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A systematic investigation of even-even superheavy elements in the region of proton numbers 100 < Z < 130
and in the region of neutron numbers from the proton-drip line up to neutron number N = 196 is presented.
For this study we use the five most up-to-date covariant energy density functionals of different types, with a
nonlinear meson coupling, with density-dependent meson couplings, and with density-dependent zero-range
interactions. Pairing correlations are treated within relativistic Hartree-Bogoliubov theory based on an effective
separable particle-particle interaction of finite range and deformation effects are taken into account. This allows
us to assess the spread of theoretical predictions within the present covariant models for the binding energies,
deformation parameters, shell structures, and «-decay half-lives. Contrary to the previous studies in covariant
density functional theory, it was found that the impact of N = 172 spherical shell gap on the structure of
superheavy elements is very limited. Similar to nonrelativistic functionals, some covariant functionals predict
the important role played by the spherical N = 184 gap. For these functionals (NL3*, DD-ME2, and PC-PK1)
there is a band of spherical nuclei along and near the Z = 120 and N = 184 lines. However, for other functionals
(DD-PC1 and DD-MESJ) oblate shapes dominate at and in the vicinity of these lines. Available experimental data
are, in general, described with comparable accuracy and do not make it possible to discriminate between these

predictions.
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I. INTRODUCTION

Science is driven by the efforts to understand unknowns. In
low-energy nuclear physics many such unknowns are located
at the extremes of the nuclear landscape [1-3]. The region
of superheavy elements (SHEs), characterized by the extreme
values of proton number Z, is one such extreme. Contrary to
other regions of the nuclear chart, the SHEs are stabilized only
by quantum shell effects. Because of this attractive feature and
the desire to extend the nuclear landscape to higher Z values,
this region is an arena of active experimental and theoretical
studies.

Currently available experimental data reach proton number
Z = 118 [4,5] and dedicated experimental facilities such as
the Dubna Superheavy Element Factory will hopefully make
it possible to extend the region of SHEs up to Z = 120 and
for a wider range on neutron numbers at lower Z values.
Unfortunately, even this facility will not be able to reach
the predicted centers of the island of stability of SHEs
at (Z =114,N = 184), (Z = 120,N =172/184) and (Z =
126, N = 184) as given by microscopic + macroscopic (MM)
approaches [6—10] or by covariant [11-14] and Skyrme [9,12]
density functional theories (DFTs), respectively.

One has to recognize that the majority of systematic DFT
studies of the shell structure of SHESs has been performed in the
1990s and at the beginning of the past decade. These studies
indicate that the physics of SHEs is much richer in the DFT
framework than in MM approaches. This is attributable to self-
consistency effects, which are absent in the MM approaches.
For example, they manifest themselves by a central depression
in the density distribution of spherical SHEs [12,15], which
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has not been seen in the MM approaches. Moreover, besides
the successful covariant energy density functionals (CEDFs)
NLI1 [16] and NL3 [17], during the past 10 years a new
generation of energy density functionals has been developed
both in covariant [18-22] and in nonrelativistic [23,24]
frameworks; they are characterized by an improved global
performance [3,23,24]. In addition, the experimental data on
SHEs became much richer [25,26] in these years.

In such a situation it is necessary to reanalyze the structure
of superheavy nuclei using both the full set of available
experimental data on SHEs and the new generation of energy
density functionals. There are several goals of this study.
First, we investigate the accuracy of the description of known
SHEs with the new generation of CEDFs and find whether
the analysis of existing experimental data makes it possible
to distinguish between predictions of different functionals
for nuclei beyond the known region of SHEs. Second, the
comparative analysis of the results obtained with several
state-of-the-art functionals will make it possible to estimate
the spreads of theoretical predictions when extending the
region of SHEs beyond the presently known, to establish
their major sources and to define the physical observables
and regions of SHEs which are less affected by these
spreads.

This is a very ambitious goal and, as a consequence, several
restrictions are imposed. This study is performed only in the
framework of covariant density functional theory (CDFT) [27].
We use the CEDFs NL3* [20], DD-ME?2 [18], DD-MES$ [22],
DD-PC1 [19], and PC-PK1 [21]. They are the state-of-the-art
functionals representing the major classes of CEDFs (for
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more details see the discussion in Sec. II of Ref. [3]).!
Moreover, their global performance has recently been analyzed
in Refs. [3,28] and they are characterized by an improved
description of experimental data as compared with previous
generation of CEDFs. Moreover, the study of Refs. [3,29]
provides theoretical spreads in the description of known nuclei
and their propagation towards the neutron-drip line obtained
with four CEDFs (NL3*, DD-ME2, DD-MES, and DD-PC1).
This is in contrast with earlier studies of SHEs in the CDFT
framework based on the functionals whose performance was
tested only in very restricted regions of the nuclear chart and
for which no analysis of theoretical spreads has been carried
out.

Contrary to many earlier CDFT studies of the shell structure
in superheavy nuclei restricted to spherical shape, in this
investigation the effects of deformation are taken into account.
As it will be shown later, neglecting deformation can lead
to wrong conclusions because many SHEs are characterized
by soft potential energy surfaces with coexisting minima.
Considering the numerical complexity of global investigations,
we restrict our calculations to axial reflection symmetric
shapes. Such calculations are realistic for the absolute majority
of the ground states. Octupole deformation does not play
a role in the ground states of SHEs [30,31] but it affects
the properties of the outer fission barriers [30,32]. In the
current paper those are not considered in detail (see the
discussion in Sec. IV A). Although triaxiality may play a
role in the ground states of some SHEs [33], such cases are
rather exceptions than the rule [30,32-34]. Moreover, model
predictions for stable triaxial deformation in the ground states
vary drastically between the models, even in experimentally
known nuclei [35], and are frequently not supported by
the analysis of experimental data [36]. In addition, triaxial
RHB [37] calculations are at present too time consuming
to be undertaken on a global scale. These arguments justify
neglecting of triaxiality in the description of the ground states
in this investigation.

In addition, we restrict our investigation to even-even
nuclei. Unfortunately, no reliable configuration assignments
exist for ground states of experimentally known odd-mass
SHE:s to be confronted with the theory. However, systematic
studies of the accuracy of the reproduction of energies of
deformed one-quasiparticle states in actinides are available
for the CEDF NL3* [38,39].

The paper is organized as follows. Section II describes
the details of the calculations. The single-particle structure
and shell gaps at spherical shape together with the spreads
in their description are discussed in Sec. III. The impact
of deformation on the properties of SHEs is considered in
Sec. IV. Section V contains the systematics of calculated
charge quadrupole deformations. The validity of the §,, and

'Note that the functional PC-PK1 has not been used or discussed
in Ref. [3] because global studies with it have been performed by
the Peking group in Ref. [28]. It is a state-of-the-art functional for
point coupling models with cubic and quartic interactions of zero
range [21].
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8>, quantities as the indicators of shell gaps is discussed
in Sec. VI. We report on masses and separation energies in
Sec. VII. The a-decay properties are considered in Sec. VIII.
Finally, Sec. IX summarizes the results of our work.

II. THE DETAILS OF THE THEORETICAL
CALCULATIONS

In the present paper, the RHB framework is used for
systematic studies of all Z = 96-130 even-even actinides
and SHEs from the proton-drip line up to neutron number
N = 196. The details of this formalism have been discussed
in Secs. II-IV of Ref. [3] and Sec. II of Ref. [29]. Thus, we
only provide a general outline of the features specific for the
current RHB calculations.

We consider only axial and parity-conserving intrinsic
states and solve the RHB equations in an axially deformed
oscillator basis [40-43]. The truncation of the basis is
performed in such a way that all states belonging to the shells
up to Ny = 20 fermionic shells and Np = 20 bosonic shells
are taken into account. As tested in a number of calculations
with Ny = 26 and Ny = 26 for heavy neutron-rich nuclei,
this truncation scheme provides sufficient numerical accuracy.
For each nucleus the potential energy curve is obtained in a
large deformation range from 8, = —1.0 up to B, = 1.05 in
steps of B, = 0.02 by means of a constraint on the quadrupole
moment O»p. Then the correct ground-state configuration and
its energy are defined; this procedure is especially important
for the cases of shape coexistence.

