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The spherical to γ -unstable nuclei shape-phase transition in odd-A nuclei is investigated by using the dual
algebraic structures and the affine ̂SU(1,1) Lie algebra within the framework of the interacting boson-fermion
model. The new algebraic solution for odd-A nuclei is introduced. In this model, single j = 1/2 and 3/2
fermions are coupled with an even-even boson core. Energy spectra, quadrupole electromagnetic transitions, and
an expectation value of the d-boson number operator are presented. Experimental evidence for the UBF (5)-OBF (6)
transition in odd-A Ba and Rh isotopes is presented. The low-states energy spectra and B(E2) values for these
nuclei are also calculated and compared with the experimental data.

DOI: 10.1103/PhysRevC.92.054306 PACS number(s): 21.60.Ev, 21.60.Fw, 23.20.Js, 27.60.+j

I. INTRODUCTION

Quantum phase transitions (QPTs) are sudden changes
in the structure of a physical system. Nuclear physics has
important contributions to make to their study because nuclei
display a variety of phases in systems ranging from few to
many particles [1]. The signs of QPTs in nuclear physics are
changes in the mass and radius of nuclei and quantities such
as level crossing and electromagnetic transition rates when the
number of protons or neutrons is modified. Phase transition
happens in both even-even and odd-A nuclei. Phase transition
investigations have been mostly performed on even-even sys-
tems [2] within the framework of the interacting boson model
(IBM) [2,3], which describes nuclei in terms of correlated pairs
of nucleons with L = 0,2 treated as bosons (s,d bosons).
The IBM Hamiltonian has exact solutions in three dynamical
symmetry limits [U(5), SU(3), and O(6)]. These situations
correspond to the spherical, axially deformed, and γ -unstable
ground-state shapes, respectively. The transition between the
U(5) and SU(3) limits is a first-order shape-phase transition
while a second-order shape-phase transition occurs between
the U(5) and O(6) limits [4–6]. During a transition from
one limit to another, the points meet where the potential has
flat behavior. These points are called critical points. Recently
Iachello introduced the so-called critical point symmetries in
the framework of the collective model for even-even nuclei.
The critical point from spherical to γ -unstable shapes is
called E(5) [3,6], the critical point from spherical to axially
deformed shapes is called X(5) [4,6], and the critical point
from axially deformed shapes to triaxial shapes is called
Y(5) [6,7]. Phase transitions are also investigated in odd-A
nuclei within the framework of the interacting boson-fermion
model (IBFM) [8,9], which describes nuclei in terms of
correlated pairs, with L = 0,2 (s,d bosons) and unpaired
particles of angular momentum j (j fermions). Studies of
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QPTs in odd-even nuclei were implicitly initiated years ago by
Scholten and Blasi [10]. Several explicit studies were recently
made by Alonso et al. [11–13] and by Boyukata et al. [14],
who also suggested a simple form of the IBFM Hamiltonian,
particularly well suited to study QPTs in odd-even nuclei
because of their supersymmetric properties. Similar to even-
even nuclei, there also exists a critical point for odd-even and
even-odd nuclei but in this case, critical points show with
E(5/

∑
j 2j + 1) and X(5/

∑
j 2j + 1), where j is the angular

momentum of a single nucleon. Iachello [15,16] studied the
case of a j (3/2) fermion coupled to a boson core that
undergoes a transition from spherical to γ -unstable shapes. At
the critical point, an elegant analytic solution, called E(5/4),
was obtained starting from the Bohr Hamiltonian [15]. The
effect of a fermion on quantum phase transitions of an (s,d)
bosonic system is investigated in Ref. [17]. They showed that
the presence of a fermion strongly modifies the critical value
at which the transition occurs.

