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Background: The electric dipole strength detected around the particle threshold and commonly associated
with the pygmy dipole resonance offers unique information on neutron skin and symmetry energy, and is of
astrophysical interest. The nature of such a resonance is still under debate.
Purpose: We intend to describe the giant and pygmy resonances in 208Pb by enhancing their fragmentation with
respect to the random-phase approximation.
Method: We adopt the equation of motion phonon method to perform a fully self-consistent calculation in
a space spanned by one-phonon and two-phonon basis states using an optimized chiral two-body potential. A
phenomenological density-dependent term, derived from a contact three-body force, is added to get single-particle
spectra more realistic than the ones obtained by using the chiral potential only. The calculation takes into full
account the Pauli principle and is free of spurious center-of-mass admixtures.
Results: We obtain a fair description of the giant resonance and obtain a dense low-lying spectrum in qualitative
agreement with the experimental data. The transition densities as well as the phonon and particle-hole composition
of the most strongly excited states support the pygmy nature of the low-lying resonance. Finally, we obtain realistic
values for the dipole polarizability and the neutron skin radius.
Conclusions: The results emphasize the role of the two-phonon states in enhancing the fragmentation of the
strength in the giant resonance region and at low energy, consistently with experiments. For a more detailed
agreement with the data, the calculation suggests the inclusion of the three-phonon states as well as a fine tuning
of the single-particle spectrum to be obtained by a refinement of the nuclear potential.
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I. INTRODUCTION

The electric dipole response in neutron-rich nuclei was
extensively investigated in recent years with special attention
at the low-energy transitions around the neutron threshold
associated with the so-called pygmy dipole resonance (PDR), a
soft collective mode promoted by a translational oscillation of
the neutron excess against an N=Z core [1]. So much attention
is motivated by the connection of the mode with the thickness
of the neutron skin and the symmetry energy and its relevance
to neutron star and other astrophysical phenomena.

These transitions were detected in several experiments on
stable and unstable nuclei. An exhaustive list of references
can be found in Ref. [2]. Radioactive beam experiments
have extracted an appreciable dipole strength just above the
neutron decay threshold in unstable nuclei, like neutron rich
oxygen [3] or tin isotopes around 132Sn [4]. More detailed data
were obtained for stable nuclei by combining (γ,γ ′) [5–14]
with (α,α′γ ) measurements [15–18] which have detected rich
low-lying spectra of weakly excited discrete levels below the
neutron threshold over different mass regions.

Even more complete information was provided by a proton
scattering experiment on 208Pb which has extracted the electric
dipole spectrum below and above the neutron threshold
[19–21].

The properties of the mode and its relevance to neutron
skin and symmetry energy were investigated in a considerable
number of theoretical approaches. We refer the reader to

the reviews [2,22,23]. Many calculations were carried out in
Hartree-Fock (HF) plus random-phase approximation (RPA)
[24–31] or, for open shell nuclei, Hartree-Fock-Bogoliubov
(HFB) plus quasiparticle RPA (QRPA) [32–39]. Some of them
used Skyrme [26,33,34] or Gogny forces [24,38,39]; others
were carried out in relativistic RPA (RRPA) using density
functionals derived from meson-nucleon Lagrangians treated
in mean-field approximation [25,29,31].

The fragmentation of the mode was faced in several
extensions, like QRPA plus phonon coupling [40], second
RPA [41], the quasiparticle-phonon model (QPM) [6,14,42],
and the relativistic quasiparticle time-blocking approximation
(RTBA) [43–45].

We have proposed an equation-of-motion phonon method
(EMPM) [46–48] which constructs and solves iteratively a
set of equations of motion to generate a multiphonon basis
built of phonons obtained in Tamm-Dancoff approximation
(TDA). Such a basis simplifies greatly the structure of the
Hamiltonian matrix and makes feasible its diagonalization in
large configuration and phonon spaces.

The formalism treats one phonon as well as multiphonon
states on the same footing and takes the Pauli principle into
full account. Moreover, it holds for any realistic Hamiltonian
of general type.

It was already adopted to study the dipole response [49,50].
In its most recent application, we performed a self-consistent
calculation for the doubly magic 132Sn in a space spanned by
one-phonon and two-phonon basis states [50].
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We started with generating an HF basis using a nucleon-
nucleon (NN) chiral potential Vχ = NNLOopt optimized so as
to minimize the effects of the three-body forces [51]. A review
of the derivation and properties of chiral potentials can be
found in Ref. [52].

The HF spectrum so obtained resulted in being more
compressed than the one obtained by using other realistic
potentials [53,54] but not sufficiently to approach closely the
empirical single particle energies. This discrepancy was as-
cribed to the too attractive character of Vχ which overbinds Ca
isotopes [51], hinting that a, seemingly repulsive, contribution
from the residual chiral three-body force is in order.

Because such a term is not at our disposal, we added a
phenomenological, density-dependent, potential Vρ derived
from a contact three-body interaction [55] which improves the
description of the bulk properties in closed shell nuclei [56].
When added to Vχ , as to other NN potentials [53,54], it induces
a further compression of the HF spectrum [50], although not
enough to fill completely the gap with the empirical energies.
As illustrated in Ref. [50], in fact, serious discrepancies
between theory and experiments remain.

The inclusion of Vρ enabled us to reproduce approximately
the main peak of the GDR by a proper choice of the strength
of Vρ , the only parameter at our disposal.