To avoid the uncertainties connected with the definition of
the size of the pairing window, we use the separable form of
the finite-range Gogny pairing interaction introduced by Tian
et al. [44]. Tts matrix elements in  space have the form

1
V(ri,rariry) =—G38(R — R’)P(r)P(r/)E(l —P%), (1)

with R = (ry +r;)/2 and r = r; — r, being the center of
mass and relative coordinates. The form factor P(r) is of
Gaussian shape

1 7r2/4a2_ (2)

PO = G

The two parameters G = 738 fm® and a = 0.636 fm of this
interaction are the same for protons and neutrons and have
been derived in Ref. [44] by a mapping of the 'S pairing gap
of infinite nuclear matter to that of the Gogny force D1S [45].

As follows from the RHB studies with the CEDF NL3*
of odd-even mass staggerings, moments of inertia and pairing
gaps the Gogny D1S pairing and its separable form [Eq. (1)]
work well in actinides (Refs. [3,39,46]). The weak dependence
of its pairing strength on the CEDF has been seen in the
studies of pairing and rotational properties of actinides in
Refs. [13,46], of pairing gaps in spherical nucleiin Ref. [3], and
of pairing energies in Ref. [29]. Thus, the same pairing [Eq. (1)]
is used also in the calculations with DD-PC1, DD-ME2,
DD-MES$, and PC-PK1. Considering the global character of
this study, this is a reasonable choice.

Any extrapolation beyond the known region requires some
estimate of theoretical uncertainties. This issue has been
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discussed in detail in Refs. [47,48] and in the context of
global studies within CDFT in the introduction of Ref. [3]. In
the present paper, we concentrate on the uncertainties related
to the present choice of energy density functionals which
can be relatively easily deduced globally [3]. We therefore
define spreads of theoretical predictions for a given physical
observable as [3]

O(Z,N) = |Omax(Z,N) = Onin(Z,N), 3)
where Opax(Z,N) and Op,in(Z, N) are the largest and smallest
values of the physical observable O(Z,N) obtained with the
employed set of CEDFs for the (Z,N) nucleus. Note that
these spreads are only a crude approximation to the systematic
theoretical errors discussed in Ref. [48] because they are due
to a very small number of functionals which do not form
an independent statistical ensemble. Despite this fact, they
provide an understanding of which observables and/or aspects
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of many-body physics can be predicted with a higher level of
confidence than others for density functionals of the given type.
Moreover, it is expected that they will indicate which aspects
of many-body problem have to be addressed with more care
during the development of next generation of EDFs.

III. SINGLE-PARTICLE STRUCTURES
AT SPHERICAL SHAPE

As discussed in the Introduction, superheavy nuclei are
stabilized by shell effects, i.e., by a large shell gap or at
least a considerably reduced density of the single-particle
states. Therefore, for a long time an island of stability has
been predicted in the CDFT for very heavy nuclei in the
region around the proton number Z = 120 [11-14]. Figure 1
shows neutron and proton single-particle spectra of the nuclei
292120 and 3%4120 obtained in spherical relativistic mean-field
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FIG. 1. (Color online) Neutron (bottom panels) and proton (top panels) single-particle states at spherical shape in the SHEs °?120 and
304120. They are determined with the indicated CEDFs in RMF calculations without pairing. Solid and dashed connecting lines are used for
positive- and negative-parity states. Spherical gaps are indicated. The different CEDFs have been arranged in such a way that we first start from
the functionals with a nonlinear o coupling (NL1 [16], NL3 [17], NL3* [20]), i.e., with a density dependence in the isoscalar channel; then we
continue with the functional FSUGold [49], which has, in addition, a nonlinear coupling between w and p mesons and therefore also a density
dependence in the isovector channel; then we plot the results for the functionals with explicit density dependent meson-nucleon couplings in
all channels (DD-ME2 [18] and DD-MES [22]) and finally we end with the point coupling functionals (DD-PC1 [19] and PC-PK1 [21]).
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(RMF) calculations. Similar figures have been given for
the functionals NL3 and DD-ME2 in Refs. [12,50]. Note
that a detailed comparison of several other covariant and
nonrelativistic Skyrme functionals is presented in Ref. [12]. In
Fig. 1 we show the results for an extended set of eight CEDFs.
The global performance of the CEDFs NL3*, DD-ME2, DD-
MES$, and DD-PC1 has been studied in Ref. [3]. The shell gaps
at Z = 120 and at N = 172 are especially pronounced in the
nucleus 22120 (left panels of Fig. 1). This is a consequence of
the presence of a central depression in the density distribution
generated by a predominant occupation of the high-; orbitals
above the occupied single-particle states in 2*®Pb. Because
of their large ¢ values these orbitals produce density at the
surface of the nucleus. Filling up the low-j neutron orbitals
above the Fermi surface of the °2120 nucleus on going from
N = 172 up to N = 184 leads to a flatter density distribution
in the N = 184 system [15]. As a consequence, the Z = 120
and N = 172 shell gaps are reduced and the N = 184 gap is
increased (right panels of Fig. 1). As one can see in Fig. 1,
these features are rather general and do not depend much on
the specific density functional.

Of course, as shown in Fig. 1, there are theoretical
uncertainties in the description of the single-particle energies
and in their relative positions. The precise size of the large shell
gaps depend on the functional. The corresponding spreads are
summarized in Fig. 2(a), which shows the average sizes of
these shell gaps and the spreads in their predictions. These gaps
in the superheavy region are compared with the calculated gaps
in lighter doubly magic nuclei, such as 56Ni, 100Sn, mSn, and
208py,.

Because the nuclear radius R =~ roAl/3, i.e., the average
width of the potential, increases with the mass number A,
the shell gaps decrease with A~!/3 and by this reason we
show in Fig. 2(b) the shell gaps and their spreads scaled
with a factor A!'/3. These scaled shell gaps are considerably
more constant with A, but there is still a tendency that even
the scaled gaps decrease in general with A. This is probably
related to the spin-orbit coupling, which is proportional to the
orbital angular momentum ¢, because it causes an increasing
downward shift of the high-;j intruder levels. The spreads
give some information on the theoretical uncertainties of
the sizes of the calculated gaps. Definitely, the impact of
these spreads on the model predictions depends on the ratio
of their size with respect of the size of calculated shell
gaps. The presence of theoretical spreads has less severe
consequences on the predictions of spherical nuclei around
magic gaps at Z = 28,50,82 and N = 28,50,82,126 than on
similar predictions for SHEs because the former typically have
larger shell gaps for comparable theoretical uncertainties. Of
course, this is only true in general. The N = 172 shell gap in
the nucleus 22120 forms an exception. It is more or less the
same for all the CEDFs under consideration and therefore
its uncertainty deduced from these spreads is relatively
small.

