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The general nuclear contact matrices are defined, taking into consideration all partial waves and finite-range
interactions, extending Tan’s work on the zero range model. The properties of these matrices are discussed and
the relations between the contacts and the one-nucleon and two-nucleon momentum distributions are derived.
Using these relations, a new asymptotic connection between the one-nucleon and two-nucleon momentum
distributions, describing the two-body short-range correlations in nuclei, is obtained. Using available numerical
data, we extract a few connections between the different contacts and verify their relations to the momentum
distributions. The numerical data also allows us to identify the main nucleon momentum range affected by
two-body short-range correlations. Utilizing these relations and the numerical data, we also verify a previous
independent prediction-connecting between the Levinger constant and the contacts. This work provides an
important indication for the relevance of the contact formalism to nuclear systems, and should open the path for
revealing more useful relations between the contacts and interesting quantities of nuclei and nuclear matter.
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I. INTRODUCTION

Recently, a new variable, called the contact, was defined
by Tan [1,2] for a two component Fermi gas interacting via
short-range forces. The contact measures the probability to find
two unlike fermions close to each other. In a series of theorems,
called Tan’s relations, many other properties of the system,
such as its energy, pressure, and momentum distribution, were
connected to the contact. Tan assumes that the range of the
interaction is much smaller than the scattering length and
the averaged distance between the fermions. Following these
theoretical predictions, several experiments were conducted,
verifying Tan’s relations in ultracold atomic systems consisting
of 49K [3,4] and °Li [5-7] atoms.

Nuclear systems differ from these ultracold atomic systems
in many aspects. First, the nucleons are not two-component
fermions. Second, while in the atomic systems the strength
of the interaction between the atoms and the density can
be changed easily, such that Tan’s assumptions are satisfied,
in nuclear physics it cannot be done. In nuclear systems,
the s-wave spin-singlet and spin-triplet scattering lengths are
about —20 fm and 5.38 fm, respectively, and the average
distance between two adjacent nucleons is about 2.4 fm. The
interaction range of the long-range part of the nuclear potential,
which is governed by the pion exchange Yukawa force, is
about ' = h/m,c ~ 1.4 fm. Thus, in nuclear physics the
interaction range is only slightly smaller than the average
distance between two particles and the scattering length.

Considering a two-component Fermi gas that obeys Tan’s
assumptions, the high momentum tail of the momentum
distribution n(k) is connected to the contact C through the
relationn(k) — C/k*ask — oo.Innuclear physics, the high-
momentum part of the nucleon’s momentum distribution is one
of the main tools for studying short-range correlations (SRCs)
between nucleons (see [8], and references therein). The main
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focus in current studies of two-body SRCs (see, e.g., [9-13]) is
around the momentum range 1.5 fm~' < k < 3 fm~'.Inafew
of these studies it is claimed that higher momentum is affected
also by three-body correlations [14]. In this momentum range,
a dominance of neutron-proton (np) correlated pairs was
observed in electron scattering experiments [11]. This np
dominance is usually explained by the contribution of the
tensor force, which affects only spin-triplet np pairs. Another
observation is that the correlated pairs usually have high
relative momentum and low center of mass momentum, i.e.,
they move approximately back-to-back. Generalizing Tan’s
relation between the high momentum tail and the contact to
nuclear systems should help in understanding more properties
of SRCs in nuclei.

In a previous paper [15], we have suggested that it might
be fruitful to use the contact formalism in nuclear systems.
There we have defined the neutron-proton s-wave nuclear
contacts and evaluated their average value relating them to
the Levinger photoabsorption constant [16]. In this work we
generalize the definition of the nuclear contacts from s-wave
to all partial waves. We also consider finite-range interactions
instead of zero range. The result is matrices of nuclear contacts.
We discuss the properties of these matrices, and use our
generalized contact formalism to relate the nuclear contacts
to the one-nucleon and two-nucleon momentum distributions.
Doing so, we find an asymptotic relation between these two
distributions which is relevant to the study of SRCs in nuclei.
This relation is verified by available numerical data. Further
analysis of the numerical data and its implications to the
contact formalism are also presented.

In this paper we focus on the two-body contacts and on two-
body correlations, postponing the discussion of three-body
effects to future publications.

II. THE MATRICES OF NUCLEAR CONTACTS

Consider a two-component Fermi gas that obeys Tan’s
assumptions. In such a gas, when a spin-up particle i gets
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close to a spin-down particle j, the many-body wave function
can be factorized into a product of an asymptotic pair wave
function @(r;;), r;; =r; —r;, and a function A, also called
the regular part of W, describing the residual A — 2 particle
system and the pair’s center of mass R;; = (r; + r;)/2 motion
[1,17],

v — o(ri) AR Aritii ;) - ()
rij—>

Due to the suppression of higher partial waves in these systems,
the asymptotic pair wave function will be predominantly an
s wave. In particular, in the zero-range model [18] the pair
wave function is given by ¢ = (1/r;; — 1/a), where a is the
scattering length.