In this study, we investigate the transition UBF (5)-OBF (6)
in odd-A nuclei. The new algebraic solution for odd-A nuclei is
introduced. For this transition only the boson core experiences
the transition and fermion with j = 1/2 and 3/2 coupled to
the boson core. We evaluate exact solutions for eigenstate and
energy eigenvalues for the transitional region in the IBFM
by using the dual algebraic structure for the two-level pairing
model based on the Richardson-Gaudin method and changing
the control parameter based on affine ̂SU(1,1) Lie algebra.
In order to investigate the phase transition, we calculate
observables such as level crossing, expectation values of the
d-boson number operator, ground-state energy, and its first
derivative. The low-lying states of 127−137

56 Ba and 101−109
45 Rh

isotopes are studied within suggested model. The results of
calculations for these nuclei are presented for energy levels
and transitions probabilities and two neutron separation ener-
gies, and are compared with the corresponding experimental
data.

This paper is organized as follows: Sec. II briefly summa-
rizes theoretical aspects of the transitional Hamiltonian and
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affine ̂SU(1,1) algebraic technique. Sections III and IV include
the results and experimental evidence and Sec. V is devoted to
the summary and some conclusions.

II. THEORETICAL FRAMEWORK

The SU(1,1) algebra is explained in detail in Refs. [18–20].
The SU(1,1) algebra is produced by Sν , ν = 0, and ±, which
satisfies the following commutation relations:

[S0,S±] = ±S±, [S+,S−] = −2S0. (1)

The quadratic Casimir operator of SU(1,1) can be written as

Ĉ2 = S0(S0 − 1) − S+S−. (2)

The basis states of an irreducible representation SU(1,1),
|kμ〉, are determined by a single number k, where k can be
any positive number and μ = k,k + 1, . . .. Therefore [19,20],

Ĉ2(SU(1,1))|kμ〉 = k(k − 1)|kμ〉, S0|kμ〉 = μ|kμ〉. (3)

In IBM, the generators of SUd (1,1) are generated by the d-
boson pairing algebra:

S+(d) = 1

2
(d+.d+), S−(d) = 1

2
(d̃.d̃),

(4)
S0(d) = 1

4

∑
ν

(d+
ν dν + dνd

+
ν ) = 1

4
(2n̂d + 5).

Similarly, s-boson pairing algebra forms another SUs(1,1)
algebra generated by

S+(s) = 1
2 s+2

, S−(s) = 1
2 s2,

(5)
S0(s) = 1

4 (s+s + ss+) = 1
4 (2n̂s + 1).

SUsd (1,1) is the s- and d-boson pairing algebra generated by

S+(sd) = 1

2
(d+.d+ ± s+2

), S−(sd) = 1

2
(d̃.d̃ ± s2),

(6)
S0(sd) = 1

4

∑
ν

(d+
ν dν + dνd

+
ν ) + 1

4
(s+s + ss+).

Because of duality relationships [21,22], it is known that the
bases of U(5) ⊃ SO(5) and SO(6) ⊃ SO(5) are simultane-
ously the basis of SUd (1,1) ⊃ U(1) and SUsd (1,1) ⊃ U(1),
respectively. By use of duality relations [19,21], the Casimir
operators of SO(5) and SO(6) can also be expressed in terms of
the Casimir operators of SUd (1,1) and SUsd (1,1), respectively:

Ĉ2(SUd (1,1)) = 5

16
+ 1

4
Ĉ2(SO(5)), (7)

Ĉ2(SUsd (1,1)) = 3

4
+ 1

4
Ĉ2(SO(6)). (8)

The infinite-dimensional SU(1,1) algebra is generated by use
of [19,20]

S±
n = c2n+1

s S±(s) + c2n+1
d S±(d),

(9)
S0

n = c2n
s S0(s) + c2n

d S0(d),

where cs and cd are real parameters and n can be
0,±1,±2, . . .. These generators satisfy the commutation

FIG. 1. The lattice of algebras in the case of a system of N

bosons (with L = 0,2) coupled to a fermion with angular momentum
j = 1/2.

relations[
S0

m,S±
n

] = ±S±
m+n, [S+

m,S−
n ] = −2S0

m+n+1. (10)