It is evident that the predictive power for new shell gaps
in the superheavy region depends on the quality of the de-
scription of the single-particle energies of the various CEDFs.
Considering Figs. 1 and 2, one can hope that an improvement
in the DFT description of the energies of the single-particle
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FIG. 2. (Color online) (a) Neutron and proton shell gaps A Eg,,
of the indicated nuclei. The average (among ten used CEDFs) size
of the shell gap is shown by a solid circle. Thin and thick vertical
lines are used to show the spread of the sizes of the calculated shell
gaps; the tops and bottoms of these lines correspond to the largest
and smallest shell gaps among the considered set of CEDFs. Thin
lines show this spread for all employed CEDFs, while thick lines
are used for the subset of four CEDFs (NL3*, DD-ME2, DD-MEG,
and DD-PC1). Particle numbers corresponding to the shell gaps are
indicated. (b) The same as in panel (a), but with the sizes of the shell
gaps and the spreads in their predictions scaled with mass factor A'/3.

states in known nuclei will also reduce the uncertainties in
the prediction of the shell structure of the SHEs. It is well
known that in DFT the single-particle energies are auxiliary
quantities and there are problems in their precise description
within this framework. It is generally assumed that this has
two reasons. First, the coupling of the single-particle motion
to low-lying surface vibrations has to be taken into account,
and, second, there is not enough known about the influence of
additional terms in the Lagrangian, such as tensor forces [51].
Particle-vibrational coupling is particularly large in spherical
nuclei. So far, its influence on the accuracy of the description
of the single-particle energies and on the sizes of shell gaps
has been studied in relativistic particle-vibration [52,53] and
quasiparticle-vibration [54] coupling models with the CEDFs
NL3 [17] and NL3* [20] only. The experimentally known
gaps of °Ni, 1*2Sn, and 2°8Pb are reasonably well described
in the relativistic particle-vibration calculations of Ref. [53].
Also, the impact of particle-vibration coupling on spherical
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FIG. 3. (Color online) Deformation energy curves for the chain of Z = 120 isotopes obtained in axial RHB calculations with the indicated
CEDFs. The energy of the spherical or oblate ground states are set to zero.

shell gaps in SHEs has been investigated in Refs. [53,55].
Although this effect, in general, decreases the size of shell
gaps, the Z = 120 gap still remains reasonably large but there
is a competition between the smaller N = 172 and N = 184
gaps. The accuracy of the description of the energies of
one-quasiparticle deformed states in the rare-earth and actinide
region has been statistically evaluated in Ref. [38] within the
framework of relativistic Hartree-Bogoliubov theory. On the
one hand, these studies have proven some success of CDFT:
The covariant functionals provide a reasonable description
of the single-particle properties despite the fact that such
observables were not used in their fit. On the other hand, they
illustrate the need for a better description of the single-particle
energies.

IV. THE IMPACT OF DEFORMATION ON THE
PROPERTIES OF SUPERHEAVY NUCLEI

Although it is commonly accepted that the large spherical
shell gaps at Z = 120 and N = 172 define the center of the
island of stability of SHEs for the majority of the covariant
functionals [12,13], these conclusions were mostly obtained
in investigations restricted to spherical shapes. In addition,
some calculations suggest [50,56], or do not exclude [13],
the existence of a spherical shell gap at the neutron number

N = 184. However, as discussed below, the inclusion of
deformation can change the situation drastically for some
functionals.

To illustrate this fact, the deformation energy curves of
the Z = 120 isotopes and the N = 184 isotones are presented
in Figs. 3 and 4. Here we restrict our considerations to five
CEDFs, namely, NL3*, DD-ME2, DD-MES§, DD-PCI, and
PC-PK1, whose global performance is well established [3,28].
In the following discussion we neglect the prolate superde-
formed minimum, which is sometimes even lower than the
spherical or oblate minimum, because of the reasons discussed
in detail in Sec. IV A. In Figs. 3 and 4 the lowest spherical
or oblate minimum is considered as the ground state and
indicated by a dashed horizonal line. In Fig. 3 we see that
the ground states of the Z = 120 isotopes with N = 172-184
are spherical for NL3*, DD-ME2, and PC-PKI1. This is a
consequence of the presence of the large Z = 120 spherical
shell gap (see Fig. 1). For these three functionals, the increase
of neutron number N leads to softer potential energy curves for
B> values between —0.4 and 0.0. As a result, for N = 188 an
oblate minimum either becomes lowest in energy (for NL3*) or
competes in energy with the spherical solution (for DD-ME2
and PC-PK1). This softness of the potential energy curves
is even more pronounced for the DD-ME§ and DD-PCI,
for which the oblate solution is lower in energy than the
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FIG. 4. (Color online) The same as in Fig. 3 but for N = 184 isotones.

spherical solution in all displayed nuclei apart from N = 172
(Fig. 3).

Although it is tempting to relate this feature to the fact
that the size of the Z = 120 gap is smallest among the
employed functionals for DD-MEG in the (Z = 120,N = 172)
nucleus and for DD-PC1 in the (Z = 120,N = 184) nucleus
[see Figs. 1(a) and 1(b)], this explanation is too simplistic.
This is because even for the cases when the sizes of the
Z =120 gap are very similar (compare, for example, their
sizes for DD-ME2 and DD-MES$ in the (Z = 120,N = 184)
nucleus [Fig. 1(b)]), the deformations of their minima in the
ground state are different. This strongly suggests that the
evolution of the single-particle structure with deformation,
which leads to negative shell correction energies at oblate
shape, is responsible for the observed features. Thus, not
only the size of the spherical shell gaps but also the location
of the single-particle states below and above these gaps are
responsible for the observed features.

This is clearly seen in the Nilsson diagrams presented in
Fig. 5 for the nucleus 3**120. Pronounced deformed shell
gaps in the proton subsystem are clearly seen for g ~ —0.2
at Z =116,126, for g ~ —0.3 at Z = 118,120, and for
B~ —04 at Z = 118,122. Although, in detail, the size of
these deformed gaps, some of which are comparable in
magnitude with the Z = 120 spherical gap, depends on the
functional, they are present both for DD-PC1 and for NL3*.

The most pronounced deformed neutron shell gap is seen at
N = 178 for B, ~ —0.25; the size of this gap is comparable
with the spherical shell gap at N = 184. At similar defor-
mations somewhat smaller deformed shell gaps are seen at
N = 184, 190, and 192.

It is important to recognize that, contrary to the spherical
states with a degeneracy of 2j + 1, deformed states are only
twofold degenerate. This will also impact the shell correction
energy because it depends on the averaged density of the
single-particle states in the vicinity of the Fermi surface [57—
59]. As a result, close to the above-discussed deformed shell
gaps the negative shell correction energy can be larger in
absolute value than the one at spherical shape even for similar
sizes of the respective deformed and spherical shell gaps. In the
language of the MM approach, this difference can be sufficient
to counteract the increase of the energy of the liquid drop with
increasing oblate deformation in SHEs [60]. The consequences
of this interplay between shell correction and liquid drop
energies and the role played by the low-level density of
the single-particle states in the vicinity of above-discussed
deformed shell gaps are clearly visible in the potential energy
curves of the 3*4120 nucleus presented in Fig. 3 for DD-PC1
and NL3*. For DD-PCI1, the ground state is oblate with
deformation B, ~ —0.3. However, two excited minima are
also seen at B, ~ —0.15 and B, = 0.0. Although the ground
state of the nucleus 394120 is spherical for NL3*, three minima
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FIG. 5. (Color online) Single-particle energies, i.e., the diagonal elements of the single-particle Hamiltonian / in the canonical basis [61],
for the lowest in total energy solution in the nucleus 3**120 calculated as a function of the quadrupole equilibrium deformation B, for the two
indicated functionals. Solid and dashed lines are used for positive- and negative-parity states, respectively. Relevant spherical and deformed
gaps are indicated. Note that the transition from spherical to deformed shapes removes the 2j 4 1 degeneracy of the spherical orbitals. The
selected range in deformation is representative for ground-state deformations of the SHESs in the vicinity of the Z = 120 and N = 184 lines

and beyond them.

atB, ~ —0.4, B, ~ —0.3,and B, ~ —0.2 are seen at excitation
energies of around 1 MeV. These local minima are the conse-
quence of the fact that the corresponding minima in the proton
and neutron shell correction energies correspond to different
deformations.

Similar features are also observed for the N = 184 isotones
in Fig. 4. The nucleus Hs (Z = 108) has a well-pronounced
spherical minimum for NL3*, DD-ME2, and PC-PKI1. For
these functionals, the increase of proton number Z leads to an
increase of softness in the potential energy surface for —0.4 <
B> < 0.However, the ground state remains spherical upto Z =
120. On the other side, the ground state of the Z = 124 nucleus
becomes oblate in these three functionals. The situation is
completely different for the functionals DD-ME§ and DD-PC1
for which all nuclei shown in Fig. 4 are characterized by soft
potential energy curves in the range —0.4 < 8, < 0 and by
oblate ground states.

