed [61]

gJ
α (β) =

∑
β ′

[N J ]1/2(β,β ′)f J
α (β ′) , (11)

which provides the information of dominated configurations in
the collective states |�JNZ

α 〉. The solution of the Hill-Wheeler-
Griffin equation provides the weight functions f J

α (β) and the
energy spectrum, as well as other information needed for cal-
culating the electric multipole transition strengths [61]. More
details to the MR-CDFT have been introduced in Ref. [37].

III. RESULTS AND DISCUSSIONS

In the relativistic mean-field calculation, parity, time-
reversal invariance, and axial symmetry are imposed. The
Dirac equation (3) is solved by expanding the nucleon wave

function in terms of eigenfunctions of a three-dimensional
harmonic oscillator in Cartesian coordinate with ten major
shells [64]. The relativistic point-coupling forces of both
PC-F1 [55] and PC-PK1 [56] are employed for comparison.
Pairing correlations between nucleons are treated with the
BCS approximation using a density-independent δ force with
a smooth cutoff factor [65]. In the beyond-mean-field calcula-
tion, the Gauss-Legendre quadrature is used for the integrals
over the Euler angle θ in the calculation of the projected
kernels. The number of mesh points in the interval θ ∈ [0,π ]
is chosen as Nθ = 10. The number of gauge angles in the
Fomenko’s expansion [66] for the particle number projection
is Nφ = 9. The Pfaffian method [67] has been implemented to
calculate the norm overlap. Like other multireference density
functional methods, the problems of self-interactions and
self-pairing [68] might exist in our method. However, we have
not seen any evidence that these problems are very serious to
be taken into account. We have checked our calculation against
the number of mesh points in the Gauge angle and obtained a
good plateau condition. All the results are obtained based on
this plateau condition.

A. An illustrative calculation for 44S

We first examine this method for the shape-coexistence
nucleus 44S, which has attracted a lot of attention in recent
years concerning the erosion of N = 28 shell gap [16,69–73].

FIG. 1. (Color online) The energy of mean-field states in 44S
and that of projected states with projection onto particle number
and angular momentum (J = 0) as functions of axial deformation
parameter β. The calculations are performed by expanding the Dirac
spinors of nucleons in the harmonic oscillator basis with different
number of major shells.
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FIG. 2. (Color online) Low-lying spectra of 44S calculated with
the MR-CDFT using the PC-PK1 and PC-F1 forces, in comparison
with available data [16]. The numbers on the arrow are the B(E2)
values (in units of e2 fm4).

In the framework of DFT, an oblate deformed and γ -soft 0+ as
well as a prolate deformed 0+

2 states are obtained in the 5DCH
calculation based on the relativistic DD-PC1 force [71] and in
the MR-DFT calculation based on the nonrelativistic Gogny
force [69]. It is interesting to know how good the description
of the present MR-DFT calculation for the low-lying states of
44S with only axially deformed configurations based on the
relativistic EDFs is.

Figure 1 displays the mean-field and projected (N,Z,J = 0)
energies of the axially deformed mean-field configurations in
44S as a function of the intrinsic deformation β calculated
using the PC-PK1 and PC-F1 forces with different number
of harmonic oscillator major shells. It is shown that the
ten major shells are sufficient to provide convergent results
on energy. Figure 2 shows the low-lying spectra of 44S
calculated with both PC-PK1 and PC-F1 forces, in comparison
to available data. The calculated excitation energy of the first
2+ excited state is ∼30% lower than experiment. However,
the 4+

1 excitation energy shows much closer to the datum. For
the transition strengths, the experiment B(E2; 2+

1 → 0+
1 ) is

reproduced. One can also notice that the E2 transition strength
between 0+

2 and 2+
1 states is significantly underestimated by

both forces. The previous study of magnesium isotopes with
triaxiality [53] shows that the excitation energies of 2+

1 and 4+
1

states are not significantly changed by the triaxiality. However,
the triaxiality effect may show up at some nuclei, like 44S. To
reduce computational burden, we simply neglect the triaxiality
effect in the present systematic calculation.

B. Ground-state properties

1. Binding energy and shell gap

The energy of ground state (0+
1 ) can be divided into two

parts

E(0+
1 ) = ENZ(βm) + EDyn, (12)

where ENZ(βm) denotes the energy of the global minimum
(with intrinsic deformation βm) on the particle-number pro-
jected energy curve and the EDyn is dynamical correlation en-

ergy gained from symmetry restoration and shape mixing. The
dominated part of EDyn is from angular momentum projection.
Therefore, for simplicity, this dynamical correlation energy has
usually been taken into account phenomenologically with the
cranking prescription [74–77]

ECrank
Dyn = Erot{btanh(c|βm|) + d|βm|e−l(|βm|−β0)2} , (13)

where Erot is so-called rotational correction energy

Erot = �
2

2I 〈Ĵ 2〉 , (14)

with the moment of inertia I calculated by the Inglis-Belyaev
formula and with Ĵ being the angular momentum operator. The
parameters b,c,d,l,β0 are optimized to the nuclear masses
in Ref. [77], where the values of 0.80, 10, 2.6, 10, 0.10 are
obtained for these parameters, respectively. This prescription
turns out to be very successful to improve nuclear mass
models. A better treatment of the dynamical correlation energy
is to carry out the calculation with exact quantum-number
projections in the framework of GCM, which has been done
based on the Skyrme force [41,78] or based on the Gogny
forces [44]. Both calculations are restricted to axially deformed
configurations. It is worth mentioning that by solving the
5DCH with triaxiality, the dynamical correlation energy is
evaluated by using either the Gogny D1M [79] and D1S [39]
forces or the relativistic PC-PK1 force [40].