The dipole spectra resulted in being in rough agreement
with the available data and proved the crucial role of the
two-phonon basis states. The phonon coupling, in fact, has
induced a strong fragmentation of the GDR and produced a
large number of levels around the neutron decay threshold.

Here, we use the same modified potential to perform
an analogous self-consistent EMPM calculation for 208Pb.
Because of the wealth of accurate data made available by the
(p,p′) [19–21], (γ,γ ′), and (n,γ ) [6,8,57,58] measurements
combined with the photoabsorption experiments [59,60], this
nucleus is a unique laboratory which allows one to explore the
detailed properties of the dipole response and, in particular,
the low-lying soft mode. Its neutron skin was also expressly
studied experimentally [19,61,62] and theoretically [63–65].
The nucleus, therefore, represents a testing ground for the
theoretical models.

The EMPM was already adopted to study the dipole
response in this nucleus [49]. In that paper, however, we used
a modified oscillator single-particle basis and a Brueckner
G matrix [66,67] derived from the CD-Bonn potential [68].
Moreover, the calculation was carried out in more restricted
configuration and phonon spaces. This new calculation is
also more satisfactory on theoretical ground. Apart from the
coupling constant of the corrective density-dependent term,
we have no free parameters. Single particle as well as all other
quantities are ultimately determined by the two-body potential.

II. BRIEF DESCRIPTION OF THE METHOD

The Hamiltonian we consider has the standard form,

H = H0 + V. (1)

In the j -j coupled scheme, the one-body and
two-body pieces assume the second quantized

expressions,

H0 =
∑

r

[r]1/2εr (a†
r × br )0, (2)

V = −1

4

�∑
rsqt

[�]1/2V �
rsqt [(a

†
r × a†

s )� × (bq × bt )
�]0, (3)

where

V �
rsqt = 〈(q × t)�|V |(r × s)�〉

− (−)r+s−�〈(q × t)�|V |(s × r)�〉. (4)

Following French notation [69], we have put br =
(−)jr+mr ajr−mr

, [�] = 2� + 1 = (2J� + 1), and

|(r × s)�〉 =
∑
mrms

〈jrmrjsms |J�M�〉|crjrmrcsjsms〉, (5)

where cr denotes all the additional quantum numbers.
It is useful to write the two-body potential (3) in the

recoupled form,

V = 1

4

∑
rsqtσ

[σ ]1/2Fσ
rsqt [(a

†
r × bs)

σ × (a†
q × bt )

σ ]0, (6)

where

Fσ
rsqt =

∑
�

[�](−)r+t−σ−�W (rsqt ; σ�)V �
rqst , (7)

and W (rsqt ; σ�) are Racah coefficients.
The primary goal of the method is to generate an orthonor-

mal basis of n-phonon states built of TDA phonons. Let us
assume that the (n − 1)-phonon basis states |n − 1,α〉 are
known. We must, then, determine the n-phonon basis states
of the form,

|n; β〉 =
∑
λα

C
β
λα {O†

λ × |n − 1,α〉}β, (8)

where

O
†
λ =

∑
ph

cλ
ph(a†

p × bh)λ (9)

is the TDA particle-hole (p-h) phonon operator. We start with
the equations of motion,

〈n,β|{[H,O
†
λ] × |n − 1,α〉}β

= (Eβ − Eα)〈n,β|{O†
λ × |n − 1,α〉}β. (10)

Upon applying the Wigner-Eckart theorem, we obtain the
equivalent equations,

〈n,β‖[H,O
†
λ]‖n − 1,α〉

= (Eβ − Eα)〈n,β‖O
†
λ‖n − 1,α〉. (11)

As explained in Ref. [48], we expand the commutator and
invert Eq. (9) to express the p-h operators, present in the
expanded commutator, in terms of the phonon operators O

†
λ.

We obtain ∑
λ′γ

Aβ(λα,λ′γ )Xβ
λ′γ = EβX

β
λα, (12)
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where X defines the amplitude,

X
β
λα = 〈n,β‖O

†
λ‖n − 1,α〉, (13)

and A is a matrix of the simple structure,

Aβ(λα,λ′γ ) = (Eλ+Eα)δλλ′δαγ +
∑

σ

W (βλ′ασ ; γ λ)Vσ
λα,λ′γ .

(14)

Here, the phonon-phonon potential is given by

Vσ
λα,λ′γ =

∑
rs

Vσ
λλ′(rs)ρ(n)

αγ ([r × s]σ ), (15)

where the labels (rs) run over particle (rs = pp′) and hole
(rs = hh′) states. In the above equation, we have introduced
the n-phonon density matrix,

ρ
(n)
αα′ ([r × s]σ ) = 〈n; α′‖[a†

r × bs]
σ‖n; α〉, (16)

and the potential,

Vσ
λλ′(rs) =

∑
tq

ρλλ′([q × t]σ )Fσ
qtrs , (17)

where ρλλ′ is the TDA density matrix given by

ρλλ′([r × s]σ ) = 〈λ′‖(a†
r × bs)

σ‖λ〉
= [λλ′σ ]1/2

∑
t

cλ
tsc

λ′
trW (λ′tσ s; rλ). (18)

Here t runs over particle (t = p) or hole (t = h) states
according that (rs) = (hh′) or (rs) = (pp′), respectively.

The formal analogy between the structure of the phonon
matrix Aβ(λα,λ′α′) and the form of the TDA matrix
Aλ(ph; p′h′) was pointed out in Ref. [48]. The first is deduced
from the second by replacing the p-h energies with the sum of
phonon energies and the p-h interaction with a phonon-phonon
interaction.