A. Comment on superdeformed minima and
outer fission barriers

The axial RHB calculations restricted to reflection sym-
metric shapes show that there exists a second [superdeformed
(SD)] minimum with deformation of 8, ~ 0.5 or higher for all
the nuclei under investigation (Figs. 3 and 4). In the nucleus
Z = 120,N = 172 it is in energy close to the ground state for
NL3* and DD-ME2 but lower in energy than the spherical
or oblate minimum for DD-MES§, DD-PC1, and PC-PK1 (see
Fig. 3). With the increase of neutron number the SD minimum
becomes the lowest in energy in all nuclei (see also Ref. [62]).
A similar situation is also observed for the N = 184 isotones.
Inthe Z = 108 and Z = 112 isotopes, the spherical minimum
is the lowest in energy for NL3*, DD-ME2, and PC-PK1 (see
Fig. 4). With increasing proton number Z, the SD minimum
becomes the lowest in energy. The situation is different for
DD-MES$§ and DD-PC1 because (i) in these functionals the SD
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minimum is the lowest in energy in all nuclei shown in Fig. 4
and (ii) the potential energy curves of the Z = 108, 112, and
116 nuclei are much softer (with relatively small inner and
outer fission barriers) than in other functionals. It is necessary
to conclude that the relative energies of the spherical and/or
oblate and SD minima strongly depend on the functional.

Whether these SD states are stable, metastable, or unstable
should be defined by the height (with respect of the SD
minimum) and the width of the outer fission barrier. The results
presented in Figs. 3 and 4 show that while in some nuclei
this barrier is appreciable, it is extremely small in others.
Moreover, it was demonstrated in systematic RMF 4 BCS
calculations with NL3* for the Z = 112-120 nuclei that the
inclusion of triaxial or octupole deformation decreases this
barrier substantially by 2 to 4 MeV so it is around or less
than 2 MeV in the nuclei studied in Ref. [32]. Calculations
with DD-PC1 and DD-ME2 for six nuclei centered around
Z = 114, N = 176 led to similar results [32].

The impact of octupole deformation on the outer fission
barriers of SHEs has also been studied in the RMF + BCS
calculations with the CEDFs NL3 and NL-Z2 in Ref. [63]. In
this work, the SD minima exist in the calculations without
octupole deformation (see Fig. 5 in Ref. [63]). Because
the heights of outer fission barriers in the axial reflection
symmetric calculations are lower in NL-Z2 than in NL3,
the inclusion of octupole deformation completely eliminates
the outer fission barriers in NL-Z2 but keeps their heights
around 2.5 MeV in the NL3 functional. In addition, it was
demonstrated in actinides in the RMF + BCS calculations
of Ref. [64] that nonaxial octupole deformation can further
reduce the height of outer fission barrier by 0.5-1 MeV. A
similar effect may be expected also in superheavy nuclei.

Thus, a detailed analysis of the outer fission barriers re-
quires symmetry-unrestricted calculations in the RHB frame-
work which are extremely time consuming. So far no such
studies exist. Even the symmetry-unrestricted RMF 4 BCS
calculations (which are at least by one order of magnitude less
time consuming than the RHB calculations) have been per-
formed only for actinides [64—66] in which experimental data
on outer fission barriers exist. Global symmetry-unrestricted
RHB calculations for SHE have to be left for the future.
However, from the discussion above it is clear that outer fission
barriers are expected to be around 2 MeV or less. The results of
Refs. [32,63] do not cover SHE beyond Z = 120 and N = 184
lines. However, Figs. 3 and 4 show a clear trend for the decrease
of the height of outer fission barrier beyond these lines; for
these nuclei its height is less than 2 MeV in many functionals
even in axially symmetric calculations restricted to reflection
symmetric shapes. Thus, it is already clear that the low outer
fission barriers with barrier heights around 2 MeV or less
existing in the majority of the CDFT calculations discussed
above would translate into a high penetration probability for
spontaneous fission, such that most likely these SD states
(even if they exist) are metastable. Moreover, nonrelativistic
calculations usually do not produce a SD minimum and an
outer fission barrier in superheavy nuclei [63,67-70].

In addition, existing experimental data on SHE (such as
total evaporation-residue cross section or spontaneous fission
half-lives) [26] do not show any abrupt deviation from the
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expected trends which could be interpreted as a transition to a
SD ground state.

These are the reasons why we restrict our consideration
to the ground states associated with either normal-deformed
prolate, oblate, or spherical minima.

V. THE SYSTEMATICS OF THE DEFORMATIONS

The calculated charge quadrupole deformations of the
ground states for five CEDFs are plotted in Fig. 6. They
are shown for the Z = 96-130 nuclei located between the
two-proton drip line (see Table IV in Ref. [3]) and N = 196.
The impact of the large spherical shell gaps discussed in Sec. I11
on the structure of superheavy nuclei can be accessed via the
analysis of the width of the band of spherical nuclei shown
by gray color in the (Z,N) chart of Fig. 6. The width of this
gray region along a specific particle number corresponding to
a shell closure indicates the impact of this shell closure on
the structure of neighboring nuclei. For example, for NL3* the
width of suchaband at Z &~ 120 is, on average, three even-even
nuclei in the Z direction for N = 172-188 and the width of a
corresponding band at N & 184 is, on average, four even-even
nuclei in the N direction for Z = 96-120. This result is
contrary to existing discussions in CDFT, which emphasize the
impact of the N = 172 shell gap over the N = 184 gap. Our
results clearly show that the effect of the N = 184 spherical
shell gap on the equilibrium deformation is more pronounced
as compared with the N = 172 gap. A similar situation exists
in the calculations with PC-PK1 [see Fig. 6(e)]. However, the
impact of the Z = 120 and the N = 184 spherical shell gaps
becomes less pronounced for DD-ME2 [see Fig. 6(b)].

The impact of the Z = 120 spherical shell gap is signifi-
cantly reduced for DD-MES$ and DD-PCI1; only the N = 172
nuclei with Z = 118 and 120 are spherical for those two
functionals. The impact of the N = 184 shell gap is also
considerably decreased; the ground states of the N = 184
nuclei are spherical only for Z < 102 in DD-MES§ and for
Z < 112 in DD-PC1 [see Figs. 6(c) and 6(d)]. Note also that
the band of spherical nuclei around N = 184 is narrow for
DD-PC1. These results are in contradiction to the expectation
that the large size of the spherical Z = 120 gap in Fig. 1 forces
the isotopes with Z = 120 to be spherical for a large range of
neutron numbers. Note that proton and neutron shell gaps act
simultaneously in the vicinity of a nucleus with proton and
neutron numbers corresponding to those gaps. Thus, the effect
of a single gap is more quantifiable away from this nucleus.

It is interesting to compare these results with the ones
obtained for Z < 104 nuclei in Fig. 17 of Ref. [3] with NL3*,
DD-ME2, DD-MES$, and DD-PCI1. In these nuclei the neutron
N =82, 126, and 184 shell gaps have a more pronounced
effect on the nuclear deformations as compared with the proton
shell gaps at Z = 50 and Z = 82. This feature was common
to all the CEDFs used in Ref. [3]. However, the width of
the band of spherical and near-spherical nuclei along these
neutron numbers was broader in NL3* as compared with other
functionals under consideration. We see the same feature also
in superheavy nuclei along the N = 184 shell closure (see
Fig. 6); note that PC-PK1 was not used in Ref. [3].
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FIG. 6. (Color online) Charge quadrupole deformations $, obtained in the RHB calculations with the indicated CEDFs. Note that ground-
state equilibrium deformations of the N = 182 nuclei with Z = 106 and 116 and of the N = 184 nuclei with Z = 108, 114, 116, and 118
obtained with DD-PC1 [Fig. 6(d)] differ from the ones shown in the bottom panel of Fig. 4 in Ref. [72]. This is a consequence of the use of a
smaller deformation range (—0.4 < 8, < 1.0) and a larger step in deformation (AB, = 0.05) in the RHB calculations of Ref. [72] as compared

with the present paper.