The contact C is then defined by [1,17]

C = 167> Ny (A|A), 2
where
(A|A)=/ []drcdr;
k#i, j

x ATRij Aridisi ) - AR rihii ) (B)

and N is the number of possible spin-up—spin-down pairs.

In nuclear physics, we have four-component fermions,
which are the protons and neutrons with their spin being either
up or down. Moreover, the assumption of a zero-range s-wave
interaction is not accurate for nuclei. As a result, few changes
must be made in order to generalize the contact formalism to
study nuclear systems.

When nucleon i gets close to nucleon j, we must abandon
the factorization ansatz and write the wave function as a sum
of products of two-body ¢;; and A — 2-body A;; terms. The
asymptotic form of the wave function is then given by

Y D DAL Ry (i ) )

Here the index ij corresponds to one of the three particle
pairs: proton-proton (pp), neutron-neutron (nn), or neutron-
proton (np). We note that due to symmetry the asymptotic
functions are invariant under same-particle permutations. The
pair wave functions depend on the total spin of the pair s,, and
its angular momentum quantum number ¢, (with respect to the
relative coordinate r;;) which are coupled to create the total
pair angular momentum j, and projection m,. The quantum
numbers (53,4, j»,m») define the pair’s channel. In general, the
expansion (4) may contain more then one term per channel,
however in the limit r;; — 0 only the leading term survives.
In short, the sum over « denotes a sum over the four channel
quantum numbers (52,42, j2,m2).

To ensure an A-body wave function with total angular
momentum J and projection M the regular functions Af; are
given by

AL = Y (omadaaMaal IMY AL R e Ma s
Ja—2. M-

where J4_, and M4_, are the angular momentum quantum
numbers with respect to the sum J 4_» + Ly ¢y of the total
angular momentum of the residual (A — 2) particles J 4, and

PHYSICAL REVIEW C 92, 054311 (2015)

the orbital angular momentum L, ¢y corresponding to R;;.

o, il aa, Ma_s - . .
ASZ 22l Ma=2 i¢ 5 set of functions with angular momentum

quantum numbers J4_, and M4_,, which depends also on the
numbers 55,5, j». The pair wave function is given by

(plqj = §0§f252)j2m2 — [(pi{;‘z,]é}fz ® XSZ]J'zmz7 ©)
where  x,,,, is the two-body spin function, and
(pjjz’”}ez’“(rij) = ¢i{fz’sz’“}(r,-j)YgW (#;). For clarity, when
angular momentum indices are written without any brackets
they denote the relevant angular momentum quantum numbers
of the function. When the indices are in curly brackets, it
means that the function depends on these numbers but they do
not denote the angular momentum of the function. When two
indices are inside round brackets, it means that the angular
momentum of the function is created by a coupling of these
two indices.

An important property of the set of asymptotic functions
{gf;} is that they are “universal”, in the limited sense that they
do not depend on a specific nucleus or on a specific nuclear
state. This is a reasonable assumption, because when two
particles are close together they interact with each other and
the background of the A — 2 particle system can be ignored.
This point was proved by Amado [19,20] for a large class of
Hamiltonians that include only local two-body forces. Under
these assumptions the asymptotic expansion, Eq. (4), contains
only one term per channel, and the functions {¢f;} depend
only on the details of the nuclear two-body potentials. Thus,
they are independent of the specific nuclear state. Amado’s
arguments can be easily generalized to include also three-body
and/or nonlocal forces. In these cases it can be shown that the
asymptotic pair functions {¢;;} depend only on the potential
and not on the nucleus or the nuclear state. Again, in general
there may be more then one function per channel but in the limit
rij — 0 these functions collapse into a single leading term.

Since the AY; functions are not generally orthogonal for
different «, we are led to define matrices of nuclear contacts
in the following way:

Ciajﬁ(JM) = 167T2Nij<A?}|A5>- 0

As before, ij stands for one of the pairs: pp, nn, or np, Nj;
is the number of ij pairs, and « and § are the matrix indices.
We also denote o = (s4,a, ju,/a) and B = (sg,€g, jg,mp).
One can see that if m, # mg, then Cf‘jﬁ(JM) = 0, but it is not
generally true for js, 5;, or €,. For spherical nuclei (J = 0) we
do get Cf’jﬁ(JM) = 01if j, # jg. For pp and nn pairs, Pauli’s
exclusion principle tells us that unless s, + £, is even, we have
A%, = A%, = 0,50 Cpp = C = 0if s + £ O 55 + £y are
odd. Moreover, if W is the ground state of the nucleus, or
any eigenstate of the nuclear Hamiltonian, then W has a well
defined parity. ¢;; has a parity of (=%, so it dictates the
parity of A%. Thus, C;¥ (JM) = 0 for a and B such that £,
and £ have different parities.