Equation (12) is not an eigenvalue equation yet. We have
first to expand the amplitudes X [Eq. (13)] in terms of
the expansion coefficients C

β
λα of the states |n; β〉 [Eq. (8)]

obtaining

X
β
λα =

∑
λ′α′

Dβ(λα,λ′α′)Cβ
λ′α′ , (19)

where

Dβ(αλ; α′λ′) = [〈n − 1,α| × Oλ]β[O†
λ′ × |n − 1,α′〉]β

(20)

is the metric matrix which reintroduces the exchange terms
among different phonons and, therefore, re-establishes the
Pauli principle.

Upon insertion of the expansion (19) into Eq. (12), we get
the generalized eigenvalue equation,∑

λ′α′
Hβ(λα,λ′α′)Cβ

λ′α′ =
∑
λ′α′

(AD)β(λα,λ′α′)Cβ
λ′α′

= Eβ

∑
λ′α′

Dβ(λα,λ′α′)Cβ
λ′α′ . (21)

This is effectively the representation of the eigenvalue equa-
tion,

HC = (AD)C = EC, (22)

in the overcomplete basis {O†
λ × |n − 1,α〉}β .

We eliminate such a redundancy by following the pro-
cedure outlined in Refs. [46,47], based on the Cholesky
decomposition method. This method selects a basis of linear

independent states {O†
λ × |n − 1; α〉}β spanning the physical

subspace of the correct dimensions Nn < Nr and, thus, enables
us to construct a Nn × Nn nonsingular matrix Dn. By left
multiplication in the Nn-dimensional subspace we get from
Eq. (22), [D−1

n H]
C = [D−1

n (AD)
]
C = EC. (23)

This equation determines only the coefficients C
β
λα of the

Nn-dimensional physical subspace. The remaining redundant
Nr − Nn coefficients are undetermined and, therefore, can be
safely put equal to zero. The eigenvalue problem within the
n-phonon subspace is thereby solved exactly and yields a basis
of orthonormal correlated n-phonon states of the form (8).

Because recursive formulas hold for all quantities en-
tering A and D, it is possible to solve the eigenvalue
equations iteratively starting from the TDA phonons and,
thereby, generate a set of orthonormal multiphonon states
{|0〉,|1,λ〉, . . . |n,α〉 . . . }.

In such a basis, the Hamiltonian matrix is composed of a
sequence of diagonal blocks, one for each n, mutually coupled
by off-diagonal terms 〈n′|H |n〉 which are nonvanishing only
for n′ = n ± 1,n ± 2 and are computed by means of recursive
formulas. A matrix of such a simple structure can be easily
diagonalized yielding eigenfunctions of the form,

|�ν〉 =
∑
nα

C(ν)
α |n; α〉. (24)

These eigenfunctions are used to compute the transition
amplitudes. In the coupled scheme, the one-body operator has
the form,

M(λ) = 1

[λ]1/2

∑
rs

〈r‖M(λ)‖s〉[a†
r × bs]

λ. (25)

The reduced transition amplitudes are given by

〈�f Jf
‖M(λ)‖�iJi

〉
=

∑
(niα)(nf β)

C(i)
niα

C
(f )
nf β〈nf ,βJf ‖M(λ)‖ni,αJi〉. (26)

The matrix elements of M(λ) between multiphonon states are

〈nf ; βJf ‖M(λ)‖ni ; αJi〉

= [λ]−1/2

[
δnf (ni+1)

∑
x

Mλ(0 → x)Xβ
(xλ)α + δnf (ni−1)

× (−)Jf −Ji

∑
x

Mλ(0 → x)Xα
(xλ)β + δnf ni

M(ni )
αβ (λ)

]
,

(27)

054315-3



F. KNAPP et al. PHYSICAL REVIEW C 92, 054315 (2015)

where

Mλ(0 → x) = 〈xλ‖M(λ)‖0〉
=

∑
ph

c
(xλ)
ph 〈p‖M(λ)‖h〉 (28)

is the TDA transition amplitude and

M(ni )
αβ (λ) =

∑
rs

〈r‖M(λ)‖s〉ρ(ni )
αβ ([r × s]λ) (29)

the scattering term between states with the same number of
phonons ni .

III. IMPLEMENTATION OF THE METHOD

A. Hamiltonian

The Hamiltonian we used has the form,

H = Tint + V. (30)

Here

Tint = 1

2m

∑
i

p2
i − TCM (31)

is the intrinsic kinetic operator and

V = Vχ + Vρ (32)

is a two-body potential composed of two terms. The first is
the NN optimized chiral potential Vχ = NNLOopt determined
in Ref. [51] by fixing the coupling constants at next-to-next
leading order through a new optimization method in the
analysis of the phase shifts, which minimizes the effects of
the three-nucleon force.

Although successful in reproducing several bulk and
spectroscopic properties of light and medium-light nuclei, Vχ

overestimates the binding energy per nucleon of Ca isotopes
by about 1 MeV and, most likely, overbinds even more the
heavier nuclei. To offset its over-attractive action we add the
phenomenological density-dependent term,

Vρ =
∑
i<j

vρ(ij ), (33)

where

vρ = Cρ

6
(1 + Pσ )ρ

( �r1 + �r2

2

)
δ(�r1 − �r2). (34)

This potential was derived in Ref. [55] from a three-body
contact interaction,

v3 = Cρδ(�r1 − �r2)δ(�r2 − �r3), (35)

which improved the description of bulk properties in closed
shell nuclei within an HF plus perturbation theory ap-
proach [56].