Then, Sμ
m,μ = 0, + ,−; m = ±1,±2, . . . generate an affine

Lie algebra ̂SU(1,1) without central extension.
In odd-A nuclei the Bose-Fermi symmetries are associated

with each of the dynamic symmetries of IBM-1 [8]. So, the
boson algebraic structure will be always taken to be UB(6),
while the fermion algebraic structure will depend on the values
of the angular momenta, j , taken into consideration [8]. First
we considered the case of a system of N bosons (with L = 0,2)
coupled to a fermion with angular momentum j = 1/2. The
lattice of algebras in this case is shown in Fig. 1. In Figs. 1
and 2, chain 1 shows the state that bosons have UB(5)
dynamical symmetry while bosons in chain 2 have OB(6)
dynamical symmetry. By employing the generators of algebra
̂SU(1,1) and Casimir operators of subalgebras, the following

Hamiltonian for the transitional region between UBF (5) and
OBF (6) limits is prepared:

Ĥ = gS+
0 S−

0 + αS0
1 + βĈ2(SOB(5))

+ δĈ2(SOB(3)) + γ Ĉ2(spinBF (3)). (11)

Following this, we considered the state where the odd nucleon
is in a j = 3/2 shell. The lattice of algebras in this case is
also shown in Fig. 2. The Hamiltonian for the state where the
odd nucleon is in a j = 3/2 shell for the transitional region
between UBF (5)and OBF (6) limits is

Ĥ = gS+
0 S−

0 + αS0
1 + βĈ2(spinBF (5)) + γ Ĉ2(spinBF (3)).

(12)

Equations (11) and (12) are the suggested Hamiltonians for
boson-fermion systems with j = 1/2 and 3/2, respectively,
and α, β, δ, and γ are real parameters. By considering
Eqs. (2), (7), and (8), it can be shown that Hamiltonians (11)
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FIG. 2. The lattice of algebras in the case of a system of N

bosons (with L = 0,2) coupled to a fermion with angular momentum
j = 3/2.

and (12) are equivalent to the OBF (6) Hamiltonian when
cs = cd and with the UBF (5) Hamiltonian if cs = 0 and cd �= 0.
Thus, as mentioned, because only the boson core experiences
the transition and the fermion is coupled to the boson core,
the cs �= cd �= 0 situation just corresponds to the UBF (5) ↔
OBF (6) transitional region. In our calculation, we take cd (= 1)
as a constant value, and cs changes between 0 and cd . For
evaluating the eigenvalues of Hamiltonians (11) and (12), the
eigenstates are considered as [19,20]

|k; νsνn�LM〉 =
∑
ni∈Z

an1n2···nk
x

n1
1 x

n2
2 x

n3
3 · · ·

× x
nk

k S+
n1

S+
n2

S+
n3

· · · S+.
nk

|lw〉. (13)

Eigenstates of Hamiltonians (11) and (12) can be obtained
by using the Fourier-Laurent expansion of eigenstates and
SU(1,1) generators in terms of c unknown number param-
eters xi with i = 1,2, . . . ,k. It means one can consider the
eigenstates as [19,20]

|k; νsνn�LM〉 = NS+
x1

S+
x2

S+
x3

· · · S+
xk

|lw〉BF , (14)

where N is the normalization factor and

S+
xi

= cs

1 − c2
s xi

S+(s) + cd

1 − c2
dxi

S+(d). (15)

The c numbers xi are determined through the following set of
equations:

α

xi

= gc2
s

(
νs + 1

2

)
1 − c2

s xi

+ gc2
d

(
νd + 5

2

)
1 − c2

dxi

−
∑
j �=i

2g

xi − xj

. (16)

With the Clebsch-Gordan (CG) coefficient, we can calculate
the lowest weight state, |lw〉BF , in terms of boson and fermion

parts. For the j = 1/2 case we have

|lw〉B
m± 1

2
=

∣∣∣∣N, kd = 1

2

(
νd + 5

2

)
, μd = 1

2

(
nd + 5

2

)
,

ks = 1

2

(
νs + 1

2

)
, μs = 1

2

(
ns + 1

2

)
, L,m ± 1

2

〉
(17)

|lw〉BF = ±
√

L ± m + 1
2

(2L + 1)
|lw〉B

m− 1
2
χ+

+
√

L ∓ m + 1
2

(2L + 1)
|lw〉B

m+ 1
2
χ−. (18)