Since the projection M is usually unknown in experiments,
it is useful to define the averaged nuclear contacts:

c* —
Y 2J

1 o
— > m. ®)
M
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According to this definition, we have three matrices of
averaged contacts, one for each kind of nucleon-nucleon pair.
We note that the averaged contacts still depend on J, but we
will not write it explicitly. Using Clebsch-Gordan identities
one can prove that if mq # mg or j, # jg, then Cf‘j’g =0, and
also that the averaged contacts are independent of m, and mg.
The averaged contacts inherit the properties of the nonaveraged
contacts C (J M) regarding parity and Pauli’s principle.

Concludlng, for a given «, the relevant 8’s such that Cf‘j’3
can be different from zero must obey jg = j, and mg = m,,.
Since, s, = 0,1 there are four (s,£,) pairs that can create a
given j, # 0: (0, jy), (1,ja), (1,jo — 1), and (1, j, + 1). The
first two options have the same parity of £, and the last two
have the opposite parity. For j, = 0 we have only two possible
(s2,%) pairs: (0,0) and (1,1), Which have different parity of £,.
Thus, in general the matrices Cl ; are built from 2 x 2 blocks,
except for the two 1 x 1 blocks associated with the j, =0
case. Each block has a well-defined j,,m, values. For any
J2 # 0 there are two blocks, one with (s3,£>) = (0, j»),(1, j»)
and the other with (s,£,) = (1, j» — 1),(1,j» + 1). For pp and
nn pairs, Pauli’s principle dictates that any matrix element
with an odd s, + ¢, is zero, so some of the 2 x 2 blocks are
reduced into two 1 x 1 blocks.

In a previous paper [15] we have defined the s-wave
nuclear contacts, Cf?(J M), for s, = 0,1. The definition there
was slightly different from the current one, as the two-
body spin functions were included into the regular (A — 2)
particle function Af; In our current definition, we have four
diagonal s-wave contacts Cf‘j‘“’“"“ and lex.l“a‘“, where oy =
(50=0,0,=0,/b=0m;=0), a1, =(2=1,0=0,/p =
1,my; = ), and u = —1,0,1. The relations between the two
definitions are

Ci U M) = C (I M), ©
1
My =Y Clr M. (10)
n=-—1

Averaging over M and using the fact that the averaged contacts
are independent of m, we get

52=0 o
a0 = e, (1n
Yz 1 _ Z Calualu _ 3C;le/1alu' (12)
n=-—1

We also note that the previously defined s-wave con-
tacts, CSZ(J M), are actually independent of M. Thus, also

Ci"*" (I M) and Z#=_1 f‘j"‘a“‘ (J M) are independent of M.

It should be mentioned that the factorization of the wave
function given in Eq. (4) was used before in the study of nuclear
SRCs, see, e.g., [8] and references therein. In these works the
relation between the asymptotic many-body wave function and
the deuteron wave function was utilized, and the corresponding
contact was defined, see, e.g., [21] Eq. (29). However, it was
assumed that the nuclear contact is a single number and the
general structure of nuclear contact matrix was not defined or

analyzed. In the following we will demonstrate the utility of the
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general contact formalism, deriving analytic relations between
the nuclear one-body and two-body momentum distributions.

III. MOMENTUM DISTRIBUTIONS
A. The two-nucleon momentum distribution

In the following we will utilize the above generalized
contact formalism to find a relation between the two-nucleon
momentum distribution and the nuclear contacts.

Let us denote by f;7"(k + K /2, — k + K /2) the density
probability to find a pair of nucleons, ij € {pp,nn, pn}, with
any particle of type i with momentum k + K /2 and any
particle of type j with momentum —k + K /2. J and M are
the angular momentum quantum numbers of the nuclear wave
function W. Working in the momentum space

A
Wi,k = [ [Jdnwesion, a3)

and we can write

f/M(k +K/2,—k+ K/2)

dky,
—Nu/ H n )3|\I'(k1,-.-,k;=k+K/2,...,
m#i, j
kji=—-k+K/2,... k), (14)

where A is the number of nucleons, »;; is the number of ij
pairs, and we notice that f;/* is normalized in such away that

IM &k dPK a7
ffu @m)3 2m)* Nij.

