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Examining the stability of thermally fissile Th and U isotopes
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The properties of recently predicted thermally fissile Th and U isotopes are studied within the framework of the
relativistic mean-field approach using the axially deformed basis. We calculate the ground, first intrinsic excited
state for highly neutron-rich thorium and uranium isotopes. The possible modes of decay such as α decay and
β decay are analyzed. We found that neutron-rich isotopes are stable against α decay, however, they are very
unstable against β decay. The lifetime of these nuclei is predicted to be tens of seconds against β decay. If these
nuclei are utilized before their decay time, a lot of energy can be produced with the help of multifragmentation
fission. Also, these nuclei have great implications from the astrophysical point of view. In some cases, we found
that the isomeric states with energy range from 2 to 3 MeV and three maxima in the potential energy surface of
228−230Th and 228−234U isotopes.
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I. INTRODUCTION

Nowadays uranium and thorium isotopes have attracted
great attention in nuclear physics due to the thermally fissile
nature of some of them [1]. These thermally fissile materials
have tremendous importance in energy production. To date, the
known thermally fissile nuclei are 233U , 235U, and 239Pu; of
these, only 235U has a long lifetime, and it is the only thermally
fissile isotope available in nature [1]. Thus, presently an
important area of research is the search for any other thermally
fissile nuclei apart from 233U , 235U, and 239Pu. Recently,
Satpathy et al. [1] showed that uranium and thorium isotopes
with a neutron number N = 154−172 have a thermally fissile
property. They performed a calculation with a typical example
of 250U, as this nucleus has a low fission barrier with a
significantly large barrier width, which makes it stable against
spontaneous fission. Apart from their thermally fissile nature,
these nuclei also play an important role in nucleosynthesis in
stellar evolution. As these nuclei are stable against spontaneous
fission, the prominent decay modes may be the emission of α,
β, and cluster particles from the neutron-rich thermally fissile
(uranium and thorium) isotopes.

To measure the stability of these neutron-rich U and Th
isotopes, we investigate the α- and β-decay properties of these
nuclei. Also, we extend our calculations to estimate the binding
energies (BEs), root mean square radii, quadrupole moments,
and other structural properties.

For the last three decades, the relativistic mean-field (RMF)
formalism has been a formidable theory in describing finite
nuclear properties throughout the periodic chart and infinite
nuclear matter properties concerned with dense cosmic objects
such as neutron stars. Along the same line RMF theory is also
good enough for study of clusterization [2], α decay [3], and
β decay of nuclei. The presence of cluster in heavy nuclei
like 222Ra , 232U , 239Pu, and 242Cm has been studied using
the RMF formalism [4,5]. It gives a clear prediction of α-
like (N = Z) matter in the central part for heavy nuclei and
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a cluster-like structure (N = Z and N �= Z) for light-mass
nuclei [2]. Proton emission as well as cluster decay phenomena
is well studied using the RMF formalism with the M3Y [6],
LR3Y [7], and NLR3Y[8] nucleon-nucleon potentials in the
framework of single- and double-folding models, respectively.
Here, we have used the RMFformalism with the well-known
NL3 parameter set [9] for all our calculations.

The paper is organized as follows: The RMF formalism
is outlined briefly in Sec. II. The importance of the pairing
correlation and inclusion of the BCS approximation is also
reported in this section. The results obtained from our calcula-
tions for the BE, basis selection, and potential energy surface
(PES) diagrams and the evaluation of single-particle levels
are discussed in Sec. III. Qα and Qβ values are calculated in
Sec. IV. In this section, various decay modes are discussed
using an empirical formula and the limitations of the model
are also reported. Finally, a brief summary and concluding
remarks are given in Sec. V.

II. FORMALISM

In the present paper, we use the axially deformed RMF
formalism to calculate various nuclear phenomena. The
meson-nucleon interaction is given by [10–15]

L = ψi{iγ μ∂μ − M}ψi + 1
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where ψ is the Dirac spinor and meson fields are denoted
σ , V μ, and Rμ for σ , ω, and ρ mesons, respectively. The
electromagnetic interaction between protons is denoted by the
photon field Aμ · gs, gω, gρ , and e2