The lowest weight state for the j = 3/2 case is calculated as

|lw〉B
m± 3

2
=

∣∣∣∣N,kd = 1

2

(
νd + 5

2

)
, μd = 1

2

(
nd + 5

2

)
,

ks = 1

2

(
νs + 1

2

)
, μs = 1

2

(
ns + 1

2

)
, L,m ± 3

2

〉
,

(19)

|lw〉BF = C
J,L, 3

2

m,m− 3
2 , 3

2
|lw〉B

m− 3
2

∣∣∣∣j = 3

2
,mj = 3

2

〉
+C

J,L, 3
2

m,m− 1
2 , 1

2
|lw〉B

m− 1
2

∣∣∣∣j = 3

2
,mj = 1

2

〉
+C

J,L, 3
2

m,m+ 1
2 ,− 1

2
|lw〉B

m+ 1
2

∣∣∣∣j = 3

2
,mj = −1

2

〉
+C

J,L, 3
2

m,m+ 3
2 ,− 3

2
|lw〉B

m+ 3
2

∣∣∣∣j = 3

2
,mj = −3

2

〉
. (20)

The C
J,L,j
m,mL,mj

symbols represent Clebsch-Gordan coefficients,
where

S0
n|lw〉BF = 	0

n|lw〉BF , (21)

	0
n = c2n

s

(
νs + 1

2

)
1

2
+ c2n

d

(
νd + 5

2

)
1

2
. (22)

The eigenvalues of Hamiltonians (11) and (12) can then be
expressed:

E(k) = h(k) + α	0
1 + βνd (νd + 3) + δL(L+ 1) + γ J (J + 1),

(23)

E(k) = h(k) + α	0
1 + β(ν1(ν1 + 3) + ν2(ν2 + 1)) + γ J (J + 1)

(24)

h(k) =
k∑

i=1

α

xi

. (25)

The quantum number (k) is related to the total boson number
N by

N = 2k + νs + νd.

In order to obtain the numerical results for energy spectra
(E(k)) of the considered nuclei, a set of nonlinear Bethe ansatz
equations (BAEs) with k unknowns for k-pair excitations
must be solved [19,20]; also constants of the Hamiltonian

054306-3



M. A. JAFARIZADEH, M. GHAPANVARI, AND N. FOULADI PHYSICAL REVIEW C 92, 054306 (2015)

to experimental data are obtained with the least squares fitting
process. To achieve this aim, we have changed variables as
follows:

C = cs

cd

� 1, g = 1, yi = c2
dxi .

So, the new form of Eq. (16) would be

α

yi

= C2
(
νs + 1

2

)
1 − C2yi

+
(
νd + 5

2

)
1 − yi

−
∑
j �=i

2

yi − yj

. (26)

To calculate the roots of BAEs with specified values of νs and
νd , we solve Eq. (26) with definite values of C and α [18].
Then, we carry out this procedure with different values of C
and α to give energy spectra with minimum variation compared
to experimental values [23]:

σ =
(

1

Ntot

∑
i,tot

|Eexpt(i) − Ecalc(i)|2
) 1

2

where Ntot is the number of energy levels included in the fitting
processes. The method for optimizing the set of parameters in
the Hamiltonian (β,γ,δ) includes carrying out a least-squares
fit (LSF) of the excitation energies of selected states [18].

III. RESULTS

This section presents the calculated phase transition ob-
servables such as level crossing, ground-state energy and the
derivative of the energy, expectation values of the d-boson
number operator, and energy differences.

A. Energy spectrum and level crossing

To display how the energy levels change as a function of
the control parameter C and the total number of bosons, N ,
the lowest energy levels as a function of C for N = 10,20
bosons are shown in Figs. 3 and 4, where in Fig. 3 other fixed
parameters are α = 1000 keV, β = −57 keV, δ = 41 keV,
and γ = 36 keV and Fig. 4 is obtained with α = 1000 keV,

FIG. 3. (Color online) Some low-lying energy levels (in keV) as
a function of the control parameter C in the Hamiltonian (11): (a) N =
10 bosons and (b) N = 20 bosons with α = 1000 keV, β = −57 keV,
δ = 41 keV, and γ = 36 keV.