By adding Vρ to realistic potentials deduced from nucleon-
nucleon forces [50,53,54], it was possible to improve partially
the agreement of the single-particle spectra with experiments
and to approach the observed main peak of the GDR. The
effects of Vρ will be further discussed in the next section.

B. Spurious admixtures

Dealing with low-energy dipole spectra, it is of great
importance to obtain 1− states free of spurious admixtures
induced by the CM excitation. We achieve this task for the
TDA 1− phonons by the method outlined in Ref. [54] based on
the Gramm-Schmidt orthogonalization method. The method
yields states|ϕr〉 which are linear combinations of p-h states
and are orthogonal to the CM spurious state,

|ϕ0〉 = 1

N1
Rμ|0〉, (36)

where Rμ is the CM coordinate and N1 the normalization
constant.

These basis states are adopted to construct and diag-
onalize the Hamiltonian matrix. The resulting eigenstates
are rigorously free of spurious admixtures induced by the
CM excitation. They are then expressed in terms of the
|(p × h−1)1−〉 states to recover the standard TDA structure.

The EMPM states built of these CM spurious-free TDA
phonons are also spurious free. They are linear combinations of
products of phonons. The exchange terms between Fermions
entering two different phonons of a product are taken into
account through the metric matrix D which leaves the phonon
structure unchanged.

IV. CALCULATIONS AND RESULTS

A. Dipole response

Our main goal is to compute the E1 reduced strength,

Bν(Eλ = 1) = |〈ν‖M(Eλ = 1)‖0+〉|2, (37)

where

M(Eλμ) = e

2

A∑
i=1

(
1 − τ i

3

)
rλ
i Yλμ(r̂i) (38)

is the electric multipole operator written as the sum of its
isoscalar and isovector components, with τ3 = 1 for neutrons
and τ3 = −1 for protons.

By inserting the wave functions (24) up to two phonons
into the formula (26) and making use of Eq. (27), we get for
the λ = 1 transitions from the ground to the 1− states,

〈ν‖M(Eλ)‖0+〉
= C(0+)

0

∑
β1

C(ν)
β1
Mλ(0+ → β1)

+(−)λ[λ]−1/2
∑

x

Mλ(0+ → x)Yxλ(0+ → ν)

+[λ]−1/2
∑
α2β2

C(0+)
α2

C(νλ)
β2

Mα2β2 (λ), (39)

where αn = (nα) and βn = (nβ) label the n-phonon compo-
nents |nα〉 and |nβ〉 of the ground �0+

g and final 1− states
�ν , respectively. The quantity Mλ(0+ → β1) is the TDA
amplitude (28) of the transition to the one-phonon component
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|β1λ〉 of the final state �ν and

Yxλ(0+ → ν) =
∑
α2β1

C(0+)
α2

C(ν)
β1

X
(α2)
(xλ)(β1λ), (40)

where X
(α2)
(xλ)(β1λ) = 〈α2,0+‖O†

xλ‖β1λ〉.
The first term is dominant. The second may affect tran-

sitions involving 1− and ground states having sizable one-
phonon and two-phonon components, respectively, while the
third may contribute to the transitions connecting states both
having appreciable two-phonon components.

We will compute the amplitudes defined above, by using
the EMPM correlated as well as the unperturbed HF ground
state. In this latter case, the formula becomes simply,

〈ν‖M(Eλ)‖0+〉 =
∑
β1

C(ν)
β1
Mλ(0+ → β1). (41)

The Bν(E1) strength is used to determine the dipole cross
section,

σ =
∫ ∞

0
σ (ω)dω = 16π3

9�c

∫ ∞

0
ωS(E1,ω)dω, (42)

where S(E1,ω) is the λ = 1 strength function,

S(Eλ,ω) =
∑

ν

Bν(Eλ) δ(ω − ων)

≈
∑

ν

Bν(Eλ) ρ�(ω − ων). (43)

Here ω is the energy variable, ων the energy of the transition
of multipolarity Eλ from the ground to the νth excited state of
spin J = λ, and

ρ�(ω − ων) = �

2π

1

(ω − ων)2 + (
�
2

)2 (44)

is a Lorentzian of width �, which replaces the δ function as a
weight of the reduced strength.

After integration, the cross section becomes

σ = 16π3

9�c
m1, (45)

where

m1 =
∑

ν

ωνBν(E1) (46)

is the first moment. If one neglects momentum-dependent and
exchange terms in the Hamiltonian, m1 fulfills the classical
energy weighted Thomas-Reiche-Kuhn (TRK) sum rule,

m1 = �
2

2m

9

4π

NZ

A
e2, (47)

and the total cross section assumes the value

σ = (2π )2 �
2

2m

e2

�c

NZ

A
= 60

NZ

A
(MeVmb). (48)

An observable sensitive to the low-energy spectrum is the
dipole polarizability [29,63],

αD = 8π

9
m−1, (49)

where

m−1 =
∑

n

ω−1
ν Bν(E1) (50)

is the E1 inverse moment. This quantity links the dipole
polarizability to the cross section σ (ω) according to the
relation [19],

αD = �c

2π2e2

∫ ∞

0
ω−2σ (ω)dω. (51)

B. Hartree-Fock and TDA

The HF basis is generated in a configuration space which
includes 13 harmonic oscillator major shells, up to the principal
quantum number Nmax = 12. This space is sufficient for
reaching a good convergence of the single-particle spectra
below and around the Fermi surface. In going, for instance,
from Nmax = 9 to Nmax = 12, step by step, the energies change
at most by ∼0.1 MeV at each step. More appreciable variations
with Nmax are noticed in the spectrum far above the Fermi
surface, a general feature of HF. They, however, induce some
fluctuations only in the high-energy sector of the TDA strength
distribution, which are wiped out by the coupling with the
two-phonon states. The low-energy dipole spectrum reaches
convergence very fast even at the TDA level. The rate of
convergence for both HF and TDA is the same whether we
add or not Vρ to Vχ .