To examine the validity of the cranking prescription in
Eq. (13) against the exact projection plus GCM calculation,
we make a comparison of the dynamical correlation energies
calculated in these two ways based on the same energy
functional PC-F1. The results are plotted in Fig. 3 as a
function of neutron number. According to the cranking
prescription [75], the dynamical correlation energy is zero if
the mean-field solution is spherical, and is large for a well-
deformed mean-field solution. This is not the case in the exact
projection plus GCM calculation. Even for spherical vibrator
nuclei, there are still some amount of dynamical correlation
energies. This nonzero correction energy is mainly originated
from shape mixing. Figure 3 shows that the largest discrepancy
in the dynamical correlation energies between the cranking
prescription and the GCM calculations is found in spherical
vibrational nucleus 32S with energy difference 3.5 MeV.
Since the dynamical correlation energy is sensitive to nuclear
deformation and the underlying shell structure, it provides an
indirect way to unveil the shell structure evolution towards
dripline, such as the erosion of N = 28 shell gap in neutron-
rich nuclei. To examine the force-dependence of the dynamical
correlation energy, we also compare the values from the GCM
calculation using the SLy4 [78] in Fig. 3. The results given
by these two different forces are similar for most cases except
for 20Mg.

Figure 4 shows the energy per nucleon by both mean-field
and configuration-mixing GCM calculations in comparison
with available data [80]. It is shown that the mean-field calcu-
lation underestimates the average binding energy for neutron-
deficient nuclei. The inclusion of the dynamic correlation
energies thus improves the description of the energies for these
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FIG. 3. (Color online) Dynamical correlation energies of sd-
shell nuclei from the configuration-mixing GCM calculation using
the PC-F1 force, in comparison with the similar calculation using
the Skyrme SLy4 force [78]. The results by the cranking prescription
based on the mean-field ground-state solution by the PC-F1 force are
also given for comparison.

nuclei. In the meantime, however, one reads an overestimation
of the binding energies for neutron-rich nuclei. It leads to an
increase in the rms deviation of binding energies of 56 sd-shell
nuclei from 2.94 MeV to 3.61 MeV on beyond-mean-field
calculations. A similar phenomenon is also observed in the
MR-DFT calculation using the PC-PK1 and SLy4 forces. This
problem can be traced back to the way that the energy density
functionals were optimized at the mean-field level. A better
description of the masses of the neutron-rich nuclei asks for a
new energy functional parametrized at the beyond-mean-field
level, as it was done for the Gogny D1M force [79].

The nucleon separation energy is usually better described
than the binding energy after taking into account dynamical
correlation energy [40,54]. This phenomenon is also shown
in Fig. 5, where the two-neutron separation energies S2n =
E(Z,N − 2) − E(Z,N ) from both the mean-field and GCM
calculation using the PC-F1 force are plotted as a function
of neutron number, in comparison with data [80]. The inset

FIG. 4. (Color online) (a) Energy per nucleon for Ne, Mg, Si,
S, and Ar isotopes in the sd-shell region from both mean-field and
configuration-mixing GCM calculations using the PC-F1 force, in
comparison with data. (b) Energy per nucleon for silicon isotopes
calculated using the relativistic PC-F1 and PC-PK1 forces in com-
parison with those by the nonrelativistic SLy4 force from Ref. [78]
and available data from Ref. [80]. The MF results of nonrelativistic
SLy4 include the correlation energy gained from the particle number
projection.

of Fig. 5(a) shows that the neutron N = 20,22 and N = 28
shell gaps are better described after taking into account the
dynamical correlation energies. The information of neutron
shell gap can be learned in a quantitative way by defining a
differential of two-nucleon separation energy δS2n(Z,N ) =
E(Z,N − 2) + E(Z,N + 2) − 2E(Z,N ), where E(Z,N ) is
total energy of the nucleus with proton number Z and
neutron number N , respectively. Figure 5(b) displays in detail
how the N = 20 shell gap is better described step by step.
For this purpose, the results from the mean field, particle
number projection, particle number, and angular momentum
projection, as well as configuration mixing GCM calculations
using the PC-F1 force are compared with available data.
It is shown that the N = 20 shell gap is better described
after taking into account more and more correlations. To
know the accuracy of global description, we calculate the

root-mean-square (rms) deviation δ ≡
√

1
N

∑
i(O

cal
i − O

exp
i )2

for a set of 51 two-neutron separation energies, and obtain the
δ value as ∼2.07 MeV and ∼1.53 MeV from the mean-field
and configuration-mixing calculations, respectively.
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FIG. 5. (Color online) (a) Two-neutron separation energy as a
function of neutron number. The inset panel shows that of N = 20,
22, and 28 isotonic chains. (b) Neutron N = 20 shell gap by the
mean-field (MF), PNP (N&Z), PN1DAMP (J = 0), and full GCM
calculations using the PC-F1 force as a function of proton number.
Data are taken from Ref. [80].