4π
are the coupling constants
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for the σ , ω, and ρ meson and photon fields, respectively.
The strengths of the self-coupling σ mesons (σ 3 and σ 4) are
denoted g2 and g3, with c3 as the nonlinear coupling constant
for ω mesons. The nucleon mass is denoted M, where the
σ, ω, and ρ meson masses are ms, mω, and mρ , respectively.
From the classical Euler-Lagrangian equation, we get the
Dirac equation and Klein- Gordan equation for the nucleon
and meson fields, respectively. The Dirac equation for the
nucleon is solved by expanding the Dirac spinor into lower and
upper components, while the mean-field equation for bosons
is solved in the deformed harmonic oscillator basis with β0 as
the deformation parameter. The nucleon equation along with
different meson equations form a coupled set of equations,
which can be solved by the iterative method. Various types
of densities such as the baryon (vector), scalar, isovector, and
proton (charge) densities are given as

ρ(r) =
∑

i

ψ
†
i (r)ψi(r), (2)

ρs(r) =
∑

i

ψ
†
i (r)γ0ψi(r), (3)

ρ3(r) =
∑

i

ψ
†
i (r)τ3ψi(r), (4)

ρp(r) =
∑

i

ψ
†
i (r)

(
1 − τ3

2

)
ψi(r). (5)

The calculations are simplified under the shadow of various
symmetries like conservation of parity, no-sea approximation,
and time reversal symmetry, which kills all spatial components
of the meson fields and the antiparticle-state contribution
to the nuclear observable. The center-of-mass correction is
calculated with the nonrelativistic approximation, which gives
Ec.m. = 3

4 41A−1/3 (in MeV). The quadrupole deformation
parameter β2 is calculated from the resulting quadrupole
moments of the proton and neutron. The BE and charge radius
are given by a well-known relation [16–18].

A. Pairing correlations in the RMF formalism

In nuclear structure physics, the pairing correlation plays
an indispensable role in open-shell nuclei. The priority of
the pairing correlation escalates with the mass number A. It
also plays a crucial role in the understanding of deformation
of heavy nuclei. Because of the limited pair near the Fermi
surface, it has a nominal effect on both bulk and single-particle
properties of light-mass nuclei. In the present case, we consider
only the T = 1 channel of the pairing correlation, i.e., pairing
between proton-proton and neutron-neutron. In this case, a
nucleon of quantum state |j,mz〉 pairs with another nucleon
having the same Iz value with quantum state |j,−mz〉, which
is the time reversal partner of the other. The philosophy of
BCS pairing is the same in both the nuclear and the atomic
domain. The first evidence of the pairing energy came from
the even-odd mass staggering of isotopes. In the mean-field
formalism the violation of the particle number is on account
of the pairing correlation. The RMF Lagrangian density only
accommodates terms like ψ†ψ (density) and no terms of the
form ψ†ψ† or ψψ . The inclusion of a pairing correlation of the

form ψψ or ψ†ψ† violates the particle number conservation
[19]. Thus, a constant-gap BCS-type simple prescription
is adopted in our calculations to take care of the pairing
correlation for open-shell nuclei. The general expression for
the pairing interaction to the total energy in terms of occupation
probabilities v2

i and u2
i = 1 − v2

i is written as [19,20]

Epair = −G

[∑
i>0

uivi

]2

, (6)

where G is the pairing force constant. The variational approach
with respect to the occupation number v2

i gives the BCS
equation [20],

2εiuivi − �
(
u2

i − v2
i

) = 0, (7)

with � = G
∑

i>0 uivi .
The density with occupation number is defined as

ni = v2
i = 1

2

[
1 − εi − λ√

(εi − λ)2 + �2

]
. (8)

The pairing gap (�) of a proton and neutron is taken from the
phenomenological formula of Madland and Nix [21],

�n = r

N1/3
exp(−sI − tI 2), (9)

�p = r

Z1/3
exp(sI − tI 2), (10)

where I = (N − Z)/A, r = 5.73 MeV, s = 0.117, and
t = 7.96.

The chemical potentials λn and λp are determined by the
particle numbers for neutrons and protons. The pairing energy
of nucleons using Eqs. (7) and (8) can be written as

Epair = −�
∑
i>0

uivi . (11)

In a constant-pairing-gap calculation, for a particular value
of pairing gap � and force constant G, the pairing energy
Epair diverges, if it is extended to an infinite configuration
space. In fact, in all realistic calculations with finite-range
forces, the contribution of states of high momenta above the
Fermi surface (for a particular nucleus) to � decreases with
the energy. Therefore, the pairing window in all equations is
extended up to the level |εi − λ| � 2(41A−1/3) as a function
of the single-particle energy. The factor 2 has been determined
to reproduce the pairing-correlation energy for neutrons in
118Sn using Gogny force [18,19,22]. We note that recently
Karatzikos et al. [23] showed that if it is adjusted to a constant
pairing window for a particular deformation, errors may
occur in different energy solutions (different state solutions).
However, this kind of approach has not been taken into account
in our calculations, as we have adjusted to reproducing the
pairing as a whole for the 118Sn nucleus.