In the limit £ — oo the main contribution to flf M comes
from the asymptotic r;; — 0 part of the wave function, given
in Eq. (4). All other terms will cancel each other due to the fast
oscillating exp(ik - r;;) factor. Substituting U into Eq. (14),
and using Eq. (4) we get

Mk + K /2,—k + K /2)

=u/l_[

m#i, j

/ ]_[ dr,d’rijd®R ,,Z%(r,,)AU

n#i, j

2 )3

2
5)

xexp(ik-rij+iK-R,-j+ Z ik,, -rn)
n#i, j

We will define now

d’K
JM _ JM
Fo = [ S5

JM . .y .. . .
F;" is the density probability to find an ij pair with

relative momentum k, and it obeys the normalization condition
f Fi?M(k) (g;’;; = N;;. We can now substitute the asymptotic
form of f/¥, Eq. (15), into the definition of F;/*. In the

resulting expression we can separate the integration over r;;

k+K/2,—k+K/2). (16)
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from the rest of the coordinates. Using the notation

@ik = / d*rof(r) exp(ik - ) an
and
/ ]‘[ d’rad’ RijAS; exp | iK - Rij + Zikn-rn ,
n#i, j n#i, j
(18)
we get

&k, d*K aT A8
EfMUf):N"f'aZ‘p” (k)%(k)/ H @y @y M

19)

Noting the equality
3 3
f 1—[ a;kms C;Ks i At _/ [T &rd*ry AL AL
i (@) (2m) s
(20)

we obtain the following asymptotic k — oo expression for the
two nucleon momentum distribution,

Cl M)

E§M<k>=2¢?j(k)w,,(k> = Q1)

Here we have used the definition of the contacts from Eq. (7).
Averaging over M, we get the asymptotic relation
Dtﬁ
Fij() =Y @i (@,
o,fp
where F;; = (2J + 1)~ ! Y FJM and C"”‘(j are the averaged

contacts defined in Eq. (8). L1ke c*
implicitly on J.

(22)

also F;; depends

ij

B. The one-nucleon momentum distribution

We would like to relate now the nuclear contacts also
to the one-nucleon momentum distributions. The following
derivation is based on Tan’s derivation for the two-body case in
atomic systems [1]. We first focus on the proton’s momentum
distribution nJ M (k). Normalized to the number of protons in

the system Z, f (2n)3”JM(k) = M is given by
d? kl
M 2
nIM (k) = /1‘[(2 LB,y = e )P
(23)
where p is any proton.
In the k —> oo limit the main contribution to n7* emerges

from the asymptotic parts of the wave function, i.e., from
rps = |r, —rg| — 0, for any particle s # p, being proton or

neutron. In this limit
Wik, oky =k, k)= @8 ((k —k,)/2)
s#Ep «

XA(;;;(KPS =k+ kSs{kj}j;ép,s)» (24’)

PHYSICAL REVIEW C 92, 054311 (2015)

where K ) is the center of mass momentum of the ps pair.
Substituting k; = K ,; — k we get

U= g0k — Kpo /DAL (K ol j2ps). (29)

s#p «

We note that k is fixed in Eq. (23) while integrating over all
other momenta. Therefore we can replace the integration | dk;
with integration over the pair’s center of mass momentum
[ dK . Since A is regular, A%S will be significant only if
K 5 is not much larger than the nuclear Fermi momentum and
therefore much smaller than k. We can expand (ﬁgs around k,

7% (k — K s /2) = 52, (k) — Ve@% k) + -+, (26)
keep only the leading order, which is a good approximation
for any power-law function, and obtain

U= N 68 (ALK k) jzps). (2T

s#Ep «

We can see that AZS still depends explicitly on the center of
mass momentum K ;.

Substituting this result into Eq. (23), we get summations
over particles s and s’ different from p. The contribution of
nondiagonal s # s’ terms, will be significant only for k; ~
ky ~ —k. Inthis case k,k;,ky — o0 together, which is clearly
a three-body effect, and we expect it to be less important than
the leading two-body contribution [22]. Consequently, we only
consider the diagonal elements and obtain

&k, d°K
JM 2 :} : PS ~at B
= Zm)aﬁf [ @n) @2n) P00

XAiS(pr{kj}j;ép,s)Ags(Kpsv {k] }j#p.s)- (28)

We will now divide the sum }__,  into a sum over protons
and a sum over neutrons pipt >,- Since the a.symptotic
functions A7, and ¢7 , are the same for all pp’ pairs we can
take them out of the sum. The same holds for the np pairs. As
aresult we get

M) =) @y (0@}, (0 Z(Z — D(A],|A],)
o.p
+ 2P a,, (ONZ(AT[4L). 29)
o.p

Here N is the number of neutrons in the system. Using the
definition of the contacts, Eq. (7), we see that for k — oo