2. Proton and charge distributions

With the weight function, it is straightforward to evaluate
the the density distribution of the low-lying states J+

α in labo-
ratory frame with the information of shape mixing [50,81,82]

ρJα(r) =
∑
ββ ′

f J
α (β ′)f J

α (β)
∑

λ

(−1)2λYλ0(r̂)

×〈J0,λ0|J0〉
∑
K

(−1)K〈JK,λ − K|J0〉

×
∫

d r̂′ρJK0
β ′β (r′)Y ∗

λK (r̂′) , (15)

where ρJK0
β ′β (r) is defined as

ρJK0
β ′β (r) ≡ 2J + 1

2

∫ π

0
dθ sin(θ )dJ∗

K0(θ )〈(β ′)|
∑

i

δ(r − ri)

×eiθĴy P̂ N P̂ Z|(β)〉 . (16)

FIG. 6. (Color online) Charge density distributions calculated
with the spherical configuration, the configuration corresponding
to the global minimum of J = 0 energy curve (Min.), and the full
configurations (GCM), respectively. The charge density units are in
fm−3. The experimental data from Ref. [83] are given for comparison.

The index i in the summation runs over all the occupied single-
particle states for neutrons or protons. r̂ ≡ (r,r̂) is the position
at which the density is to be calculated. ri is the position of
the ith nucleon.

We note that the density by Eq. (15) contains the infor-
mation of many deformed mean-field states generated by the
quadrupole deformation β. For the ground state 0+

1 , the density
is simplified as

ρ01(r) =
∑
ββ ′

f 0
1 (β ′)f 0

1 (β)
∫

d r̂ρ000
β ′β (r) . (17)

Figure 6 displays the charge densities in 28,30Si, 32,34,36S,
and 40Ar as a function of radial coordinate r from three
types of calculations with different configurations based on the
PC-F1 force, in comparison with data. The charge density is
calculated by convolution of the corresponding proton density
with a Gaussian form factor

ρch(r) = 1

a
√

π

∫
dr ′r ′ρp(r ′)

[
e−(r−r ′)2/a2

r
− e−(r+r ′)2/a2

r

]
,

(18)

where the parameter is chosen as a = 0.65 fm. The charge
density of the particle number conserved spherical state in 28Si
shows a somewhat center depletion, in contrast to experimental
data. This phenomenon is also observed in the Hartree-Fock
calculation using the Skyrme Skm* force [83]. After taking into
account static and dynamic quadrupole deformation effects,
the center depletion is totally washed out and becomes closer
to the data in the interior, except for pushing the density in the
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FIG. 7. (Color online) Root-mean-square charge radii of sd-shell
even-even nuclei as functions of neutron number. The results for Ne,
Mg, Si, S, and Ar isotopes obtained by PN1DAMP+GCM (red line)
are compared with those from the RMF+BCS mean-field (blue line)
using the same relativistic energy density functional. The available
data for Mg isotopes from Ref. [84] and others from Ref. [85] are
also given for comparison.

middle (from ∼1.3 fm to ∼2.0 fm) to nuclear surface. It leads
to an overestimation of rms charge density in 28Si by ∼0.1 fm
(cf. Fig. 7). A much better agreement with data is observed
in the charge densities of 30Si and 32–36S. However, Fig. 7
shows that the rms charge radii of 32–36S are overestimated.
The static and dynamic quadrupole deformation effects turn
out to be negligible in the charge distribution and rms charge
radius of 40Ar.

It is shown in Fig. 7 that the systematics of charge radii
in the sd shell are reproduced rather well. Similar to the
binding energies, the beyond-mean-field effect leads to an
overestimation of the charge radii for most of the sd-shell
nuclei, in particular for those around N = 14 and 16. Dynamic
quadrupole deformation effects slightly better the description
of the rms charge radius of 32Mg data than mean-field result.
The rms charge radii for Si isotopes calculated by relativistic
PC-PK1 force and nonrelativistic SLy4 force [78] are also
given in Fig. 8. It is a common feature for the three EDFs
that the beyond-mean-field calculations overestimate the rms

FIG. 8. (Color online) Root-mean-square charge radii of Si iso-
topes from both mean-field and configuration-mixing GCM calcu-
lations using the relativistic PC-F1 and PC-PK1 forces as functions
of neutron number, in comparison with those by the SLy4 force
calculations on good particle number (N&Z) from Ref. [78] and
available data from Ref. [85].

charge radii. Among the three EDFs, the relativistic PC-PK1
force gives the results closest to the data.