It is a tough task to compute the BE and quadrupole
moment of odd-N or odd-Z or both odd-N and odd-Z numbers
(odd-even, even-odd, or odd-odd) nuclei. To do this, one needs
to include the additional time-odd term, as done in the SHF
Hamiltonian [24], or empirically the pairing force in order to
take care of the effect of an odd neutron or odd proton [25]. In
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an odd-even or odd-odd nucleus, the time-reversal symmetry
is violated in mean-field models. In our RMF calculations, we
neglect the space components of the vector fields, which are
odd under time reversal and parity. These are important in the
determination of magnetic moments [26] but have a very small
effect on bulk properties such as BEs or quadrupole deforma-
tions, and they can be neglected [27] in the present context.
Here, for the odd-Z or odd-N calculations, we employ the
Pauli blocking approximation, which restores the time-reversal
symmetry. In this approach, one pair of conjugate states, ±m,
is taken out of the pairing scheme. The odd particle stays in one
of these states, and its corresponding conjugate state remains
empty. In principle, one has to block different states around
the Fermi level in turn to find the one that gives the lowest
energy configuration of the odd nucleus. For odd-odd nuclei,
one needs to block both the odd neutron and the odd proton.

III. CALCULATIONS AND RESULTS

In this section, we evaluate our results for the BE, rms
radius, and quadrupole deformation parameter for recently
predicted thermally fissile isotopes of Th and U. These nuclei
are quite heavy and require a large number of oscillator bases,
which means considerable time for computation. In the first
subsection here we describe how to select the basis space, and
the results and discussion follow.

A. Selection of the basis space

The Dirac equation for fermions (proton and neutron) and
the equation of motion for bosons (σ, ω, ρ, and A0) obtained
from the RMF Lagrangian are solved self-consistently using
an iterative method. These equations are solved in an axially
deformed harmonic oscillator expansion basis, NF and NB for
fermionic and bosonic wave functions, respectively.

For heavy nuclei, a large number of basis spaces NF and
NB are needed to get a converged solution. To reduce the
computational time without compromising the convergence
of the solution, we have to choose an optimal number of
model spaces for both fermion and boson fields. To choose
optimal values for NF and NB , we select 240Th as a test
case and increase the basis quanta from 8 to 20 step by step.
The obtained results for BE, charge radius, and quadrupole
deformation parameter are shown in Fig. 1. In our calculations,
we notice an increment of 200 MeV in BE upon going from
NF = NB = 8 to NF = NB = 10. This increment in energy
decreases upon going to a higher oscillator basis. For example,
the change in energy is ∼0.2 MeV with a change in NF = NB

from 14 to 20, and the increment in rc values is 0.12 fm,
respectively. Keeping in mind the increase in convergence time
for larger quanta as well as the size of the nuclei considered, we
finally use NF = NB = 20 in our calculations to get suitable
convergent results, which is the current accuracy of the present
RMF models.

B. Binding energies, charge radii, and quadrupole
deformation parameters

To be sure about the predictivity of our model, first we
calculate the BEs, charge radii rc, and quadrupole deformation
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FIG. 1. Variations of the (a) calculated binding energy (BE), (b)
charge radius (rc), and (c) quadrupole deformation parameter (β2) are
given with the bosonic and fermionic basis.

parameters β2 for some of the known cases. We have compared
our results with the experimental data wherever available or
with the finite-range droplet model (FRDM) of Möller et al.
[28–31]. The results are listed in Tables I and II. From the
tables, it is obvious that the calculated BEs are comparable
with the FRDM as well as the experimental values. Further
inspection of the tables reveals that the FRDM results are
closer to the data. This may be due to the fitting of the FRDM
parameters for almost all known data. However, in the case of
most RMF parametrizations, the constants are determined by
using a few spherical nuclei data along with certain nuclear
matter properties. Thus the predictions of the RMF results are
considered to be reasonable but not excellent.

Ren et al. [32,33] have reported that the ground states of
several superheavy nuclei are highly deformed states. Since
these are very heavy isotopes, the general assumption is that
the ground state probably remains in a deformed configuration
(liquid drop picture). When these nuclei are excited either by
a thermal neutron or by any other means, its intrinsic excited
state becomes extraordinarily deformed and attains the scission
point before it goes to fission. This can also be easily realized
from the PES curve. Our calculations agree with the prediction
of Ren et al. for other superheavy regions of the mass table.
However, this conclusion is contradicted in [34], according to
which the ground state of superheavy nuclei is either spherical
or normally deformed.