The RHB results for superheavy nuclei show the unusual
feature that the ground states of the nuclei outside the band
of spherical or near-spherical shapes (shown by gray color
in Fig. 6) have oblate shapes for NL3*, DD-ME2, and PC-
PK1. This is contrary to the usual situation observed in the
lighter nuclei (see, for example, Fig. 17 in Ref. [3]), where,
between shell closures, the nuclei change their shape with
increasing particle numbers from spherical to prolate, then to
oblate, and finally back to spherical. It is interesting to see
that the systematic MM calculations of Ref. [71] based on the
Woods-Saxon potential also show a similar preponderance of
oblate shapes in the ground states of superheavy nuclei. These
MM results were also confirmed by the calculations for a
few nuclei performed within Skyrme DFT with the functional

0543

SLy6 [71]. The situation is even more drastic for the CEDFs
DD-MES§ (DD-PC1) in which no (or very limited) indications
of spherical shapes are seen on passing through the nuclei with
Z =120 or N = 184. When comparing our results with other
calculations, one has to keep in mind that not all published
results extend to a sufficiently large deformation for oblate
shapes (see, for example, Ref. [70]).

Figure 7 shows the map of calculated charge quadrupole
deformations with experimentally known nuclei indicated by
open circles. One can see that, apart from the Z = 116,118
nuclei, the predictions of these two functionals (PC-PK1 and
DD-PC1) for the equilibrium deformations of experimentally
known even-even nuclei are very similar. For these nuclei, PC-
PK1 predicts the gradual transition from prolate to spherical
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FIG. 7. (Color online) The same as Fig. 6 but with experimentally known nuclei shown by open circles. Only the results with PC-PK1
and DD-PCI are shown. The information on experimentally known nuclei is taken from Refs. [26,73]. Note that the region of experimentally
known superheavy nuclei is broader at high Z when odd and odd-odd mass nuclei are included (see Fig. 2 in Ref. [26]).

shape on going from Z = 114 to Z = 118. The same happens
also for NL3* and DD-ME?2 [Figs. 6(a) and 6(b)]. On the
contrary, for DD-PCI1 the transition from the prolate to the
oblate minimum is predicted for experimentally known nuclei
on going from Z = 114 to Z = 116 and all experimentally
known Z > 116 nuclei are expected to be oblate. The same
happens also for DD-MES. However, because of the limited
scope of experimental data these differences in the description
of experimentally known Z = 116 and 118 nuclei between
DD-PC1/DD-ME$ and PC-PK1/NL3*/DD-ME2 cannot be
discriminated.

Spreads in the theoretical predictions of the charge
quadrupole deformations are shown in the left panel of Fig. 8.
They are very small in the region of known nuclei and
for N < 170. Only very few experimentally known nuclei
with Z = 114, 116, and 118 are located in the region where
substantial theoretical spreads exist (compare Fig. 8 with
Fig. 7). However, as discussed above, available experimental
data on these nuclei do not make it possible to discriminate
between different predictions. Quite large spreads exist in the
region near the Z = 120 and N = 184 lines. This is because
spherical ground states are predicted in this region by NL3*,
DD-ME2, and PC-PK1, while DD-MES§ and DD-PC1 favor
oblate shapes in these nuclei. Very large spreads exist in the
Z ~ 110, N > 190 region; this is a region where a transition
from prolate to oblate shape is seen in the calculations and
it takes place at different positions in the (Z,N) chart for
the different functionals (see Fig. 6). The theoretical spreads
become small again in the upper right corner of the chart; here
they are substantial only in several nuclei (shown by green
color), which form a “line” parallel to the two-proton drip line.
This line is a consequence of the fact that the transition from
ground-state deformations B, ~ —0.2 to B, ~ —0.4 takes
place for different functionals at different positions in the
(N,Z) chart (see Fig. 6).

The right panel of Fig. 8 shows theoretical spreads for
the case when the functional DD-MES is excluded from
consideration. This functional provides unrealistically low
heights of inner fission barriers in SHEs [74] and thus it is
very unlikely that this functional is appropriate for the region
of SHEs. However, its exclusion from consideration reduces
only slightly the theoretical spreads.

Itis interesting to compare the results of the present analysis
of theoretical spreads in the description of ground-state
deformations with the global analysis presented in Ref. [3]
for Z < 104 nuclei. It is clear that the region of SHEs in the
vicinity of the Z = 120 and N = 184 lines bears the mark
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FIG. 8. (Color online) Proton quadrupole deformation spreads
AP, as a function of proton and neutron number. AB,(Z,N) =
|BY*(Z,N) — in(Z,N)|, where B*(Z,N) and BFi"(Z,N) are the
largest and smallest proton quadrupole deformations obtained with
the set of CEDFs used for the nucleus (Z,N). Panel (a) shows the
results for all functionals, while DD-MES$ is excluded in the results
shown on panel (b).
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of a transitional region characterized either by soft potential
energy surfaces or by shape coexistence. This is the source
of large theoretical spreads in the prediction of ground-state
deformations which exist not only in the region of SHEs but
also globally (see Ref. [3]). Both in SHEs and globally these
uncertainties are attributable to the deficiencies of the current
generation of functionals with respect to the description of
single-particle energies.

VI. THE QUANTITIES 6,,(Z,N) AND 6,,(Z,N) AS
INDICATORS OF SHELL GAPS

The analysis of the shell structure (and shell gaps) of
superheavy nuclei is most frequently based on the quantity
82,(Z,N) defined as (Ref. [12,13])

0 (Z,N) = $2,(Z,N) — $2.(Z,N +2)
— —B(Z,N —2)+2B(Z,N)— B(Z,N +2). (4

Here B(Z,N) is the binding energy and S,,(Z,N) is the
two-neutron separation energy. The quantity 6,,(Z,N), being
related to the second derivative of the binding energy as a
function of the neutron number, is a more sensitive indicator of
the local decrease in the single-particle density associated with
a shell gap than the two-neutron separation energy S,,(Z,N).
This quantity is frequently called as two-neutron shell gap. In
a similar way, for protons, 8,,(Z,N) is defined as

8p(Z,N) = $2,(Z,N) — $:,(Z +2,N)
— —B(Z—2,N)+2B(Z,N)— B(Z+2,N). (5)

However, as discussed in detail in Ref. [13], many factors
beyond the size of the single-particle shell gap contribute
to 82,(Z,N) and 68,,(Z,N), as for instance deformation and
pairing changes. For example, the global analysis of these
quantities in Ref. [29] shows that for some (Z,N) values
82,(Z,N) becomes negative because of deformation changes.
Because by definition the shell gap has to be positive, it is
clear that the quantities &,,,(Z,N) cannot serve as explicit
measures of the size of the shell gaps.

Unfortunately, in the majority of cases the analysis of these
quantities in superheavy nuclei (and thus the conclusions
about the underlying shell structure and the gaps) is based
on the results of spherical calculations (see, for example,
Refs. [12,14,50]). Thus, the possibility of a considerable
softness of the potential energy surface leading to a deformed
minimum is ignored from the beginning. An alternative way
to analyze the shell structure is via the microscopic shell
correction energy (see, for example, Ref. [56]). However,
such an analysis is also frequently limited to spherical shapes
(Ref. [56]) and, in addition, the comparison with experiment
is less straightforward.

The danger of a misinterpretation of the structure of
superheavy nuclei based on the analysis of the quantities
8,(Z,N) and 8,,(Z,N) obtained in spherical calculations is
illustrated in Fig. 9 on the example of DD-PC1. In spherical
calculations, the quantity &,,(Z,N) has pronounced maxima
at N =184 for Z =96-110 and less pronounced maxima
at N = 172 for Z = 112-120. Note that in this functional the
nucleus (Z = 120,N = 172) is located beyond the two-proton

PHYSICAL REVIEW C 92, 054310 (2015)

drip line. However, it is clear that the impact of the N = 172
shell gap does not propagate far away from Z = 120. The
quantity 8,,(Z,N) is enhanced in a broad region around Z =
116-120 and has a maximum for Z = 120 which becomes
especially pronounced approaching N = 172.