The dynamical correlation effects associated with the
quadrupole deformation on the charge radii can be seen more
clearly in Fig. 9, where the results by the relativistic PC-F1
force are compared with those by the nonrelativistic SLy4
force from Ref. [78]. The changes δr2

c in the mean-squared
charge radii are significant and similar in magnitude for most
nuclei by the two totally different forces. For 44S and 52Ar,
an opposite contribution to the charge radius is predicted by
the relativistic PC-F1 force. It is consistent with the finding
in the mean-field calculation with the PC-F1 force that the
deformation of ground state is significantly overestimated
(cf. Fig. 14), leading to a very large charge radius. The
dynamical deformation effect brings the B(E2; 0+

1 → 2+
1 ) of

44S closer to the data.
Table I presents the comparison of the rms deviation of

charge radii for the 25 even-even sd-shell nuclei calculated
with both mean-field and beyond-mean-field approaches us-
ing three different energy functions. In all the cases, the
configuration-mixing beyond-mean-field calculation overesti-
mates the charge radii and thus gives the rms deviation around

TABLE I. The rms deviation of charge radii (in fm) for the
25 even-even sd-shell nuclei by the present calculations using the
PC-F1 force, in comparison with those by the mean-field HF+BCS
calculation using the Skryme SLy4 force [78] and those by the 5DCH
based on the Gogny D1S force [39].

PC-F1 SLy4 D1S

RMF+BCS GCM HF+BCS GCM HFB 5DCH

0.032 0.057 0.033 0.094 0.035 0.061
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FIG. 9. (Color online) Changes δr2
c in the mean-square charge

radii of sd-shell even-even nuclei due to the dynamical correlation
effects, where δr2

c = r2
c (0+

1 ) − r2
c (βm) with r2

c (0+
1 ) and r2

c (βm) being
the mean-square radius of the 0+

1 state and the mean-field ground state,
respectively. The r2

c (βm) by the SLy4 force is the mean-square radius
of the minimum of the particle number projected energy curve, while
that by the PC-F1 force is the minimum of the mean-field energy
curve. All the results obtained by the SLy4 are taken from Ref. [78].

0.06 ∼ 0.09 fm larger than that of the mean-field calculation
with rms deviation around 0.03 fm.

In recent years, the possible existence of “bubble” structure
in light nuclei has attracted renewed interest because it may
change nuclear shell structure through a weakened spin-orbit
interaction [86]. The previous studies within the MR-DFT
have demonstrated that the “bubble” structure in light nuclei
can be greatly quenched by static and dynamic deformation
effects [50,81,87].

In this work, we generalize this investigation for all the
sd-shell nuclei. Figure 10 displays the central depletion factor
in the proton and charge densities of sd-shell even-even nuclei,
where the depletion factor Fmax is defined as Fmax ≡ (ρmax −
ρcent)/ρmax with ρmax being the largest value of the density in
coordinate space and ρcent the value at the center r = 0. In
general, one might notice that the depletion factor Fmax of the
proton is larger than charge depletion factor Fmax for all the
isotopes by a factor of 2 ∼ 3. It is also seen that in most nuclei
the Fmax is decreased to zero when the dynamical deformation
effects are taken into account. For Ne, Mg, Si isotopes, the

FIG. 10. (Color online) Central depletion factor of proton (a)–(e)
and charge (f)–(j) in sd-shell even-even isotopes as functions of
neutron number. The results are obtained from spherical state (blue
line), minimum of projected (N&Z, J = 0) energy curve (olive line),
and the full configuration mixing (red line) calculation using the
PC-F1, respectively.

depletion factor Fmax indicates the possible existence of the
bubble structure in spherical states of N = 14 and N = 28
isotones. However, the beyond-mean-field calculation shifts
the peak position of the depletion factor Fmax to N = 20. With
the presence of dynamical correlation effects, a noticeable
bubble structure remains in 30Ne, 32Mg, and 34Si. In particular,
34Si is still the best candidate with the “bubble” structure. For
sulfur isotopes, the dynamical correlation effects do not always
quench the semibubble structure, but also help to develop the
semibubble structure in 38,40,46,48S. For argon isotopes, the
existence of the “bubble” structure is unlikely after taking into
account the dynamical correlation effects [87].

C. 2+
1 and 4+

1 states

Since in the previous work [53] the properties of the
low-lying states of magnesium isotopes have been studied
with the PC-F1 force without the particle number projection,
we start this section by first examining the effect of particle
number projection on these states. PNP before variation can
avoid pairing collapse and finally increase the excitation
energies of states. Like other multireference density functional
methods, the problems of self-interactions and self-pairing
might exist in our method. However, we have not seen any
evidence that these problems are very serious to be taken into
account. We have checked our calculation against the number
of mesh points in the Gauge angle and obtained a good plateau
condition. All the results are obtained based on this plateau
condition. Figure 11 shows the comparison of the excitation
energy for the 2+

1 states and the B(E2; 0+
1 → 2+

1 ) value from
the configuration-mixing GCM calculation with and without
particle number projection. We remind the reader that in the
previous calculation without the particle number projection, an
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FIG. 11. (Color online) Excitation energies of the 2+
1 states (a)

and B(E2; 0+
1 → 2+

1 ) values (b) in Mg isotopes as functions of
neutron number. The results from PN1DAMP+GCM (solid line) are
compared with 1DAMP+GCM (dash line) [53] calculation using the
same relativistic density functional PC-F1. Available data [90] are
also given for comparison.