In some cases of U and Th isotopes, we get more than
one solution. The solution corresponding to the maximum BE
is the ground-state configuration and all other solutions are
the intrinsic excited states. In some cases, the ground-state
BE does not match the experimental data. However, the BEs
whose quadrupole deformation parameter β2 is closer to the
experimental data or to the FRDM value match well with each
other. For example, the BEs of 236U are 1791.7, 1790.0, and
1790.4 MeV with the RMF, FRDM, and experimental data,
respectively, and the corresponding β2 values are 0.276, 0.215,
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TABLE I. Calculated binding energies (BEs), quadrupole deformation parameters (β2), and rms radii for the ground states and a few
selective intrinsic excited states of U isotopes, using the RMF formalism with the NL3 parameter set. The experimental and FRDM data
[28–31] are also listed. See the text for more details.

RMF (NL3) FRDM Experiment

Nucleus rn rp rrms rch β2 BE (MeV) BE (MeV) β2 rch β2 BE (MeV)

216U 5.762 5.616 5.700 5.673 0 1660.5 1649.0 −0.052
6.054 5.946 6.008 5.999 0.608 1650.8

218U 5.789 5.625 5.721 5.682 0 1678.0 1666.7 0.008 1665.6
6.081 5.957 6.029 6.011 0.606 1666.9

220U 5.819 5.641 5.745 5.698 0 1692.2 1681.2 0.008 1680.8
6.109 5.971 6.052 6.025 0.605 1682.6

222U 5.849 5.661 5.772 5.717 0 1705.1 1695.7 0.048 1695.6
6.142 5.990 6.079 6.043 0.611 1697.9

224U 5.878 5.681 5.798 5.737 0 1717.9 1710.8 0.146 1710.3
6.198 6.032 6.131 6.085 0.645 1712.8

226U 5.907 5.701 5.824 5.757 0 1730.8 1724.7 0.172 1724.8
6.232 6.053 6.160 6.106 0.652 1727.4
5.935 5.721 5.850 5.776 0 1743.6

228U 5.966 5.743 5.877 5.798 0.210 1741.7 1739.0 0.191 1739
6.259 6.068 6.182 6.120 0.651 1741.3

230U 5.964 5.739 5.875 5.795 0 1756.0 1752.6 0.199 0.260 1752.8
6.000 5.765 5.907 5.821 0.234 1755.4
6.293 6.091 6.213 6.143 0.658 1753.7

232U 5.994 5.755 5.900 5.810 0 1766.8 1765.7 0.207 0.267 1765.9
6.033 5.785 5.935 5.840 0.251 1768.2
6.364 6.167 6.286 6.218 0.712 1766.8

234U 6.021 5.767 5.923 5.823 0 1776.4 1778.2 0.215 5.829 0.265 1778.6
6.065 5.803 5.963 5.858 0.267 1780.3
6.415 6.209 6.334 6.260 0.738 1778.2

236U 6.092 5.819 5.987 5.874 0.276 1791.7 1790.0 0.215 5.843 0.272 1790.4
6.446 6.230 6.363 6.281 0.744 1789.4

238U 6.124 5.838 6.015 5.892 0.283 1802.5 1801.2 0.215 5.857 0.272 1801.7
6.488 6.263 6.402 6.314 0.763 1800.4

and 0.272. Similar to the BE, we get β2 and charge radius rc

RMF results comparable with the FRDM and experimental
values.

C. Potential energy surface

In the late 1960s, the structure of the PES found renewed
interest for its role in the nuclear fission process. In the
majority of PESs for actinide nuclei, there exists a second
maximum, which splits the fission barrier into inner and outer
segments [35]. It also has a crucial role for the characterization
of the ground state, intrinsic excited state, occurrence of
shape coexistence, radioactivity, and spontaneous and induced
fission. The structure of the PES is defined mainly from
the shell structure, which is strongly related to the distance
between the mass centers of the nascent fragments. The
macroscopic-microscopic liquid drop theory has been a key
concept of fission, where the surface energy is in the form of
collective deformation of the nucleus.