We have generated the TDA phonons |λ〉 in a space which
encompasses three major shells above and only one major
shell below the Fermi surface. We have checked that this is the
minimal space needed to get solutions very close to the ones
resulting from diagonalizing the Hamiltonian in the full HF
space.

Although Vχ yields considerably more compressed HF
spectra [50] compared to other potentials [53,54], the gap
between major shells remains too large with respect to the
empirical single-particle levels. Because of this large gap,
the TDA dipole cross section gets peaked ∼7 MeV above
the experimental peak (Fig. 1). The two peaks almost overlap
once we add Vρ with a coupling constant Cρ ∼ 2000 MeV fm6.

The use of V = Vχ + Vρ improves considerably also the
agreement between the HF and the measured nuclear charge
density distribution (Fig. 2). The sensitivity to Vρ is to be
noticed. The empirical charge distribution is reproduced fairly
well for Cρ ∼ 3000 MeV fm6. It is, however, more appropriate
to use a smaller value because additional diffuseness of
the Fermi surface is to be expected from the ground-state
correlations. We, thus, keep the value Cρ ∼ 2000 MeV fm6

suggested by the dipole response.
It must be stressed once again that, as shown in Ref. [50],

the HF spectrum so obtained still differs significantly from the
empirical one. The consequences of this discrepancy on the
dipole strength distribution will be discussed later.

C. EMPM

The two-phonon basis states |(n = 2)β〉 are generated
in a truncated space spanned by the states |(λ1 × λ2)β〉 ≡
{O†

λ1
× |λ2〉}

β
composed of all TDA phonons, of both parities
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FIG. 1. (Color online) TDA E1 cross section in 208Pb computed
using Vχ (a) only and Vχ + Vρ (b). The experimental data (black
squares) are taken from [19,20,58–60].

and of all multipolarities, with dominant 1�ω particle-hole
components and, in addition, all two-phonon states with
Eλ1 + Eλ2 � 20 MeV and Eλi

� 15 MeV.
This restricted set is used to construct and diagonalize the

Hamiltonian matrix. After the Cholesky treatment, we obtain a
truncated basis of ∼2.500 and ∼6.000 correlated orthonormal
states |(n = 2)β,0+〉 and |(n = 2)β,1−〉, respectively.

No significant changes in the spectrum are produced if
the number of TDA phonons is increased. We have raised
the acceptance limit up to 30 MeV (Eλ1 + Eλ2 � 30 MeV)
thereby generating ∼9.000 and ∼22.000 |(n = 2)β,0+〉 and
|(n = 2)β,1−〉 states, respectively. We found that the low-lying

FIG. 2. (Color online) Comparison with experiments [70] of the
HF charge densities obtained by using for the strength of Vρ the values
(a) Cρ = 0, (b) Cρ = 2000 MeV fm6, (c) Cρ = 3000 MeV fm6.

energy peaks are shifted downward by only ∼0.2 MeV and the
strength distribution is little affected.

The correlated |(n = 2)β〉 states are added to the un-
perturbed ground state plus the TDA one-phonon basis to
diagonalize the residual Hamiltonian and determine the ground
and 1− EMPM states.

Because of the two-phonon coupling, the ground state gets
depressed by �E = 7.3 MeV with respect to the unperturbed
HF state and becomes strongly correlated. Its two-phonon
components account for ∼24% of the wave function, in
analogy with previous results obtained for 16O [48], the same
208Pb [49] and 132Sn [50] and, also, consistently with shell
model calculations on 208Pb [12,71].

This ground-state energy shift would spoil the description of
the dipole response by pushing the strength at too high energy,
unless we add the three-phonon basis states to determine the
1− eigenstates. It is in fact known from EMPM calculations on
16O [48] that the three-phonon configurations couple strongly
to the 1− TDA phonons and, thereby, counterbalance the
coupling between ground and two-phonon states by pushing
the strength back to the experimental region.

Including the three-phonon basis in a heavy nucleus like
208Pb is too time consuming, without drastic and uncon-
trollable truncations and approximations. Thus, we confine
ourselves to a two-phonon space and, for consistency, refer the
energies to the unperturbed HF ground state. This assumption,
implicit in all extensions of RPA, was already made in shell
model calculations [12,71] as well as in our previous EPMP
calculations [49,50].

Both correlated and HF ground states are used, in alterna-
tive, to compute the EMPM cross section. The two theoretical
quantities are compared with the experimental data in Fig. 3.
With respect to TDA, shown in Fig. 1, the two EMPM cross
sections are quenched and follow roughly the smooth trend of
the measured cross section.

The data are better reproduced if the unperturbed HF ground
state |0〉 is used, while the correlations induce a too pronounced
damping. In fact, in the HF case, the transition amplitude

FIG. 3. (Color online) Experimental [19,20,58–60] versus
EMPM E1 cross sections in 208Pb. A Lorentzian of width � =
0.5 MeV was adopted. The EMPM cross section is computed using a
HF (continuous red line) and a correlated (dashed blue line) ground
state.
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is simply given by the term (41) which couples |0〉 to the
one-phonon components of the 1− states. When the correlated
ground state is used, this term, though remaining dominant,
is multiplied by the amplitude coefficient C(0+)

0 of the HF

component [Eq. (39)], which is of the order |C(0+)
0 | ∼ 0.8.