approximate correction scheme [88,89] for particle numbers
was implemented, cf. Ref. [53] for details. It confirms the
finding in Ref. [53] that this correction scheme yields the
results very close to those with the exact particle-number
projection for all the Mg isotopes. However, the anomalous
behavior in 32Mg is not reproduced in both calculations. As
found in Refs. [37,53], the onset of large collectivity in the
ground state of 32Mg can be reproduced much better by
pumping more nucleons up to the pf shell by adopting a
very strong pairing force. With the pairing strengths adjusted
to fit the empirical pairing gaps, we obtained the E2 transition
strength B(E2; 0+

1 → 2+
1 ) = 313.5 e2 fm4. It gives us a hint

that the noncollective configurations of particle-hole excitation
across the N = 20 shell are likely important to reproduce the
anomalous behavior in 32Mg with the relativistic MR-DFT,
even though this anomalous behavior was reproduced with the
Gogny force [30]. The inclusion of noncollective particle-hole
excitation configurations in the model space of our method is
in progress.

1. Excitation energy

Figure 12 shows the calculated excitation energies of the 2+
1

and 4+
1 states in even-even Ne, Mg, Si, S, and Ar isotopes using

the PC-F1 force, in comparison with available data [90,91–93].

FIG. 12. (Color online) Excitation energies of the 2+
1 state (left

panel) and 4+
1 state (right panel) as a function of neutron number in

sd-shell even-even Ne, Mg, Si, S, and Ar isotopes, in comparison
with available data from Refs. [90,91–93].

The global behaviors of the excitation energies of 2+
1 states are

in rather good agreement with data, except for the significant
overestimation of the excitation energies in 18Ne, 30Ne, and
32Mg. This problem is ascribed to the predicted large N = 8
and N = 20 shell gaps in these nuclei. As we mentioned
above for 32Mg, a strong pairing can help to break the robust
N = 20 gap. One might notice that the 4+

1 energies are much
higher than the data around N = 20 in Ne, Mg, and Ar. We
note that pairing collapse is found in most of the nuclei with
predicted excitation energies lower than the data. The inclusion
of PNP before variation in the mean-field calculation helps to
increase the excitation energies. Therefore, even though the
effects of triaxiality and time-odd components will lower down
the energies, the final results with the PNP before variation
can be close to the data, as illustrated in Ref. [94]. The
excitation energy ratio R42 ≡ E(4+

1 )/E(2+
1 ) of the 4+

1 state
to 2+

1 is displayed in Fig. 13. For comparison, the limits
of a rigid rotor (3.33) and a vibrator (2.0) are also plotted.
Most of the data are distributed in the region from 2.0 to
2.5, except for 30Ne, 34,36,38Mg, and 42Si which are closer
to the rotor limit. In the present calculation, we overestimate
the ratio R42 for 28Ne, 34,44S and underestimate that for the
neutron-rich 30Ne and 32Mg. Additionally, our calculations
show an opposite staggering to the experiment data in 22–32Mg.
Of particular interest is the finding that a rapid increase of R42

from 38Si to 42Si is shown in both theoretical results and data,
exhibiting a transition picture from a spherical vibrator to a
rigid rotor. In short, the systematic behavior of R42 indicates
that the collectivity in most sd-shell nuclei below N = 20 is
weak but it starts to develop beyond N = 20 in neutron-rich
side, where the deformation-driving f7/2 orbital plays an
important role.
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FIG. 13. (Color online) Excitation energy ratios R42 = E(4+
1 )/

E(2+
1 ) as a function of neutron number in sd-shell even-even Ne,

Mg, Si, S, and Ar isotopes, in comparison with available data from
Refs. [90,91–93].

2. Electric quadrupole transition and spectroscopic
quadrupole moment

The electric quadrupole transition strength B(E2) from the
initial state (Ji,αi) to the final state (Jf ,αf ) is calculated as
follows:

B(E2; Ji,αi → Jf ,αf )

= 1

2Ji + 1

∣∣∣∣∣∣
∑
β ′,β

f
Jf ∗
αf (β ′)〈Jf ,β ′||Q̂2||Ji,β〉f Ji

αi
(β)

∣∣∣∣∣∣
2

, (19)

where the reduced transition matrix element reads

〈Jf ,β ′||Q̂2||Ji,β〉

= (2Jf + 1)(2Ji + 1)

2

+2∑
M=−2

(
Jf 2 Ji

0 M −M

)

×
∫ π

0
dθ sin(θ ) d

Ji∗
−M0(θ )〈(β ′)|Q̂2MeiθĴy P̂ N P̂ Z|(β)〉 .

(20)

FIG. 14. (Color online) Electric quadrupole transition strengths
B(E2; 0+

1 → 2+
1 ) as functions of the neutron number in sd-shell

even-even isotopes. The results obtained from BMF (solid line)
are compared with those values derived from the deformation βm

predicted by MF (dash line) using the same relativistic density
functional PC-F1. Data are taken from Refs. [90,95]. More details
see the text.