» 20T M)
n?M (k) = Z Gy d), 0 ———
,m(J M)

162 (30)

+szi<k> b ()~

Averaging over M we further obtain the relation between
the averaged contacts and the averaged protons’ momentum
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distribution n,(k) = 2J + D'y, n?M (k) for k — oo:

op
Cpp

nple) =) @) (0g), (0
o.p
P o
+ ; wpn(k)wpn(k)@ (31)
We note that n,(k) still depends on J. Similarly, for the
neutrons:

x%

nﬂ (k) Z (pnn (k)(pl‘ln

aﬁ
+Z%MMM)” (32)
a.p

Comparing Egs. (31) and (32) to Eq. (22), we can see that for
k —> oo there is a simple relation between the one-nucleon
and the two-nucleon momentum distributions:

np(k) = 2F,,(k) + Fp,(k), (33)

ny(k) = 2F,,(k) + Fpn(k)- (34)

These connections seem intuitive if we assume that a nucleon
will have high momentum k only if there is another nucleon
close to it with opposite momentum —k. In this case, if we
find a proton with high momentum k we know that we will
find close to it a neutron or a proton, that is a correlated pp or
np pair with relative momentum k. Notice that the factor of 2
before F,, and F,, in Egs. (33), (34), can be also explained
in this picture by the fact that for example a pp pair with
momenta (—k,k) has a relative momentum —k even though
there is a proton with momentum k in this pair. It means that
such a pair will be counted for n,(k) but not for F,,(k) and
the factor of 2 takes it into consideration.

These relations emphasize the importance of the two-body
correlations to the high momentum one-nucleon distribution.
As mentioned before, the picture of short-range correlated
pairs of nucleons with back-to-back momentum is one of
the main features of SRCs in nuclei, and the above relations
between the one-nucleon and two-nucleon momentum distri-
butions give a theoretical support to this picture.

In Ref. [21] some relations between the one-nucleon and
the two-nucleon momentum distributions are discussed. There,
based only on numerical calculations, it is claimed that the high
momentum tail of the one-nucleon momentum distribution is
proportional to the deuteron momentum distribution. More-
over, it is similarly claimed that the two-nucleon momentum
distribution is also proportional to the deuteron momentum
distribution for high momentum. The proportional factors in
these two cases are approximated to be equal in Ref. [21] for
all the possible pairs: pp, nn, or pn. It means that in this case
the high momentum tails of all these momentum distributions
should be equal. Our relations, Egs. (33) and (34), were derived
analytically, and give the correct relations between the different
high momentum tails when two-body SRCs are significant and
three-body SRCs are negligible. Moreover, there is no reason
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to believe that the pp or nn high momentum tails will be
proportional to the deuteron tail, which consist of a pn pair.
Indeed, this point is demonstrated in the results of Refs. [9]
and [23] which show that the relevant pp and nn contribution
to the momentum distribution are different from the deuteron
one. This point is further discussed in the next section, where
the numerical data of Ref. [9] is analyzed.

‘We also note here that similar derivations can be done easily
for atomic systems consisting of two-component fermions,
denoted by 1 and |. The one-body high momentum dis-
tribution is already known and given by n4(k) =n (k) =
C/k* Adjusting the above derivation for the two-nucleon
momentum distribution to atomic systems will produce an
identical relation between the two-body momentum distribu-
tion, Fy (k), describing the probability to find an 1 pair with
high relative momentum, and the atomic contact. Explicitly,
Fy (k) = C/k*. As a result we find that ny(k)y =n (k) =
F; (k) for high momentum k. This relation tells us that also
in the ultracold atomic systems the correlated 1| pairs have
back-to-back momentum, like in nuclear systems.

IV. ANALYSIS OF NUMERICAL DATA
A. Momentum distributions

In order to check the validity of our results in actual
nuclear systems, we turn now to compare our theoretical
predictions to available numerical data. To this end, we will use
numerical data of one-nucleon and two-nucleon momentum
distributions calculated by Wiringa er al. for nuclei with
A < 10 [9] with the variational Monte Carlo method (VMCO),
using the realistic Argonne v18 two-nucleon (AV18) [24] and
Urbana X three-nucleon (UbX) [25] potentials. In these VMC
results, the calculations of both one-nucleon and two-nucleon
momentum distributions were done for nuclei in their ground
state. Consequently, the following analysis is limited to the
nuclear ground state.