However, in deformed RHB calculations, the quantities
82,(Z,N) and §,,(Z,N) show a picture in many respects quite
different from the one obtained in spherical calculations. In
addition to the maxima in the quantity 6,,(Z,N) at N = 184
for Z = 96-108, which are already seen in spherical calcula-
tions, deformed RHB calculations show maxima at N = 162
(for Z =96-112) and at N = 148 (for Z = 98-102). The
latter gap appears for a number of covariant functionals
instead of the experimentally observed N = 152 gap (see
Refs. [39] for details). Note that the maxima in 8,,(Z,N) seen
at N = 172 in spherical calculations disappear in deformed
RHB calculations. In addition, some isolated peaks in the
quantity 6,,(Z, N) appear across the nuclear chart of Fig. 9(d)
at specific values of Z and N. In many cases, they originate
from rapid deformation changes in going from one nucleus to
another.

Even more drastic differences are seen when comparing
the quantities &,,(Z, N) obtained in spherical and in deformed
RHB calculations. Any indication of the Z = 120 spherical
shell gap clearly visible in the spherical case [Fig. 9(c)],
disappear in deformed calculations [Fig. 9(d)]. This is a
consequence of the fact that apart from the Z = 118,120
nuclei with N =172, which are spherical in the ground
state, all other nuclei in the vicinity of the Z = 120 line are
oblate in the ground state [see Fig. 6(d)]. The maxima in the
quantity 8,,(Z, N) obtained in deformed RHB calculations are
located at completely different Z values as compared with
spherical calculations, indicating a possible lowering of the
single-particle level density at these values. For example, the
high values of the quantity 8,,(Z,N) seen at Z = 104 around
N = 150 are attributable to deformed the Z = 104 shell gap
which exists for a number of CEDFs [13,39].

These results clearly illustrate the danger of misinterpreta-
tion of the structure of superheavy nuclei when using results
of spherical calculations. The presence of large spherical
shell gaps will definitely manifest itself in the increase of
the relevant 6,,(Z,N) or 8§,,(Z,N) quantities. However, the
restriction to spherical shapes does not make it possible to
access the softness of the potential energy surfaces and the
presence of large shell gaps at deformation.

VII. MASSES AND SEPARATION ENERGIES

In Table I we list the rms deviations AE,,, between
theoretical and experimental binding energies for the nuclei
with Z > 96; experimental masses from the AME2012 mass
evaluation [75] are used here. The masses given in the
AME2012 mass evaluation [75] can be separated into two
groups. One represents nuclei with masses defined only from
experimental data; the other contains nuclei with masses
depending in addition on either interpolation or short extrap-
olation procedures. These procedures involve some degree of
subjectivity but has proven to provide a quite accurate estimate
in absolute majority of the cases as seen from the comparison
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FIG. 9. (Color online) The comparison of the quantities §,,(Z,N) (top panels) and 8,,(Z,N) (bottom panels) obtained in spherical (left
panels) and deformed (right panels) RHB calculations with DD-PC1. Note that for clarity of the presentation, the color maps for the quantities

8,(Z,N) for protons and 8,,(Z,N) for neutrons are different.

of these estimates with newly measured masses [76]. For
simplicity, we refer to the masses of the nuclei in the first and
second groups as measured and estimated. Estimated masses
frequently involve the ones for unknown nuclei and they are
estimated from the trends in mass surfaces [76]. Note that these
mass surfaces also incorporate the information on odd and
odd-mass SHEs which are more abundant than their even-even
counterparts [26]. Experimental physical observables which
depend only on measured masses are shown later by solid
symbols in the figures, while the ones which involve at least
one estimated mass by open symbols.

For each employed functional the accuracy of the de-
scription of the sets of measured and measured 4 estimated
masses is comparable and does not change substantially when
the estimated masses are added to the measured ones (see
Table I). The same is true for the quantities that depend on
the mass differences such as the two-neutron (two-proton)
separation energies and the Q, values. This fact is important
because the measured masses represent only 41% in the set
of measured + estimated masses used here. It adds additional
support to the estimation procedures used in Refs. [76] because
global studies of Ref. [3] indicate that CDFT has a good

TABLEI Root-mean-square deviations A Eyyng, A(S2)rms[A(S2)rms s A(Qa)rms» and A(T,)ms between calculated and experimental binding
energies E, two-neutron(-proton) separation energies Sy, (52,), O values, and a-decay half-lives 7. The values of physical observables in
columns 2-5 are presented in the format “A/B”, where A are the values obtained from only measured masses and B are those obtained
from measured + estimated masses. Note that only experimental data on even-even nuclei with Z > 96 are used here. In the last column, the
deviations are given in terms of orders of magnitude. In each column, boldface is used to indicate the functional with the best rms deviation.

CEDF AEms (MeV) A(S20)rms (MeV) A(S2p)ms (MeV) A(Qe)rms (MeV) A(Te)ms (order)
1 2 3 4 5 6

NL3* 3.02/3.39 0.71/0.68 1.33/1.34 0.68/0.75 2.44
DD-ME2 1.39/1.40 0.45/0.54 0.85/0.90 0.51/0.65 1.95
DD-ME$§ 2.52/2.45 0.60/0.51 0.45/0.48 0.39/0.51 1.39
DD-PC1 0.59/0.74 0.30/0.32 0.41/0.42 0.36/0.47 1.40
PC-PK1 2.82/2.63 0.25/0.23 0.36/0.33 0.32/0.38 1.26
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FIG. 10. (Color online) Two-neutron separation energies S,,(Z,N) given for different isotopic chains as a function of neutron number. The
experimental data are shown by the symbols and the calculated results by the lines; the same color is used for both quantities belonging to the
same isotopic chain. Solid symbols are used for the S,,(Z, N) values determined from measured masses, and open symbols for those including
at least one estimated mass. The measured and estimated masses are from Ref. [75]. The transition to a prolate minimum with 8, ~ 0.35 in
nuclei with N ~ 192 (see Fig. 6) creates the jumps in S,,(Z,N); these jumps are not shown and are detectable in the graphs by the breakage
of the line.

predictive power in the regions of deformed nuclei with no As compared with the global analysis of Refs. [3,28], the
shape coexistence and the absolute majority of the superheavy accuracy of the description of masses is better for DD-PC1
nuclei for which measured and estimated masses are provided and DD-ME2, comparable for DD-MES§ and PC-PK1, and
in Ref. [75] belong to this type of region. worse for NL3*. The best accuracy is achieved for DD-PC1.
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FIG. 11. (Color online) The same as Fig. 10 but for two-proton separation energies S,,(Z,N) given for different isotonic chains as a
function of the proton number. The shapes of the nuclei on the different sides of the N = 188-196 chains (see Fig. 6) are indicated; the circles
envelop the isotone chains which are affected by sharp prolate-oblate transitions. This transition creates the jumps in S,,(Z,N); these jumps
are not shown and are detectable in the graphs by the breakage of the line.

This is not surprising considering that this functional has been
carefully fitted to the binding energies of deformed rare-earth
nuclei and actinides in Ref. [19]. With respect to masses it
outperforms other functionals in these regions (see Figs. 6
and 7 in Ref. [3]).

Because our investigation is restricted to even-even nuclei,
we consider two-neutron S», = B(Z,N —2) — B(Z,N) and

two-proton S, = B(Z —2,N) — B(Z,N) separation ener-
gies. Here B(Z,N) stands for the binding energy of a nucleus
with Z protons and N neutrons. Apart of the proton subsystem
in NL3* and DD-ME2 and the neutron subsystem in NL3*,
the two-neutron S5, and the two-proton S5, separation energies
are described with a typical accuracy of 0.5 MeV (Table I).
This is better by a factor of two than the global accuracy of
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around 1 MeV obtained for these functionals in Ref. [3]. The
accuracy of the description of separation energies depends on
the accuracy of the description of mass differences. As a result,
the functional that provides the best description of masses does
not always give the best description of two-particle separation
energies.