In the meantime, we can also calculate the spectroscopic
quadrupole moment for each state

Qspec(Jπ
α ) =

√
16π

5

(
J 2 J
J 0 −J

) ∑
β,β ′

f J∗
α (β ′)

×〈J,β ′||Q̂2||J,β〉f J
α (β), (21)

where Q̂2M ≡ er2Y2M is the electric quadrupole moment op-
erator. Since the B(E2) values and spectroscopic quadrupole
moments Qspec(J,α) are calculated in the full configuration
space, there is no need to introduce effective charge, and e
simply corresponds to bare value of the proton charge.

Figure 14 displays the calculated B(E2; 0+
1 → 2+

1 ) values
in sd-shell nuclei with configuration-mixing GCM using the
PC-F1 force as functions of neutron number. For comparison,
we also plot the mean-field results derived from the deforma-
tion βm of the minimum of mean-field energy curve using the
formula of the rigid-rotor model [61]

B(E2; 0+
1 → 2+

1 ) =
(

3ZeR2

4π

)2

β2
m . (22)
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FIG. 15. (Color online) Spectroscopic quadrupole moments
Qspec of the first 2+ as a function of neutron number in sd-shell
even-even isotopes, in comparison with available data from Ref. [96].

Coincident with the systematic behavior of the excitation
energy of 2+

1 state in Fig. 12, a reasonable good agreement
with data is observed in the B(E2; 0+

1 → 2+
1 ) values except

for again the underestimation of transition strengths in nuclei
around 32Mg and an overestimation of those values in 36S and
38Ar. In particular, Fig. 14 shows that the results of the present
beyond-mean-field calculation are much closer to the data
than the mean-field predictions. The mean-field calculation
underestimates the B(E2; 0+

1 → 2+
1 ) value systematically,

except for the significant overestimation in 44S and 52Ar. This
overestimation has already been shown in their charge radii
which can be reduced to close to data by the beyond-mean-field
effect and become closer to the data as illustrated in Fig. 9.

The information of the dominated shape in the 2+
1 state can

be learned from its spectroscopic quadrupole moment Qspec

which is plotted in Fig. 15. For a single-shape dominated state,
a positive or negative value of Qspec indicates the nucleus
with oblate or prolate shape, respectively. However, for the
case with a very small Qspec, it is difficult to distinguish if
the state is almost spherical or with equally weighted oblate
and prolate shapes or with γ -soft character. The information
of excitation energy and E2 transition strength becomes very
important in this case. For instance, 30Si and 40Ar have almost
zero Qspec for the 2+

1 state (see Fig. 15) but actually with
very different structure. The information of the ratio R42 and

FIG. 16. (Color online) (a) Excitation energy Ex(2+
1 ) and (b)

B(E2; 0+
1 → 2+

1 ) value as functions of proton number in N = 28
isotones. The results of the Gogny D1S from Ref. [30] were obtained
without PNP. The inset panel shows the ratio R42. Data are taken
from Ref. [90].

B(E2; 0+
1 → 2+

1 ), together with mean-field energy surface
(see also Ref. [97]), indicates that 30Si is oblate deformed
with γ -soft character, while 40Ar is a rather good vibrator.

It is shown in Fig. 15 that the systematics of the calculated
Qspec of 2+

1 states in Ne and Mg isotopes are similar and those
in Si, S, and Ar isotopes are similar. Most of the Ne and Mg
isotopes are predicted to be prolate deformed except for 24,28Ne
and 26,30Mg, all of which have transitional characters. For the
γ -soft nucleus 26Mg, it has already been found in Ref. [53] that
both the Gogny D1S force and relativistic PC-F1 force predict
a positive Qspec value for the 2+

1 (opposite to the sign of data)
and a negative value for the 4+

1 state. The 2+
1 state of 30Si is

also predicted to have dominate oblate shape by both forces
(see Ref. [97] for the energy surface by the Gogny force),
in contrary to the data. Therefore, new measurements on the
spectroscopic quadrupole moments of the 2+

1 state in 26Mg
and 30Si with Coulomb excitations are suggested to confirm
the data.

Figure 16 shows the calculated excitation energy Ex(2+
1 )

and the B(E2; 0+
1 → 2+

1 ) value in N = 28 isotones with three
different forces, in comparison with available data. The results
by the Gogny D1S force were obtained in Ref. [30] without
particle number projection (PNP). All three forces calculations
reproduce the systematics of available data. However, the
B(E2; 0+

1 → 2+
1 ) value of 40Mg by the D1S force is only about

half of the results by the two relativistic forces. Therefore a
measurement on this quantity in 40Mg will provide a stringent
test of nuclear EDFs.