In Figs. 2 and 3 we have plotted the PES for some selected
isotopes of Th and U nuclei. The constraint binding energy
BEc versus the quadrupole deformation parameter β2 values
are shown. A nucleus undergoes the fission process when the
nucleus becomes highly elongated along an axis. This can be

done most simply by modifying the single-particle potential
with the help of a constraint, i.e., the Lagrangian multiplier
λ. Then the system becomes more or less compressed
depending on the Lagrangian multiplier λ. In other words,
in a constraint calculation, we minimize the expectation value
of the Hamiltonian 〈H ′〉 instead of 〈H 〉, which are related to
each other by the relation [36–40]

H
′ = H − λQ, with Q = r2Y20(θ,φ), (12)

where λ is fixed by the condition 〈Q〉λ = Q0.
Usually, in an axially deformed constraint calculation for a

nucleus, we see two maxima in the PES diagram: (i) prolate
and (ii) oblate or spherical. However, in some cases, more than
two maxima are seen. If the ground-state energy is distinctly
more than other maxima, then the nucleus has a well-defined
ground-state configuration. On the other hand, if the difference
in BEs between two or three maxima is negligible, then the
nucleus is in the shape coexistence configuration. In this case,
a configuration mixing calculation is needed to determine the
ground-state solution of the nucleus, which is beyond the scope
of the present calculation. It is to be noted here that in a
constraint calculation, the maximum BE (major peak in the
PES diagram) corresponds to the ground-state configuration
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TABLE II. Same as Table I, but for Th isotopes.

RMF (NL3) FRDM Experiment

Nucleus rn rp rrms rch β2 BE (MeV) BE (MeV) β2 rch β2 BE (MeV)

216Th 5.781 5.594 5.704 5.651 0 1673.5 1663.6 0.008 1662.7
6.034 5.897 5.977 5.951 0.567 1663.8

218Th 5.812 5.611 5.730 5.667 0 1686.5 1677.2 0.008 1676.7
6.105 5.959 6.045 6.013 0.616 1678.2

220Th 5.842 5.631 5.757 5.687 0 1698.1 1690.2 0.030 1690.6
6.140 5.983 6.076 6.036 0.624 1692.8

222Th 5.873 5.651 5.784 5.707 0 1709.7 1704.6 0.111 0.151 1704.2
6.174 6.007 6.107 6.060 0.631 1706.1

224Th 5.902 5.672 5.81 5.728 0 1721.4 1717.4 0.164 0.173 1717.6
6.222 6.021 6.142 6.074 0.640 1718.9

226Th 5.931 5.692 5.837 5.748 0 1733.0 1729.9 0.173 0.225 1730.5
6.25 6.036 6.166 6.089 0.642 1731.9

228Th 5.955 5.710 5.859 5.766 0 1743.9 1742.5 0.182 5.748 0.229 1743.0
5.989 5.729 5.888 5.785 0.227 1744.5
6.292 6.065 6.203 6.118 0.661 1743.4

230Th 5.990 5.727 5.888 5.783 0 1754.2 1754.6 0.198 5.767 0.246 1755.1
6.026 5.751 5.920 5.807 0.232 1756.0
6.315 6.111 6.236 6.163 0.671 1753.1

232Th 6.060 5.773 5.950 5.828 0.251 1767.0 1766.2 0.207 5.784 0.248 1766.7
6.240 6.010 6.151 6.063 0.681 1765.0

234Th 6.093 5.793 5.979 5.848 0.269 1777.5 1777.2 0.215 0.238 1777.6
236Th 6.122 5.812 6.006 5.866 0.272 1787.6 1787.6 0.215 1788.1
238Th 6.152 5.832 6.033 5.887 0.281 1797.5 1797.7 0.224 1797.8
240Th 6.180 5.846 6.057 5.901 0.292 1806.6 1807.2 0.224

and all other solutions (minor peaks in the PES curve) are the
intrinsic excited states.

The fission barrier Bf is an important quantity for study
of the properties of the fission reaction. We calculated the
fission barriers from the PES curve for some selected even-
even nuclei, which are listed in Table III. From the table,
it can be seen that the fission barrier for 228Th turns out to
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FIG. 2. (Color online) The potential energy surface is a function
of the quadrupole deformation parameter (β2) for Th isotopes. The
difference between the leftmost (blue) and the middle (green) circles
represents the first fission barrier height Bf (in MeV). See text for
details.

be 5.69 MeV, comparable to the FRDM and experimental
values of Bf = 7.43 and 6.50 MeV, respectively. Similarly,
the calculated Bf of 232U is 5.65 MeV, which also agrees
well with the experimental data, 5.40 MeV. In some cases,
the fission barrier height is 1–2 MeV lower or higher than
the experimental data. The double-humped fission barrier is
reproduced in all these cases. Similar types of calculations are
done in Refs. [41–44].

In nuclei like 228–230Th and 228–234U, we find three maxima.
Among these maxima, two are found at normal deformation
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FIG. 3. (Color online) Same as Fig. 2, but for U isotopes.
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TABLE III. First fission barrier heights Bf (in MeV) of some
even-even actinide nuclei from RMF (NL3) calculations compared
with FRDM and experimental data [28].