Figures 10 and 11 present a detailed comparison of calcu-
lated and experimental two-neutron and two-proton separation
energies. While providing, in general, comparable descriptions
of experimental data, the calculated results differ in details. The
experimental data for the Rf, Sg, Hs, and Ds isotopes clearly
show a sharp decrease of the two-neutron separation energies
at N = 162, which is due to the deformed shell gap at this
particle number. This decrease is best described by PC-PK1
[Fig. 10(e)]. DD-ME2 and DD-PC1 overestimate this decrease
somewhat [Figs. 10(b) and 10(d)] and NL3* underestimates its
size. In contradiction to experiment, DD-MEGS does not show
the presence of a gap at N = 162 but gives a small deformed
shell gap at N = 164 [Fig. 10(c)].

It is important to recognize that the conclusions about the
deformed N = 162 shell gap are based on the comparison
with two-neutron separation energies extracted from estimated
masses. However, this gap is present both in the macroscopic +
microscopic calculations of Refs. [8,77,78] and the DFT
calculations based on the Gogny DI1S force of Ref. [70]. In
addition, from the analysis of experimental data, there are
indications about the presence of this gap that suggest that the
deformed N = 162 shell gap is much larger than the N = 152
gap discussed below [76].

PHYSICAL REVIEW C 92, 054310 (2015)

For higher N values there are indications of the presence
of the N = 184 spherical shell gap. However, there is a
substantial difference between the functionals on how far
this gap propagates into the region of superheavy nuclei. For
example, PC-PK1 and DD-ME2 show the propagation of this
gapupto Z =~ 120 [Figs. 10(b) and 10(e)]. However, this gap is
visible only up to the Rf/No region for DD-MES and DD-PC1
[Figs. 10(b) and 10(e)]. The results for NL3* are between of
these two extremes [Figs. 10(a)].

Contrary to the neutron subsystem, experimental two-
proton separation energies are smoother as a function of proton
number without clear indications of pronounced shell gaps
(Fig. 11). One should note that there exist small deformed
shell gaps at Z = 100 and N = 152 in heavy actinides and/or
light superheavy nuclei [13]. They are barely visible in the
two-particle separation energies (see Figs. 10 and 11 and
Ref. [13]) and are usually seen in the quantities §,,(Z,N)
and 8,,(Z,N) (see Sec. VI).

Figures 12 and 13 show that these deformed gaps at Z =
100 and N = 152 are not reproduced in the CEDFs under
consideration. Indeed, the calculations with NL3*, DD-ME2,
DD-MES$, and DD-PC1 place them at N = 148 and Z = 104.
These gaps are clearly seen in the nobelium region in the
Nilsson diagrams for NL3* (see Fig. 3 in Ref. [39]). On the
contrary, a neutron gap is seen at N = 154 and no proton gap
exists in the calculations with DD-MEG. These problems exist
also in the description of experimental deformed gaps with the
older generation of the CEDFs used in Ref. [13]. They place a
neutron gap either at N = 148 (NL3, NLRA1, and NL-Z) or at
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FIG. 12. (Color online) The quantity 6,,(Z,N) for the Cf, Fm, and No isotope chains. The experimental data (circles) are compared with
the results (open symbols) obtained in deformed RHB calculations with the indicated CEDFs. Solid circles are used for the 6,,(Z,N) values
which are determined from measured masses and open circles for those the definition of which involves at least one estimated mass. The

measured and estimated masses are from Ref. [75].
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FIG. 13. (Color online) The same as Fig. 12 but for the quantity §,,(Z,N) in the N = 150, 152, and 154 isotone chains.

N = 150 (NL1 and NL-Z) or do not show a gap at all (NLSH).
In the same way, a proton gap is placed at Z = 104 (NL3, NL1,
and NL-Z) or does not exist in NLRA1. Only NLSH predicts
a proton gap at the right Z value but it is placed between
wrong states [13]. Note that this problem is not specific only
for covariant functionals; most of the Skyrme functionals also
fail to reproduce these gaps (Refs. [79,80]).

VIII. «-DECAY PROPERTIES

In superheavy nuclei spontaneous fission and o emission
compete and the shortest half-life determines the dominant
decay channel and the total half-life. Only in cases where the
spontaneous fission half-life is longer than the half-life of «
emission can superheavy nuclei be observed in experiment. In
addition, only nuclei with half-lives longer than t = 10 us are
observed in experiments.

The «-decay half-live depends on the Q, values which are
calculated according to

Qy=E(ZN)—-E(Z-2,N-2)—EQ2,2), 6)

with E(2,2) = —28.295674 MeV [75] and Z and N repre-
senting the parent nucleus.

The RHB results for the Q, values are compared with
experiment in Fig. 14 and the corresponding rms deviations
are listed in Table I. Based on the results presented in this
table, the best agreement is obtained for PC-PK1 closely
followed by DD-PC1 and DD-MES$ and then by DD-ME2 and
NL3*. However, a detailed analysis of these results presented
in Fig. 14 clearly indicates that DD-ME§ completely misses
both the position in neutron number and the magnitude of
the peak at N = 164 seen in the experimental data for the
Rf, Sg, Hs, and Ds isotope chains. Note, however, that the

magnitude of the peak in the experimental data is based on the
estimated masses. This peak is a consequence of the deformed
N = 162 shell gap which is not reproduced in this functional
(see Sec. VII). The other functionals correctly place this peak at
N = 164. The best reproduction of the magnitude of this peak
is obtained for PC-PK1. The CEDFs DD-PC1 and DD-ME2
(NL3*) somewhat overestimate (underestimate) its magnitude,
reflecting the accuracy of the reproduction of the size of the
N = 162 shell gap in these CEDFs (see Sec. VII).

The comparison of experimental data with theoretical Q,
values obtained with the covariant functionals (Fig. 14 of the
present manuscript and Fig. 18 of Ref. [82]) and with those
obtained by nonrelativistic models (see, for example, Fig. 18
in Ref. [82] and Figs. 44 and 45 of Ref. [78]) clearly indicates
that the available experimental data do not make it possible to
distinguish between the predictions of different models with
respect to the position of the center of the island of stability.

The «-decay half-lives were computed using the phe-
nomenological Viola-Seaborg formula [83]

Z+b
u+cZ+d

V0O«
with the parameters a = 1.64062, b = —8.54399, c¢
—0.194 30, and d = —33.9054 of Ref. [84].

The comparison of calculated and experimental half-lives
for the o decays is presented in Fig. 15. One can see that
reasonable agreement is obtained for all functionals especially
for the case of PC-PK1. However, the local increase above
the general trend of the experimental half-lives near N = 152
visible in the Cf, Fm, and No isotope chains, which is due to the
deformed N = 152 shell gap, is not reproduced. Neither of the
functionals reproduce the position of this gap (see Sec. VII).
For higher neutron numbers all functionals predict an increase

@)

logota =
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FIG. 14. (Color online) The comparison of experimental and calculated Q,, values for even-even superheavy nuclei. The experimental and
calculated values are shown by symbols and lines, respectively. For a given isotope chain, the same color is used for both types of values.
Experimental Q, values are from Ref. [75]. Solid symbols are used for experimentally measured Q, values [75], which are determined either
from measured masses (for low-Z values) or from a-decays (for high-Z values). Open symbols are used for the Q, values, the determination

of which involves at least one estimated mass.

of the half-lives as a function of neutron number N. This
trend, however, is interrupted in the vicinity of the spherical
shell gap with N = 184. For some isotope chains a drastic
decrease of the half-lives is observed. It is a consequence
of the well-known fact that for nuclei with two neutrons
outside a closed shell @-particle emission is easier than for the

other nuclei in the same isotopic chain [85]. However, above
N = 184 the trend of increasing half-lives with the increase
of neutron number is restored. The impact of the N = 184
shell gap on the «-decay half-lives clearly correlates with the
impact of this gap of the deformations of the ground states
(Sec. V). In SHEs with high Z values its impact on the a-
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FIG. 15. (Color online) Experimental and calculated half-lives for « decays of even-even superheavy nuclei. The experimental and
calculated values are shown by symbols and lines, respectively. For a given isotope chain, the same color is used for both types of values. The

experimental data are from Ref. [81].

decay half-lives is either substantially decreased or completely
vanishes.