To study the relative contribution of neutrons and protons to
the nuclear multipole (J ) excitations from ground state (0+

1 ) to
excited state (J+

α ), we introduce a neutron-proton decoupling
factor

η = MJ
n

/
MJ

p

N/Z
, (23)

where MJ
n and MJ

p are the multipole transition matrix elements
of neutrons and protons, respectively,

MJ =
∫ ∞

0
dr rJ+2 ρJα

01,J (r) , (24)
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FIG. 17. (Color online) Neutron-proton decoupling factor η

[cf. Eq. (23)] of the 2+
1 state of even-even sd-shell nuclei as a

function of neutron number, in comparison with available data from
Refs. [98–104]. The experimental data for 28,30Ne and 32,34Mg are
extracted using the formula and corresponding parameters given in
Ref. [105].

calculated with the reduced transition density of neutrons and
protons [82]

ρJα
01,J (r) =

√
(2J + 1)

∑
β ′β

f J∗
α (β ′)f 0

1 (β)
∫

d r̂ρJ00
β ′β (r)YJ0(r̂) .

(25)

where the ρJK0
β ′β (r) with K = 0 has been given in Eq. (16). We

note that if the neutrons and protons have the same quadrupole
deformations, the factor η should be one according to the rigid
rotor model. Any deviation from one indicates the decoupling
of neutrons and protons.

Figure 17 displays the neutron-proton decoupling factor η
for the 2+

1 in sd-shell nuclei, in comparison with available
values extracted from the data of (p,p′) inelastic scattering

FIG. 18. (Color online) Longitudinal C2 form factor |F2(q)|2 for
the transition from the ground state 0+

1 to the excited state 2+
1 for

24Mg. The inset panel shows the corresponding transition densities.
Data are taken from Ref. [106] (squares and circles).

and the data of B(E2; 0+
1 → 2+

1 ). The available data are
reproduced rather well by the calculation using the PC-F1
force. The theoretical results show that the protons contribute
much more to the E2 excitation to the 2+

1 than the neutrons in
the nuclei with neutron numbers at N = 8 and 20. However, for
the neutron-rich N = 28 isotones, neutrons play a dominant
role in the E2 transitions, indicating again the erosion of the
N = 28 shell gap. For the stable nuclei with N � Z, decou-
pling factor η is close to one, indicating the similar quadrupole
deformations of neutrons and protons in their ground states.

The distribution of the electric multipole transition strength
in coordinate space from ground state (0+

1 ) to excited state
(J+

α ) can be learned from the measured Coulomb form factor
in electron inelastic scattering

FJ (q) =
√

4π

Z

∫ ∞

0
drr2ρJα

01,J (r)jJ (qr) , (26)

where the coefficient
√

4π/Z is chosen so that the elastic form
factor F0(q) is unity at q = 0.

Taking 24Mg, 28Si, and 32S as examples, we plot the
inelastic form factors from the ground state 0+

1 to the 2+
1

state in Figs. 18, 19, and 20, respectively. The theoretical
results calculated with both proton and charge transition
density are plotted. It is shown in the three nuclei that the
form factors at the momentum transfer q below the first
minimum are reproduced rather well. However, the high-q
inelastic form factors are significantly underestimated after
the finite-size effect of proton is taken into account. This
problem is consistent with the overestimated charge radii
by the configuration-mixing calculation, as shown in Fig. 7.
Similar phenomenon has already been found in the previous
works [82,108].

3. Global analysis

In this section, we examine the global performance of
the MR-DFT for the excitation energy of 2+

1 state and the
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FIG. 19. (Color online) Same as Fig. 18, but for 28Si. Data are
taken from Refs. [106,107].

B(E2; 0+
1 → 2+

1 ) value in sd-shell nuclei. Figure 21 displays
the calculated values against the corresponding data. The
excitation energies are mainly distributed along the diagonal
line, except for again for 18Ne and the N = 20 isotones 30Ne,
32Mg, 34Si, and 36S. Taking into account the error bars, the
B(E2) values are much better reproduced than the E(2+

1 )
except for 32Mg and 36S. We calculate the relative rms error√

1
N

∑N
i (Ocal

i −O
exp
i

O
exp
i

)
2

and obtain the value �0.79 and 0.54 for
the set of 48 excitation energies of 2+

1 states and 38 transition
strengths of B(E2) values, respectively. By excluding the 30Ne
and 32Mg, this value is reduced to �0.36 for the excitation
energy. After taking into account the experimental error bars
for the B(E2) values, the relative rms error becomes �0.34.

Moreover, we follow Refs. [38,43] to compare theoretical
results Ocal and experimental data Oexp on a logarithmic scale

R = log(Ocal/Oexp). (27)

FIG. 20. (Color online) Same as Fig. 18, but for 32S.

FIG. 21. (Color online) (a) Calculated E(2+
1 ) excitation energies

of 48 even-even nuclei in the sd-shell region as a function of
their experimental values. (b) Calculated B(E2; 0+

1 → 2+
1 ) transition

strengths of 38 even-even nuclei in the sd-shell region as a function of
their experimental values. Experimental data are taken from Ref. [90].

The width of the distribution of R provides an important
indicator on the accuracy and reliability of the calculation.
Figure 22 shows the histogram of the logarithmic errors R
for both the excitation energies of 2+

1 state and the transition
strengths of B(E2; 0+

1 → 2+
1 ) values.