First we check the relation between the one-nucleon and
the two-nucleon momentum distributions, Egs. (33), (34). In
Fig. 1 the ratio between 2F,, + F,, and n, is presented for
various nuclei. We can see that for k —> oo the two quantities
coincide and our prediction (33) is indeed satisfied. In Fig. 2
we present the ratio between 2F),, + F),, and n,,. We show only
the results for non-symmetric nuclei, because for symmetric
nuclei there is no difference between protons and neutrons in
the numerical VMC data. We can see that also here, the ratio
QF,, + Fp,)/n, —> 1 as k — oo and our prediction (34)
is satisfied. This result is obtained for all available nuclei: “He,
®He, ®He, SLi, ®Be, and '°B, for both protons and neutrons.
For all these nuclei the momentum relations hold for 4 fm~' <
k<5fm™".

The correspondence between our predictions, derived using
the contact formalism, and the numerical data is a good
indication for the relevance of the contact formalism to
nuclear systems. We also learn here that the approximations
made in the above theoretical derivations for k —> oo are
valid for 4 fm™' < k < 5fm~!. This is the first indication
for the momentum range which is relevant to the contact
formalism in nuclear systems. Moreover, as we mentioned
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o 11

(2F +F )

FIG. 1. (Color online) The ratio (2F,, + F,,)/n, for different
nuclei. The numerical data are taken from Ref. [9]. Red line—*He,
green line—°He, cyan line—®He, black line—°Li, blue line—®Be,
and pink line—!°B. The dashed red line is the reference y = 1.

before, in current studies of SRCs in nuclei this momentum
range of k > 4 fm~! is believed to be affected by three-body
correlations. As explained, Eqgs. (33) and (34) are suppose
to be satisfied when the two-body correlations are the only
significant correlations and every high momentum nucleon
has a single nucleon near it with back-to-back momentum. It
means that according to this numerical data the momentum
range of 4 fm~! < k < 5 fm~! is affected almost exclusively
by two-body SRCs while three-body SRCs are negligible,
and that in this momentum range the picture of back-to-back
short-range correlated pairs is accurate.

We note that this momentum range of 4 fm~! < k < 5 fm™!
might be model dependent, and it should be verified using
other numerical methods, and different nuclear potentials. It
should also be mentioned that the VMC method utilize two and
three-body Jastrow correlations in the nuclear wave function.

Hen et al. [26] also discuss the possibility that the contact
formalism is relevant in nuclear physics. In their work, they

30

25 1

(2F +F )/n
nn  pn

FIG. 2. (Color online) The ratio (2F,, + Fp,)/n, for the non-
symmetric nuclei in the numerical data of Ref. [9]. Blue line—°He,
and green line—%He. The dashed red line is the reference y = 1.
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present an experimental measurement of a k~* behavior in the
proton momentum distribution in the deuteron for 1.6 fm~' <
k < 3.2fm™!. They also claim that the k=* behavior exists in
heavier nuclei in the same momentum range. As mentioned
before, one of the results of the contact formalism in atomic
systems is the k~* tail in the momentum distribution, but this
behavior is a direct consequence of the zero-range model.
In nuclear systems this model is not accurate, so we can
only expect a high momentum tail universal to all nuclei,
but not a k=* behavior. We also note that in the numerical
VMC data there is no k= tail for nuclei heavier than the
deuteron. Moreover, we have found here that the relevant
momentum range for the contact formalism in nuclei is
4fm~! <k < 5fm~!, which is higher than the momentum
range discussed by Hen et al.

B. The pp and nn contacts along the nuclear chart

We continue now by examining the ratio between F,,(k)
and F,, (k) in the same nuclei. In the VMC results, this ratio
equals 1 for all £ for symmetric nuclei (N = Z). Therefore,
we are left with the available nonsymmetric nuclei *He and
8He. The relevant results are shown in Fig. 3.

We can see that for 4fm~! <k <5fm~! the ratio is
approximately constant. Inspecting Eq. (22), we see that the
only way for this ratio to be constant is that (i) only pairs in
o, p states with the same k dependence of @f‘;@g contribute
significantly to both F,, and F,,, and (ii) both pp and nn
pairs have the same k dependence. It is reasonable to assume
that the s-wave contacts are the most significant contacts. For
pp and nn pairs the only possible nonzero s-wave contact
is Cf‘j”“a“", where agy = (52 = 0,£, = 0, j» = 0,m, = 0). This
point can be verified numerically through analysis of the
angular dependence of the momentum distributions. If the
s-wave contact is indeed dominant we expect to see no angular
dependence. If we further assume that @;;“Tgb‘;gf = (ﬁf,‘ﬁ”(ﬁffg”,
which seems reasonable from isospin symmetry, then the ratio
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FIG. 3. (Color online) The ratio between F),, and F,, in the same
nuclei for the available nonsymmetric nuclei in [9]. Blue line—%He,
and red line—®He. The dashed blue and red lines indicate the value
of Z/N in °He, and ®He, respectively.
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FIG. 4. (Color online) The ratio between F,,(X) and F, ,,p(4He)
for the available nuclei X in the numerical data of Ref. [9]. Blue
line—YHe, red line—®He, green line—°Li, black line—®Be, and pink
line—!°B.

between F,, and F),, for large momentum equals to the ratio
between C70*" and Cppo®.