Such a quenching factor should be counterbalanced by
a corresponding overall enhancement of the amplitudes of
the one-phonon components. This, however, is promoted
by the coupling to the three-phonon subspace, not included
here. The conclusion to be drawn is that, in the absence of
three phonons, the transition strengths should be computed by
adopting the unperturbed HF ground state consistently with
the assumption made for the energy levels. Both assumptions
are tacitly made in all extensions of RPA.

The calculation yields a secondary peak around ∼17 MeV
not observed experimentally. Such an unwanted peak does not
appear in other microscopic multiphonon calculations like the
one carried out in QPM [72] and may be an effect of the
mentioned discrepancies between HF and empirical single-
particle energies.

The overall strength as well as the energy weighted sum
m1 remain practically unchanged in going from TDA to the
EMPM if the HF ground state is adopted. In both cases,
the momentum m1 overestimates the Thomas-Reiche-Kuhn
(TRK) sum rule by a factor ∼1.7. This factor would be reduced
by washing out the unwanted secondary high-energy peak.
Once again, the HF energies come into play.

Quenching and smoothness of the cross section are a
consequence of the fragmentation of the strength which
enhances enormously the density of levels and shortens the
TDA peaks. As shown in Fig. 4, pronounced transitions occur
at low energy in both TDA and EMPM. They are responsible
for the low-lying bump in the cross section (Fig. 3). The EMPM
spectrum is extremely rich compared to TDA and is composed
of shorter peaks (Fig. 5). The quenching is considerably more
pronounced when the ground-state correlations are included.

In both cases, the calculation reproduces only qualitatively
the experimental strength distribution. A detailed comparison
(Fig. 6) shows that significant discrepancies exist. Some
EMPM transitions result in being either too strong or too weak

FIG. 4. (Color online) TDA (a) versus EMPM (b) E1 strength
distributions in 208Pb. The different scales used for the two plots are
to be noticed.

FIG. 5. (Color online) TDA (a) versus EMPM (b) E1 low-lying
spectra plotted on an amplified (logarithmic) scale.

compared to the measured ones. The calculation, for instance,
yields about 20 1− levels between ∼4.5 MeV and ∼7 MeV,
twice as much as the levels detected experimentally [19,20].
The large majority of them, however, carry strengths which
are either negligible or of the order 10−2 e2fm2.

Most of the strength remains concentrated in three states.
The transition at �5.46 MeV has a strength close to the
one measured for the level at 5.51 MeV. The other two,
at �6.06 MeV and �6.40 MeV, do not have experimental
counterparts. As shown in Table I, these three states have
basically a one-phonon character. Apparently they are little
affected by the phonon coupling, which is, instead, very
effective in the higher energy regions.

In any case, one can infer from a comparison with Fig. 6
of Ref. [20] that our computed spectrum is comparable with
the ones computed in QPM and RTBA and, especially, with
the spectrum obtained in the shell model by using empirical
single-particle energies and a phenomenological potential in a
restricted configuration space [58].

FIG. 6. (Color online) EMPM versus experimental E1 low-lying
spectra. The EMPM spectra are compute with (a) and without
(b) ground-state correlations. The experimental data (c) are taken
from [20].
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TABLE I. Phonon composition of the lowest twenty 1− states.

J π
ν ων (MeV)

∣∣C(ν)
1

∣∣2 ∣∣C(ν)
2

∣∣2

1−
1 4.42780 0.00017 0.99983

1−
2 4.67271 0.00083 0.99917

1−
3 4.96609 0.00014 0.99986

1−
4 5.46012 0.95558 0.04442

1−
5 5.93408 0.03132 0.96868

1−
6 6.05979 0.90712 0.09288

1−
7 6.18594 0.05422 0.94578

1−
8 6.25179 0.04936 0.95064

1−
9 6.26285 0.05409 0.94591

1−
10 6.27701 0.00310 0.99690

1−
11 6.38869 0.15931 0.84069

1−
12 6.40474 0.69907 0.30093

1−
13 6.42531 0.03371 0.96629

1−
14 6.43502 0.03215 0.96785

1−
15 6.48971 0.86985 0.13015

1−
16 6.53002 0.00956 0.99044

1−
17 6.55127 0.00485 0.99515

1−
18 6.64103 0.00346 0.99654

1−
19 6.71925 0.01301 0.98699

1−
20 6.73778 0.00058 0.99942

It is of great interest to compute the dipole polarizability
αD (51). If the HF ground state is used, we obtain αD �
19.78 fm3, very close to the value αD = 20.1 ± 0.6 fm3

determined experimentally, once all the data up to 130 MeV
are included [19]. Apparently, the phonon coupling does not
affect the polarizability. This gets quenched, instead, if the
ground-state correlations are included and assumes the smaller
value αD � 15.71 fm3.

As shown in Fig. 7, αD(ω) rises sharply in correspondence
of the PDR and the GDR regions, indicating that it is
determined almost exclusively by these two resonances.

The dipole polarizability was shown [63] to be closely
correlated to the excess neutron radius,

�rnp =
√〈

r2
n

〉 − √〈
r2
p

〉
. (52)

FIG. 7. (Color online) Polarizability as function of energy. The
EMPM calculation is carried out using a HF (red line) and a correlated
ground state (black line).