FIG. 4. (Color online) Same as Fig. 3 but with Hamiltonian (12)
with α = 1000 keV, β = 6.5 keV, and γ = −22 keV.

β = 6.5 keV, and γ = −22 keV. The figures show how the
energy levels as a function of the control parameter C evolve
from one dynamical symmetry limit to the other. It can be
seen from the figures that numerous level crossings occur,
especially in the region around C � 0.7. The crossings are due
to the fact that νd , the O(5) quantum number with seniority, is
preserved along the whole path between O(6) and U(5) [24].
With increasing N , level crossings increase, which is clearly
shown in Figs. 3(b) and 4(b).

B. Ground-state energy

The ground-state energy is an important observable of phase
transitions. So, we calculated the ground-state energy, Eg.s.,

and its first derivative, ∂Eg.s.

∂C
. Figure 5 shows changing of the

ground-state energy and its first derivative versus the control
parameter C. Both operators, Eg.s. and ∂Eg.s.

∂C
, are approximately

zero in one phase and different from zero in the other phase.
Since a low number of bosons, N , is chosen, it is not possible
to distinguish whether the transition is first or second order, as
is done in the even-even case [25,26].

FIG. 5. (Color online) The (a) ground-state energy (in keV) and
(b) derivative of the ground-state energy (in keV) presented as a
function of the control parameter C for a system with N = 10 bosons.
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FIG. 6. (Color online) The expectation values of the d-boson
number operator for the lowest states as a function of control
parameter C for (a) a j = 1/2 particle coupled to a system of (s,d)
bosons undergoing a U(5)-O(6) transition and (b) a single fermion
with j = 3/2 coupled to a system of (s,d) bosons.

C. Expectation values of the d-boson number operator

An appropriate quantal order parameter is

〈n̂d〉 = 〈ψ |n̂d |ψ〉
N

.

In order to obtain 〈n̂d〉, we let s0
m act on the eigenstate,

|k; νsνn�LM〉:

〈n̂d〉 = 2	0
1 − 2C2	0

0 + 2k
(
y−1

1 − C
)

1 − C2
− 5

2N
. (27)

Figure 6(a) shows the expectation values of the d-boson
number operator for states in which a j = 1/2 particle coupled
to a system of (s,d) bosons undergoes a U(5)-O(6) transition
as a function of control parameter C for N = 10 bosons. The
expectation values of the d-boson number operator for states
in which a j = 3/2 particle is coupled to a system of (s,d)
bosons in terms of control parameter C are also shown in
Fig. 6(b). Figure 6 displays that the expectation values of the

number of d bosons for each J , nd , remain approximately
constant for C < 0.45 and only begin to change rapidly
for C > 0.45. The near constancy of nd for C < 0.45 is an
obvious indication that U(5) dynamical symmetry is preserved
in this region to a high degree and also the nd values change
rapidly with C over the range 0.65 � C � 1. It can be seen
from Fig. 6 that, due to the presence of the fermion, the
transition is made sharper for j = 1/2 [Fig. 6(a)] while it is
made smoother for j = 3/2 [Fig. 6(b)].

D. Energy differences

Figures 7(a) and 7(b) display continuous energy differences
in terms of the control parameter, C, for states with a j = 1/2
particle coupled to a system of (s,d) bosons; that for j = 3/2
is shown in Figs. 7(c) and 7(d). Figure 7 shows that during
the transition from one limit to another exist the points where
energy is a minimum or a maximum near the critical point.

IV. EXPERIMENTAL EVIDENCE

This section presented the calculated results of low-lying
states of the odd-A Ba and Rh isotopes. The results include
energy levels and the B(E2) values and two-neutron
separation energies.