Nucleus Bcalc.
f BFRDM

f [28] Bexpt.
f [28]

228Th 5.69 7.43 6.50
230Th 5.25 7.57 7.0
232Th 4.85 7.63 6.30
234Th 4.34 7.44 6.65
232U 5.65 6.61 5.40
234U 6.30 6.79 5.80
236U 6.64 6.65 5.75
238U 7.15 4.89 5.90
240U 7.66 5.59 5.80

(spherical and normal prolate), but the third is situated far
away, i.e., at a relatively large quadrupole deformation. Upon
careful inspection, one can also see that one of them (mostly
the peak closer to the spherical region) is not strongly
pronounced and can be ignored in certain cases. This third
maximum separates the second barrier by a depth of 1–2
MeV, responsible for the formation of a resonance state,
which has been observed experimentally [45]. For some of the
uranium isotopes 216–230U, the ground states are predicted to
be spherical in the RMF formalism, agreeing with the FRDM
results. The other isotopes in the series 232–256U are found
to be in the prolate ground state, matching the experimental
data. Similarly, the thorium nuclei 216–226Th are spherical in
shape and 228–264Th are in the prolate ground configuration. In
addition to these shapes, we also note shallow regions in the
PES curves of both Th and U isotopes. These fluctuations in
the PES curves could be due to the limitation of the mean-field
approximation and one needs a theory beyond the mean field
to overcome such fluctuations. For example, the generator
coordinate method or random phase approximation could be an
improved formalism to take care of such effects [46]. Beyond
the second hump, we find that the PES curve goes down and
down, and never up again. This is the process wherein the liquid
drop gets more and more elongated and reaches the fission
stage. The PES curve from which it starts to go down is marked
by the scission points, which are shown by the rightmost, black
circles on some of the PES curves in Figs. 2 and 3.

D. Evolution of single-particle energy with deformation

In this subsection, we evaluate the neutron and proton
single-particle energy levels for some selected Nilsson orbits
with different values of the deformation parameter β2 using
the constraint calculations. The results are shown in Figs. 4
and 5, which explain the origin of the shape change along
the α-decay chains of the thorium and uranium isotopes. The
positive-parity orbit is shown by solid lines, the negative-parity
orbit by dashed lines, and the dotted (red) line indicates the
Fermi energy for 232Th and 236U.

For small-Z nuclei, the electrostatic repulsion is very weak,
but at a higher value of Z (superheavy nuclei), the electrostatic
repulsion is much stronger so that the nuclear liquid drop
becomes unstable to surface distortion [47] and fission. In
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FIG. 4. (Color online) Single-particle energy levels for 232Th as
a function of the quadrupole deformation parameter β2. Fermi levels
are denoted by the dotted (red) curve.

such a nucleus, the single-particle density is very high and
the energy separation is small, which determines that the shell
stabilizes the unstable Coulomb repulsion. This effect is clear
for heavy elements approaching N = 126, with a gap between
3p1/2 and 1i11/2 of about 2–3 MeV, in a neutron single particle
of 236U and 232Th. In both Fig. 4 and Fig. 5, the neutron
single-particle energy level 1i13/2 lies between 2f7/2 and 2f5/2,
creating a distinct shell gap at N = 114. In 232Th and 236U,
with increasing deformation the opposite-parity levels of 2g9/2

and 1j15/2, which are far apart in the spherical solution, come
closer to each other. This gives rise to the parity doublet
phenomenon [48–50].

IV. MODE OF DECAYS

In this section, we discuss various modes of decay en-
counter by superheavy nuclei both in the β-stability line
and away from it. This is important, because the utility
of superheavy nuclei and, mostly, nuclei which are away
from stability lines depends very much on their lifetime. For
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FIG. 5. (Color online) Same as Fig. 4, but for the 236U nucleus.
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example, we do not get 233U and 239Pu in nature, because of
their short lifetimes, although these two nuclei are extremely
useful for energy production. This is why 235U is the most
necessary isotope in the uranium series, for its thermally fissile
nature in energy production in the fission process, both for
civilian and for military use. The common modes of instability
for such heavy nuclei are spontaneous fission, α, β, and cluster
decays. All these decays depend on the neutron-to-proton ratio
as well as the number of nucleons present in the nucleus.

A. α- and β-decay half-lives

In previous papers [4,5], we have analyzed the densities
of nuclei in a more detailed manner. From that analysis, we
concluded that there is no visible cluster either in the ground or
in the excited intrinsic states. The possible clusterizations are
the α-like matter in the interior and neutron-rich matter in the
exterior region of normal and neutron-rich superheavy nuclei,
respectively. Thus, the possible modes of decay are α decay
for β-stable nuclei and β− decay for neutron-rich isotopes. To
estimate the stability of such nuclei, we have to calculate the
α-decay T1/2(α) and the β-decay T1/2(β) half-lives.