This was actually extracted from the measured αD in 208Pb by
exploiting such a correlation [19].

We have computed the neutron skin radius using both HF
and correlated ground states (24). The EMPM yields for the
proton (τ = p) and neutron (τ = n) mean square radii the
expression,〈

r2
τ

〉 = 〈�0|r2
τ |�0〉 = 〈

r2
τ

〉
HF + 〈

r2
τ

〉
corr, (53)

where 〈r2
τ 〉HF is the HF value and 〈r2

τ 〉corr is the contribution
coming from the two-phonon components. This is given by〈

r2
τ

〉
corr =

∑
αβ

δJαJβ
δJα0C(0)

α C(0)
β M(0)

αβ, (54)

where

M(0)
αβ =

∑
rs

〈r‖r2
τ ‖s〉〈β‖(a†

r × bs)
0‖α〉. (55)

The HF proton radius is r (HF)
p = 5.06 fm, smaller than the

experimental value r
(exp)
p � 5.45 fm. The neutron radius is

estimated to be r (HF)
n = 5.28 fm. We, thus, obtain for the

neutron skin �rnp = 0.22 fm, which is in the range of the
values determined experimentally [19,61,62].

If the ground-state correlations are taken into account, the
proton radius raises to rp = 5.19 fm, not enough to reach
the measured value. On the other hand, this estimate was
computed in a truncated two-phonon space and, therefore, is
to be considered a lower limit. An enlargement of the space
would increment further the radius.

The neutron radius raises from r (HF)
n = 5.28 fm to rn =

5.5 fm. It follows that the neutron excess radius goes from
the �r (HF)

np = 0.22 fm to �rnp = 0.31 fm, which approaches
the upper limit of the range of values deduced from experi-
ments [61].

Like the density distribution (Fig. 2), the radii are quite
sensitive to the strength Cρ of the density-dependent potential
Vρ . As shown in Fig. 8, the neutron excess radius decreases as
Cρ increases. It would therefore be easy to reduce or enhance
such a quantity by a modest increment (decrement) of such a
strength.

For a more complete investigation of the nature of the low-
lying E1 levels, we compute also the isoscalar dipole transition

FIG. 8. Neutron skin thickness versus the strength of Vρ .
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FIG. 9. (Color online) EMPM isovector (a) versus isoscalar (b)
dipole low-lying spectra plotted on a logarithm scale so as to make
clearly visible the many small peaks not discernible otherwise. The
isovector strength is nothing but the low-lying sector of the spectrum
shown in Fig. 4(b). The isoscalar one is obtained by using the isoscalar
operator (56).

strength using the operator,

MIS(λ = 1,μ) =
A∑

i=1

r3
i Y1μ(r̂i). (56)

The computed isoscalar and isovector spectra overlap over the
entire low-energy region (Fig. 9), in perfect analogy with the
equivalent calculation performed for 132Sn [50].

This prediction seems to be disproved by the isoscalar-
isovector splitting observed in (α,α′γ ) experiments on open
shell nuclei like 140Ce [15] and 124Sn [5,16,17]. For a
conclusive test, it would be of great help to perform an
analogous experiment on the stable doubly magic 208Pb.

Our theoretical results suggest that these low-lying transi-
tions are promoted mainly by the excitations of the neutrons
above the N=Z core thereby hinting at their pygmy nature.

Such a hint is confirmed by the behavior of the transition
densities, shown in Fig. 10. The low-lying transition density
shows a neutron excess for large values of the radial coordinate.
This behavior is to be contrasted with the one exhibited by the

FIG. 10. (Color online) E1 transition density for a low-lying 1−

state (a) and one in the GDR region (b).

TABLE II. Particle-hole composition of two selected phonons.