We can also see in Fig. 3, that for the two relevant nuclei the
ratio F,, / Fy, is close to the ratio Z /N between the number of
protons and neutrons in the nucleus. If this relation turns out
to be true in general along the nuclear chart, it means that for
anucleus X in its ground state, the most significant pp and nn
contacts are C;%0** and C;** and their ratio is given by

Caxen(X)  Z(X)

~ , 35
™™ (X)  N(X) G

and
P (1) = e ), (36)

Here Z(X) is the number of protons, and N(X) is the number
of neutrons in the nucleus X. This result is surprising because
one might think that the ratio (35) should scale as the ratio
between the total number of pp pairs and the number of nn
pairs in the nucleus, i.e., Z 2 /N 2 The above result tells us that
the number of correlated pp and nn pairs in nuclei goes like
Z and N, respectively. If we check the ratio between F),, or
F,, and F,,, no plateau is observed.

We can also examine the ratio between F,, of nucleus X
and F,, of another nucleus Y. The results are presented in
Fig. 4, where all the available nuclei are compared to “He.

Here again we see flattening for4 fm~! < k < 5 fm~!. This
behavior supports the claim that only one contact contributes
significantly to F,, and so the value of this ratio is just the
value of the ratio of this pp contact in the two different
nuclei [see Eq. (22)]. The constant behavior also supports
the assumption that the pair wave functions @“,ﬁ are universal
along the nuclear chart, because that way the k dependence
indeed vanishes. The average values of this ratio for 4 fm~! <
k < 5fm~! are presented in Table I and compared to the ratio
between the number of protons in the relevant nuclei and the
number of protons in “He. We can see that the two ratios
are approximately equal for the different nuclei. If the most
significant pp contact is the s-wave contact C;%*", then we
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TABLE 1. The averaged value of the ratio between F),,(X) and
F,,(*He) for 4 fm™' < k < 5fm™! for all the available nuclei in the
numerical data of Ref. [9].

X (Fpp(X)/ Fpp(*He)) Z(X)/Z(*He)
He 0.94 4+ 0.01(10) 1
$He 0.90 & 0.01(1) 1
oLi 1.09 £ 0.02(10) 15
$Be 2.3140.07(10) 2
log 2.91 £ 0.06(15) 25

can deduce that for nuclei X and Y in their ground state:

Coy(X) o Z(X)
Coy™w)  Z(Y)

(37)
For F,, similar results are observed, therefore we can also
deduce that

Cemn(X)  N(X)
Como(yy ~ N(Y)'

(38)

These relations support the claim that the number of correlated
pp and nn pairs in nuclei is proportional to Z and N,
respectively.

C. The pn contacts and the Levinger constant

So far we have studied the properties of the pp and nn
contacts, now we turn to study the pn contacts. The pn contacts
might be the most interesting ones because of the dominance
of correlated pn pairs in nuclear SRCs [11]. In order to study
the properties of the pn contacts we examine the variation
in F,, between different nuclei. As in the pp and nn cases,
also in this case we shall assume that the s wave is the most
dominant partial wave. For a pn pair in an s wave there are
two possible spin configurations, spin-singlet and spin-triplet.
For the deuteron H, only the spin triplet is relevant as it is a
J = I state. In Fig. 5 we present the ratio between F),,(X) and
n p(zH) for the available nuclei in the VMC results.

Once again, a constant behavior is seen for 4fm! <
k < 5fm~!'. As mentioned before, we have three equal spin
triplet s-wave np contacts, Cpy'“", and one spin-singlet
s-wave np contact C70**. Moreover, |@pn |? is independent
of u. Consequently, we would expect to see a plateau in
the ratio Fp,(X)/n p(zH), if either the asymptotic pair wave
functions obey the relation |@,'|> = |¢g?{’|2 or alternatively
if the spin-triplet s-wave contacts are dominant. In the first
case we can deduce from the relations between the contacts
and the one-nucleon and two-nucleon momentum distributions
that asymptotically

Fpn(X) 3Cg’1100110(x) + Cz;)loaoo(X)

n,CH) 3CE0%0 (2H)
CR=0(X) + Cp=(X
_ G0+ o0 9)

Chi ' (CH)
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TABLE II. The averaged value of the ratio between F),(X) and
n,(*H) for4 fm~' < k < 5 fm~' and its multiplication by A/N Z for
all the available nuclei in the numerical VMC results of [9].