The Qα energy and α-decay half-life Tα
1/2

To calculate the α-decay half-life T α
1/2, one has to know the

Qα energies of the nucleus. This can be estimated by knowing
the BEs of the parents and daughter and the BE of the α particle,
i.e., the BE of 4He. The BEs are obtained from experimental
data wherever available and from other mass formulas as well
as the RMF Lagrangian as we discussed earlier in this paper
[51]. The Qα energy is evaluated using the relation

Qα(N,Z) = BE(N,Z) − BE(N − 2,Z − 2) − BE(2,2).
(13)

Here, BE(N,Z), BE(N − 2,Z − 2), and BE(2,2) are the BEs
of the parent, daughter, and 4He nuclei (BE = 28.296 MeV)
with neutron number N and proton number Z.

Knowing the Qα values of nuclei, we roughly estimate
the α-decay half-lives log10 T α

1/2(s) of various nuclei using the
phenomenological formula of Viola and Seaborg [53]:

log10 T α
1/2(s) = (aZ − b)√

Qα

− (cZ + d) + hlog. (14)

The values of the parameters a, b, c, and d are taken from
the recent modified parametrizations of Sobiczewski et al.
[54], which are a = 1.66175, b = 8.5166, c = 0.20228, and
d = 33.9069. The quantity hlog accounts for the hindrances
associated with the odd proton and neutron numbers as given
by Viola and Seaborg [53], namely,

hlog =

0, Z and N even;
0.772, Z odd and N even;
1.066, Z even and N odd;
1.114, Z and N odd.

The Qα values obtained from RMF calculations for Th
and U isotopes are shown in Figs. 6 and 7. Our results are
also compared with other theoretical predictions [29,52] and
experimental data [31]. The agreement of RMF results with
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FIG. 6. (Color online) The Qα and half-life time T α
1/2 of the α-

decay chain for Th isotopes are calculated using the RMF, FRMD
[28,29], and ELDM [52] and compared with the experiment (EXP.)
[30].

others as well as with experiments is pretty good. Although
the agreement of Qα values is quite good, one must note that
the T α

1/2(s) values may vary a lot, because of the exponential
factor in them. That is why it is better to compare log10 T α

1/2(s)
instead of T α

1/2(s) values. These are compared in the right panel
in Figs. 6 and 7. We note that our prediction matches well with
other calculations as well as experimental data.

Further, a careful analysis of log10 T α
1/2 (in seconds) for

even-even thorium reveals that the Qα value decreases with
an increase in the mass number A of the parent nucleus. The
Qα energy of Th isotopes given by Duarte et al. [52] deviates
a lot when the mass of the parent nucleus reaches A = 230.
The corresponding log10 T α

1/2 increases almost monotonically
linearly with an increase in mass number of the same nucleus.
The experimental values of log10 T α

1/2 deviate a lot in the heavy-
mass region (with parent nuclei 234–238). A similar situation
is found in the case of uranium isotopes also, which are shown
in Fig. 7.

B. β decay

As we have discussed, the prominent mode of instability
of neutron-rich Th and U nuclei is β decay, and we give an
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FIG. 7. (Color online) Same as Fig. 6, but for U.
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FIG. 8. (Color online) The β-decay half-lives for Th and U
isotopes are calculated using the formula of Fiset and Nix [55]
[Eq. (24)]. Ground-state binding energies are taken from the FRDM
[29], INM [56], and RMF models.

estimation of such decay in this subsection. Actually, the β-
decay lifetime should be evaluated on the microscopic level,
but that is beyond the scope of this paper. Here we have used
the empirical formula of Fiset and Nix [55], which is defined
as

T β = (540 × 105.0)
me

5

ρDOS(Wβ
6 − me

6)
s. (15)

Similarly to the α decay, we evaluate the Qβ value for the Th
and U series using the relation Qβ = BE(Z + 1,A) − B(Z,A)
and Wβ = Qβ + me

2. Here, ρDOS is the average density of
states in the daughter nucleus (e−A/290 × number of states
within 1 MeV of the ground state). To evaluate the bulk
properties, such as the BE of odd-Z nuclei, we used the Pauli
blocking prescription as discussed in Sec. II. The obtained
results are displayed in Fig. 8 for both Th and U isotopes.
From the figure, it is clear that for neutron-rich Th and U
nuclei, the prominent mode of decay is β decay. This means
that once a neutron-rich thermally fissile isotope is formed
by some artificial means in the laboratory or naturally in a
supernova explosion, it immediately undergoes β decay. In
our rough estimation, the lifetime of 254Th and 256U, which
are the nuclei of interest, is tens of seconds. If this prediction
of the time period is acceptable, then on the nuclear physics
scale, it is reasonably a good time for further use of the nuclei.
It is worth mentioning here that thermally fissile isotopes in
the Th and U series have neutron numbers N = 154−172,
keeping N = 164 in the middle of the island. So, in the case of
the short lifetime of 254Th and 256U, one can choose a lighter
isotope in the series for practical utility.