In the region under investigation the magnitude of the «
decay half-lives varies in a very wide range from 1078 up to
10°° s (or even higher for the Cf, Fm, and No nuclei with N ~
190). For some SHEs with high Z values the calculated half-
lives fell below the experimental observation limit of 1073 s.

Despite the fact that the existing experimental data on the «-
decay half-lives is described with comparable accuracy by the
different functionals, for unknown regions of the nuclear chart
there are some cases of substantial difference in their predic-
tions. The most extreme difference is seen in the Cf isotopes,
where NL3* and DD-ME2 differ from DD-MES and DD-PC1
by approximately 20 orders of magnitude at neutron number
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N = 184 and slightly below it. However, apart from the
N = 184 region, the differences in the predictions of different
functionals is smaller for SHEs with Z ~ 114, where it reaches
only few orders of magnitude (Fig. 15). Inthe N = 184 region
of these nuclei the differences between predictions of different
functionals increase by additional few orders of magnitude.
However, above Z = 120 these differences decrease with
increasing proton number because of the diminishing role of
the N = 184 spherical shell gap. For example, the differences
in the predicted «-decay half-lives do not exceed two orders
of magnitude for the Z = 128 and 130 nuclei.

IX. CONCLUSIONS

The performance of CEDFs in the region of superheavy
nuclei has been assessed using the state-of-the-art functionals
NL3*, DD-ME2, DD-MES, DD-PC1, and PC-PK1. They
represent major classes of covariant functionals with different
basic model assumptions and fitting protocols. The available
experimental data on ground-state properties of even-even
nuclei have been confronted with the results of the calculations.
For the first time, theoretical spreads in the prediction of
physical observables have been investigated in a systematic
way in this region of the nuclear chart for covariant density
functionals. Special attention has been paid to the propagation
of these spreads towards unknown regions of higher Z values
and of more neutron-rich nuclei.

The main results of this work can be summarized as
follows.

(i) So far, the absolute majority of investigations of the
shell structure of SHEs has been performed in spher-
ical calculations. In the framework of CDFT, these
calculations always indicate a large proton shell gap at
Z = 120, a smaller neutron shell gap at N = 172, and,
for some functionals, a neutron shell gap at N = 184.
However, the restriction to spherical shapes does not
make it possible to access the softness of the potential
energy surfaces and the presence of competing large
shell gaps at deformation. As illustrated in the present
paper, this restriction has led to a misinterpretation of
the shell structure of SHESs. The detailed analysis, with
deformation included, shows that the impact of the
N = 172 shell gap is very limited in the (Z,N) space
for all functionals under investigation. The impact of
the Z = 120 and N = 184 spherical shell gaps depend
drastically on the functional. It is most pronounced for
NL3* and PC-PK1 and is (almost) completely absent
for DD-PC1 and DD-MES$.

(i1) Available experimental data (separation energies, Q,
values and «-decay half-lives) on SHEs are de-
scribed with comparable accuracy in covariant (cur-
rent manuscript) and nonrelativistic [82] DFT calcu-
lations. Moreover, these data are not very sensitive to
the details of the single-particle structure which define
the position of the center of the island of stability.
Unfortunately, experimental data on single-particle
states in odd-mass SHEs are either not available
(Z > 105) or scarce (100 < Z < 105). In addition,
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in the latter case, the configuration assignments for
many nuclei are not fully reliable [86]. However, the
analysis of the available data on deformed single-
particle states in the actinides performed with different
DFTs in Refs. [38,39] reveals that the problems in the
description of the single-particle structure exist in all
models. Considering the existing theoretical spreads, it
is clear that the available experimental data on SHEs
do not make it possible to distinguish between the
predictions of different models with respect of the
position of the center of the island of stability.

(iii) Comparing different functionals, one can see that the
results obtained with the covariant density functional
DD-MES$ differ substantially from the results of other
functionals. This functional is different from all the
other functionals used here, because it has been
adjusted in Ref. [22] using only four phenomeno-
logical parameters in addition to some input from
ab initio calculations [87,88]. Above Z = 102 it does
not predict spherical SHEs. The heights of the inner
fission barriers in SHEs with Z = 112-116 obtained
in this functional are significantly lower than the
experimental estimates and the values calculated in
all other models. In addition, it does not lead to
octupole deformation in actinide nuclei which are
known to be octupole deformed [31]. All these facts
suggest that either the ab initio input [87,88] for this
functional is not precise enough or the number of only
four phenomenological parameters (fitted to masses of
spherical nuclei) is too small to provide a proper ex-
trapolation to the region of SHEs. Thus, this functional
is not recommended for future investigations in this
area, in spite of the fact that this functional provides
a good description of masses and other ground-state
observables in the Z < 104 nuclei [3].

(iv) Theoretical uncertainties in the predictions of
different observables have been quantified. While
the uncertainties in the quadrupole deformation of
the ground states of known superheavy nuclei are
small, they increase on approaching nuclei with
Z =120 and/or N = 184. As a result, even the
ground-state deformations of these nuclei (whether
spherical or oblate) cannot be predicted with certainty.
Available experimental data do not make it possible
to discriminate between these predictions.
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TABLE II. The RHB predictions for ground-state properties of even-even nuclei obtained with PC-PK1. Columns 3, 4, and 5 list binding
energies E, proton (), and neutron (8,) quadrupole deformations, respectively. The charge radii r;, root-mean-square (rms) proton radii 2,
and neutron skin thicknesses rq, are presented in columns 6, 7, and 8, respectively. The notation r/ . = (rf,)l/ 2 is used. Note that the neutron

rms radii can be calculated as 1]} . = r” 4 rqin. The last column gives a-decay half-lives obtained by means of the Viola-Seaborg formula
(see Sec. VIII for details).

z N E (MeV) By Bn ren (fm) rhh (fm) Fain (fm) log,((te) (5)
1 2 3 4 5 6 7 8 9

118 170 —2034.295 0.168 0.163 6.287 6.236 0.150 —6.731
118 172 —2049.224 0.000 0.000 6.271 6.220 0.153 —6.287
118 174 —2064.100 0.000 0.000 6.278 6.227 0.166 —4.563
118 176 —2078.333 0.000 0.000 6.285 6.233 0.180 —2.755
118 178 —2092.081 0.000 0.000 6.291 6.240 0.192 —1.385
118 180 —2105.365 0.000 0.000 6.297 6.246 0.206 —1.147
118 182 —2118.141 0.000 0.000 6.302 6.251 0.221 —1.152
118 184 —2130.160 0.000 0.000 6.307 6.256 0.236 —1.873
118 186 —2140.809 0.000 0.000 6.329 6.278 0.241 —4.035
118 188 —2151.145 0.000 0.000 6.350 6.299 0.246 —3.289
118 190 —2161.846 —0.400 —0.395 6.603 6.555 0.223 —0.900
118 192 —2172.715 —0.407 —0.403 6.623 6.574 0.234 2.559
118 194 —2183.257 —0.413 —0.411 6.643 6.595 0.244 3.462
118 196 —2193.479 —0.420 —0.419 6.666 6.617 0.253 4.458

APPENDIX : SUPPLEMENTAL INFORMATION ON THE
GROUND-STATE PROPERTIES

In addition to the graphical representation of the results,
the numerical results for ground-state properties obtained

with the DD-PC1 and PC-PK1 CEDFs are provided in
two tables of the Supplemental Material with this article
as Ref. [89]. The structure of these tables is illustrated in
Table II.
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