X (Fpu(X)/n,(*H)) A/NZ(F,,(X)/n,CH))
“He 6.10£0.06(15) 6.10£0.06
He 6.5+0.1(10) 4.8840.08
$He 7.82£0.03(10) 5.21+£0.02
SLi 7.63£0.04(10) 5.09+£0.03
$Be 13.25 +£0.08(10) 6.63 +£0.04
10 15.34£0.3(10) 6.1+0.1

10

k [fm™"]

FIG. 5. (Color online) The ratio between F,,(X) and n ,,(ZH) for
the available nuclei X in the numerical data of Ref. [9]. Blue line—
“He, red line—°He, green line—3He, black line—°Li, pink line—
8Be, and cyan line—'°B.

where here we have also used the notation of Egs. (11) and
(12). In the second case we get
Fpu(X) _ Covo(X)  Cu=l(X)

A = . 40
npCH) — Cp*"CH)  Cu7'(2H) @0

In a previous paper [15], we have predicted that the ratio
between the sum of the two s-wave np contacts of a nucleus
X in his ground state and the deuteron’s s-wave np contact is
given by

CirlO+CR'(X)  NZ

pn
ciiem A “

where L is Levinger’s constant that relates, at the high
energy hand, the photoabsorption cross section of a nucleus
to the photoabsorption cross section of the deuteron [16].
Analysis of the experimental results [27] suggest that the
L is approximately a constant along the nuclear chart L ~
5.50 £ 0.21 [15].In[15], we have assumed that the two s-wave
states have the same asymptotic pair wave function in small
distances, which corresponds to the first case above. If we were
to assume that only the spin-triplet np s wave is significant,
then our result would have been

Chr'X) _ Nz

—— = . (42)
Chr'CH) A
In any of the two cases, we get the relation
F,,(X NZ
M ~L——, (43)

n,(H) A

that should hold in the high momentum range. For this range
of high momentum the ratio between F),, and n p(zH) is the
number of quasideuteron (qd) pairs with high relative momen-
tum in the nucleus. In Table II we present the averaged value
of this ratio for 4 fm™! < k < 5fm™! and its multiplication
by A/NZ for each nuclei X, which should be equal to L
according to the above prediction. One can see that the values

of the multiplied ratio are close to the above value of L for all
the nuclei and their average value is 5.7 & 0.7(10). This value
is in a very good agreement with the above-mentioned value
of L.

Evaluation of Levinger’s constant from the number of qd
pairs was done by Benhar et al. [28]. In their work, they
calculate numerically the number of qd pairs in the nucleus and
extract Levinger’s constant. In our evaluation we consider only
the qd pairs with high relative momentum, which corresponds
to small relative distance. Only such qd pairs can be emitted
in the photoabsorption process, and therefore only they should
be considered.

We have compared here two independent relations between
the np contacts and different properties of nuclei (momentum
distribution and photoabsorption cross section) and obtained
a good agreement between the two. Doing so, we have also
obtained here an established estimation for the leading s-wave
np contact(s) along the nuclear chart for nuclei in their ground
state (in units of the deuteron’s s-wave np contact).

V. SUMMARY

Summing up, we have generalized the contact formalism
to nuclear systems and defined a matrix of contacts for each
particle pair: pp, nn, and pn. With this generalization we
have taken into consideration both different partial waves
and finite-range interaction. We have discussed the simple
properties of the nuclear contacts and demonstrated the use
of the generalized formalism by relating the contacts to
the one-nucleon and two-nucleon momentum distributions.
As a result we have obtained a relation between these two
momentum distributions, which emphasizes the significant
contribution of SRCs to the high one-nucleon momentum tail.
Using available VMC numerical data [9], calculated with the
AV18 and UbX potentials for nuclei with A < 10, we have
verified the above relation and found further relations between
the different nuclear contacts. Using few of these new relations
and a previous prediction connecting the pn contacts to the
Levinger constant, we have calculated Levinger’s constant
for the available nuclei and got a good agreement with its
experimental value. This is an important indication for the
relevance of the contact formalism to nuclear systems, and
might open the path to revealing many more interesting
relations. We have also learned from the numerical data that
the relevant momentum range for the contact’s approximations
in nuclear systems is 4fm~! <k <5fm~!. However, we
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note that this result might be model dependent. The fact
that the relations between the one-nucleon and two-nucleon
momentum distribution were satisfied in this momentum range
teaches us that for such momenta the two-body SRCs, rather
than three-body SRCs, are dominant. Additional numerical
or experimental data for both one-nucleon and two-nucleon
momentum distributions in more nuclei, also in excited states,
including angular-dependence is needed in order to improve

PHYSICAL REVIEW C 92, 054311 (2015)

our understanding regarding the properties of the nuclear
contacts.
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