C. Limitations of the model

Before drawing our conclusions, it is important to mention a
few points about the limitations of the present approach. When
we compare our calculated results with the experimental data,
although we get satisfactory results, sometimes we do not
get excellent agreement, and the main possible reasons for

the discrepancy of the RMF and experimental values are as
follows.

(1) In the RMF formalism we are working in the mean-field
approximation of the meson field. In this approximation, we
are neglecting the vacuum fluctuation, which is an indispens-
able part of the relativistic formalism. In calculating the nucle-
onic dynamics, we are neglecting the negative energy solution,
which means we are working in the no-sea approximation
[57]. It has been discussed that the no-sea approximation and
quantum fluctuation can improve the results up to a maximum
of 20% [58] for very light nuclei. Therefore, the mean field is
not a good approach for the light region of the periodic table.
However, for heavy masses, this mean-field approach is quite
good and can be used for any practical purpose.

(2) In order to solve the nuclear many-body system, here
we have used the Hartee formalism and neglected the Fock
term, which corresponds to the exchange correlation.

(3) To take care of the pairing correlation, we have used a
BCS-type pairing approach. This gives good results for nuclei
near the β-stability line, but it fails to incorporate properly
the pairing correlation for nuclei away from the β-stability
line and superheavy nuclei [23]. Thus a better approach like
a Hartree-Fock-Bogoliubov [59,60]-type pairing corelation is
more suitable for the present region.

(4) Parametrization plays an important role in improving the
results. The constants in RMF parametrizations are determined
by fixing the experimental data for a few spherical nuclei. We
expect that the results may be improved by refitting the force
parameters for a larger number of nuclei, including deformed
isotopes.

(5) The basic assumption in the RMF theory is that two
nucleons interact with each other through the exchange of
various mesons. There is no direct inclusion of three-body or
higher effects. This effect is taken care of partially by including
the self-coupling of mesons, and in the recent relativistic
approach various cross-couplings are added because of their
importance.

(6) Although various mesons are observed experimentally,
few of them are taken into account in the nucleon-nucleon
interaction. The contributions of some of them are prohibited
for symmetry reasons and many are neglected due to their neg-
ligible contributions, because of their heavy mass. However,
some of them make a substantial contribution to the properties
of nuclei, especially when the neutron-proton asymmetry is
greater, such as δ mesons [61,62].

(7) It is noteworthy that the origin of α-decay or cluster-
decay phenomena is a purely quantum mechanical process.
Thus quantum tunneling plays an important role in such decay
processes. The deviation of the experimental α-decay lifetime
from the calculated results obtained by the empirical formula
may not be suitable for such heavy nuclei, which are away
from the stability line, and more involved quantum mechanical
treatment is needed for such cases.

V. CONCLUSIONS

In summary, we have done a thorough structural study of
recently predicted thermally fissile isotopes in the Th and U
series in the framework of RMF theory. Although there are
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certain limitations of the present approach, the qualitative
results will remain unchanged even when the drawbacks of
the model are taken into account. The heavier isotopes of these
two nuclei show various shapes including very large prolate
deformations in highly excited configurations. The changes in
single-particle orbits along the line of quadrupole deformation
are analyzed and parity doublet states found in some cases.
Using an empirical estimation, we find that the neutron-rich
isotopes of these thermally fissile nuclei are predicted to be
stable against α and cluster decays. Spontaneous fission also
does not occur, because the presence of a large number of

neutrons makes the fission barrier broader. However, these
nuclei are highly β unstable. Our calculation predicts that the
β lifetime is tens of seconds for 254Th and 256U and this
time increases for nuclei that have a lower neutron number
but are thermally fissile. This finite lifetime of these thermally
fissile isotopes could be very useful for energy production with
nuclear reactor technology. If these neutron-rich nuclei are
used as nuclear fuel, the reactor will achieve critical conditions
much more rapidly than with normal nuclear fuel, because of
the release of a large number of neutrons during the fission
process.
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