The logarithmic errors R of the excitation energies slightly
tend to positive values, indicating a soft overestimation of the
energy by our calculation. The large values of R = 0.6 and 0.7
are from 32Mg and 30Ne, respectively.

For the set of 48 even-even nuclei in the sd shell, the average
logarithmic error is 〈R〉 ≈ 0.07 but the averaged absolute value
of the error is much larger with 〈|R|〉 ≈ 0.14. We also calculate
the root-mean-square (rms) deviation, i.e., the dispersion
around the average is found to be 〈(R − 〈R〉)2〉1/2 ≈ 0.17.

The logarithmic errors R of the B(E2) values are plotted
in Fig. 22(b). There is a hollow at R = 0.0 and a peak at
R = 0.1 when the error bars of experimental data are not
taken into account (dash line). The values of R = −0.5 and
−0.6 are from 28Ne and 32Mg, respectively. However, after
taking the experimental error bars into account, the logarithmic
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FIG. 22. (Color online) Histogram of the logarithmic errors R

defined in Eq. (27). (a): Excitation energies of the first 2+ states
for 48 even-even nuclei. (b): B(E2; 0+

1 → 2+
1 ) transition strengths of

38 even-even nuclei in the sd-shell region. The distribution of B(E2)
without experimental error bar is also given (dash line). Experimental
data are taken from Ref. [90].

errors R = 0 are moved to be closer to zero. For the set of 38
even-even nuclei, the average error is found to be 〈R〉 ≈ 0.02
but the averaged absolute value and rms deviation error are
〈|R|〉 ≈ 0.09 and 〈(R − 〈R〉)2〉1/2 ≈ 0.14, respectively. These
values are smaller than that for the excitation energies of the
2+

1 states. It shows again that the B(E2) transition strengths
are better reproduced than the excitation energies. The detailed
values are given in Table II.

TABLE II. Statistics for the performance of the PN1DAMP+
GCM model with the PC-F1 force for a different set of observables.
Two nuclei (30Ne, 32Mg) are excluded in set II. The label “w/o” and
“w/” represents the calculation without and with taking into account
the error bars in the data.

Nuclei 〈R〉 〈|R|〉
√

〈(R − 〈R〉)2〉
E(2+

1 ) (I) 48 0.07 0.14 0.17
E(2+

1 ) (II) 46 0.04 0.11 0.13
B(E2) (w/o) 38 0.03 0.16 0.21
B(E2) (w/) 38 0.02 0.09 0.14

IV. SUMMARY

We have carried out a comprehensive study of the ground
state and the 2+

1 ,4+
1 states in sd-shell nuclei with the

multireference density functional theory based on relativistic
point-coupling energy density functionals. The global perfor-
mance of this beyond-mean-field approach has been discussed
in comparison with previous similar calculations based on
nonrelativistic energy density functionals and with available
data. Our findings are summarized as follows:

(i) The formula based on cranking approximation for
the dynamic correlation energy turns out to be a
good approximation for open-shell nuclei, but not for
weakly deformed or spherical nuclei.

(ii) For the relativistic PC-F1 force, the beyond-mean-
field effects increase the rms deviation of binding
energies and charge radii from 2.94 MeV to 3.61 MeV
for 56 sd-shell nuclei, and from 0.032 fm to 0.057 fm
for 25 sd-shell nuclei, respectively, but decreases
the rms deviation for two-neutron separation energies
from 2.07 MeV to 1.53 MeV for 51 sd-shell nuclei.
This phenomenon turns out to be a common feature
for the energy functionals adjusted at the mean-field
level.

(iii) The static- and dynamic-deformation effects smooth
the density in the interior region and smear the density
around the surface. As a consequence, the central
depletion in density is overall quenched significantly,
while the rms charge radii are systematically overes-
timated. Among the sd-shell nuclei, 34Si remains the
best candidate with “bubble” structure.

(iv) The transition strength B(E2; 0+
1 → 2+

1 ) values are
much better described by the GCM calculations than
the mean-field calculations. The latter underestimates
the B(E2) values systematically due to deformation
collapse or softness of energy surface.

(v) Large neutron-proton decoupling phenomenon is
found in 16,18Ne, 20Mg, and N = 20 isotones.

(vi) The longitudinal Coulomb (CL) C2 form factor F2(q)
is calculated and the experiment data are reproduced
rather well at the low momentum transfer q values
for the N = Z nuclei 24Mg, 28Si, and 32S. The form
factors at the high-q region are underestimated due
to too much mixing of large deformed configurations,
leading to an enhanced E2 transition in these nuclei.

Finally, we note that in the present study, the configurations
are limited to have time-reversal invariant axially deformed
mean-field states. To further improve the description of the
low-lying states, one of the choices is to extend the model
space by including noncollective configurations with particle-
hole excitations or the states cranked to different frequency.
Moreover an energy density functional that is parametrized
at the beyond-mean-field level is highly required to achieve
a better agreement with the experimental data. This is true in
particular for the ground-state properties. Works along these
directions are in progress.
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