1− (p(h)−1)π ω = 5.890 MeV Cπ
ph (p(h)−1)ν Cν

ph

0h9/2(0g7/2)−1 −0.05221 0i11/2(0h9/2)−1 0.05390

1f7/2(1d5/2)−1 −0.03103 1g9/2(1f7/2)−1 −0.05141

1f5/2(1d3/2)−1 −0.02924 2d5/2(1f7/2)−1 0.01384

2p3/2(1d5/2)−1 0.01366 2d5/2(2p3/2)−1 −0.04462

2p1/2(1d3/2)−1 0.01046 3s1/2(2p3/2)−1 0.15998

2p1/2(2s1/2)−1 −0.01926 3s1/2(2p1/2)−1 0.97117

0i13/2(0h11/2)−1 −0.06687 2d3/2(2p3/2)−1 −0.02626

2d3/2(2p1/2)−1 0.06317

1g7/2(1f5/2)−1 −0.03117

0j15/2(0i13/2)−1 0.08284

2g9/2(1f7/2)−1 0.01165

3d5/2(2p3/2)−1 0.01132

4s1/2(2p3/2)−1 −0.01727

2g7/2(1f5/2)−1 0.01277

1− ω = 12.816 MeV

0h9/2(0g9/2)−1 −0.11797 0i11/2(0h9/2)−1 −0.12090

0h9/2(0g7/2)−1 −0.09381 1g9/2(0h9/2)−1 0.08459

1f7/2(0g7/2)−1 −0.03875 1g9/2(1f7/2)−1 −0.21304

1f7/2(1d5/2)−1 0.07336 2d5/2(1f7/2)−1 0.01687

1f5/2(0g7/2)−1 −0.03795 2d5/2(1f5/2)−1 −0.02538

1f5/2(1d5/2)−1 −0.09910 2d5/2(2p3/2)−1 −0.03684

1f5/2(1d3/2)−1 0.04318 3s1/2(2p1/2)−1 −0.01597

2p3/2(1d3/2)−1 0.17526 2d3/2(1f5/2)−1 −0.03881

2p3/2(2s1/2)−1 0.02467 2d3/2(2p3/2)−1 −0.03722

2p1/2(1d3/2)−1 −0.17532 2d3/2(2p1/2)−1 0.01313

0i13/2(0h11/2)−1 0.46993 1g7/2(0h9/2)−1 0.04067

1g9/2(0h11/2)−1 −0.01005 1g7/2(1f7/2)−1 −0.57127

0i11/2(0h11/2)−1 −0.06708 1g7/2(1f5/2)−1 0.03749

3p3/2(1d3/2)−1 0.01351 0j15/2(0i13/2)−1 0.45810

3p3/2(2s1/2)−1 0.01245 1h11/2(0i13/2)−1 −0.01488

2g9/2(1f7/2)−1 −0.05808

3d5/2(1f5/2)−1 −0.03141

3d5/2(2p3/2)−1 −0.08047

4s1/2(2p1/2)−1 −0.06666

3d3/2(1f5/2)−1 −0.04485

3d3/2(2p3/2)−1 −0.05249

3d3/2(2p1/2)−1 0.02462

2g7/2(0h9/2)−1 −0.01030

2g7/2(1f7/2)−1 −0.05356

0j13/2(0i13/2)−1 −0.18118

transition to the most strongly excited 1− state in the region
of the GDR, which clearly describes an oscillation of protons
versus neutrons.

A further support comes from the investigation of the
structure of the wave functions. As shown in Table I, the
most strongly excited low-lying states have an overwhelming
one-phonon component. The large majority of the weakly
excited states, instead, have a dominant two-phonon structure.
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Table II shows the p-h composition of two typical phonons
contributing to the strength in the low-energy and GDR
regions, respectively. They have distinctive structures. The
low-lying phonon is composed predominantly of p-h neutron
excitations above the N = Z core, with a very dominant
single p-h neutron configuration. The phonon in the GDR
region is built of both proton and neutron p-h configurations
of comparable amplitudes in opposition of phase.

V. CONCLUDING REMARKS

The inclusion of a subset of the two-phonon basis states in
the self-consistent EMPM calculation fragments strongly the
dipole strength computed in TDA by greatly enhancing the
density of levels.

It is, however, necessary to assume an unperturbed HF
ground state to reproduce with fairly good accuracy the GDR
in its magnitude and smooth trend and to describe satisfactorily
the global properties of the dipole response, described here by
the dipole polarizability and the neutron skin radius.

This assumption, which underlies all extensions of RPA, has
a theoretical justification. Because the HF ground state couples
strongly to the two-phonon basis, it is necessary to include the
three-phonon states to obtain a comparable effect on the 1−
one-phonon states. Consistency requires that the two-phonon
correlations in the ground state should be neglected if the
three-phonon basis is missing.

The ultimate goal is to enlarge the space so as to include
such a basis. The coupling of the three phonons to the other
subspaces is expected to modify the weight of the one- and
two-phonon components of the total 1− wave functions and,
therefore, should affect the strength distribution. Whether such
a redistribution leads to a better agreement with experiments
can be ascertained only by explicit calculations. In this
perspective, we are trying to improve the efficiency of the codes
and, concurrently, search for reliable methods for truncating
the phonon space.

It is also compelling to improve further the agreement
between HF and empirical single-particle spectra to be able to
get an unambiguous correspondence between theoretical and
experimental levels, especially in the low-energy region. Such
a task can be achieved only by acting on the NN interaction.

Although the optimized chiral potential Vχ = NNLOopt

[51] may represent a promising starting point, higher order
terms need to be taken into account. This is done here
effectively by adding a phenomenological density-dependent
potential which simulates a contact three-body force.

Such a potential plays a crucial role. It improves to some
extent the description of the single-particle levels, enhances the
diffuseness of the Fermi surface consistently with experiments,
and shifts the dipole spectrum in the region of observation. It
is, however, phenomenological and contains an unconstrained
coupling constant.

We need, in any case, a more refined potential able to
provide a more accurate and detailed description of the single
particle spectra. The new optimized interaction NNLOsat [73],
involving both two- and three-body components of NNLO, is
a possible candidate.

A calculation based on such a potential would be parameter
free and would link the dipole spectra directly and exclusively
to the NN interaction. If carried out in a space encompassing
up to three phonons, it would represent an additional reliable
test for the chiral interaction.
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Wieloch-Laufenberg, U. Zurmühl, B. Ziegler, M. Schumacher,
and F. Wolf, Nucl. Phys. A 489, 189 (1988).

[61] S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol, D. S.
Armstrong, W. Armstrong, T. Averett, B. Babineau, A. Barbieri,
V. Bellini et al., Phys. Rev. Lett. 108, 112502 (2012).

[62] C. M. Tarbert, D. P. Watts, D. I. Glazier, P. Aguar, J. Ahrens, J.
R. M. Annand, H. J. Arends, R. Beck, V. Bekrenev, B. Boillat
et al. (Crystal Ball at MAMI and A2 Collaboration), Phys. Rev.
Lett. 112, 242502 (2014).

[63] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303
(2010).

[64] X. Roca-Maza, G. Pozzi, M. Brenna, K. Mizuyama, and G.
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