A. Energy spectrum

Nuclei in the mass regions around A ∼ 100 [27,28] and
130 [29] have transitional characteristics intermediate between
spherical and γ -unstable shapes. The theoretical and exper-
imental studies of energy spectra done in Refs. [28,30,31]
show Rh and Ba isotopes have U(5) ↔ O(6) transitional
characteristics. The possible occurrence of this symmetry in
135
56 Ba was recently suggested [30]. The negative-parity states
in the odd-even nuclei Rh are built mainly on the 2p 1

2
shell

model orbit [28]. The single-particle orbits 1g 7
2
, 2d 5

2
, 2d 3

2
,

and 3s 1
2

establish the positive-parity states in odd-mass Ba
isotopes [31]. In this study, a simplifying assumption is made
that single-particle states are built on j = 1/2 and j = 3/2. We
therefore analyze the negative-parity states of the odd-proton

FIG. 7. Continuous energy differences (in keV) in terms of control parameter, C, for states having (a, b) j = 3/2 and (c, d) j = 1/2
particles coupled to a system of (s,d) bosons.

054306-5



M. A. JAFARIZADEH, M. GHAPANVARI, AND N. FOULADI PHYSICAL REVIEW C 92, 054306 (2015)

TABLE I. Parameters of Hamiltonian (11) used in the calculation
of the Rh isotopes. All parameters are given in keV.

Nucleus N C α β δ γ σ

101
45 Rh 5 0.06 105.99 4.2572 1.6782 1.2336 194.78
103
45 Rh 6 0.46 52 −1.053 1.5518 23.217 136.5
105
45 Rh 7 0.54 70.61 1.6273 8.7337 −0.0331 97.38
107
45 Rh 8 0.65 196.30 3.5077 −11.734 7.7931 120.48
109
45 Rh 9 0.7 245.269 2.438 −24.072 −181.02 184.79

nuclei, 101−109
45 Rh, and positive-parity states of the odd-neutron

nuclei, 127−137
56 Ba. In order to obtain energy spectra and realistic

calculations for these nuclei, we need to specify Hamiltonian
parameters (11) and (12). Eigenvalues of these systems are
obtained by solving Bethe ansatz equations with least-squares
fitting processes to experimental data to obtain constants of the
Hamiltonian. The best fits for the Hamiltonian’s parameters,
namely α, β, δ, and γ , used in the present work are shown
in Tables I and II. Tables III(a)–III(e) and IV(a)–IV(f) show
calculated energy spectra along with the experimental values.
Figures 8 and 9 also show a comparison between the available
experimental levels and the predictions of our results for the
101−109
45 Rh and 127−137

56 Ba isotopes in the low-lying region of
spectra. An acceptable degree of agreement is obvious between
them. We have tried to extract the best set of parameters that
reproduce these complete spectra with minimum variations. It
means that our suggestion to use this transitional Hamiltonian
for the description of the Rh and Ba isotopic chain would not
have any contradiction with other theoretical studies done with
special hypotheses about mixing of intruder and normal con-
figurations. However, predictions of our model for the control
parameter of considered nuclei, C, describe the vibrational
structure, i.e., C = 0, or rotational structure, namely C = 1,
confirming the mixing of both vibrating and rotating structures
in these nuclei when C ∼ 0.5 → 0.65. Figures 10 and 11
display a comparison between the calculated continuous
energy differences and experimental data for Ba and Rh
isotopes, respectively. It can be seen from the figures that our
results for Ba isotopes are better than for Rh isotopes.

One of the most basic structural predictions of the
UBF (5)-OBF (6) transition is a E(νd=2)

E(νd=1) value. The ratio
equal to 2.2–2.3 indicates the spectrum of transitional nu-
clei [3,4,16,32]. Thus, we calculated this quantity for Rh and
Ba isotopes. Figures 12(a) and 12(b) show E(νd=2)

E(νd=1) prediction

TABLE II. Parameters of Hamiltonians (11) and (12) used in the
calculation of the Ba isotopes. All parameters are given in keV.

Nucleus N C α β δ γ σ

127
56 Ba 8 0.78 3.46 −0.0303 −1.1481 19.098 62.48
129
56 Ba 7 0.8 13.77 −2.685 −8.5776 15.69 94.25
131
56 Ba 6 0.77 0.578 −3.3839 −3.3319 27.12 128
133
56 Ba 5 0.68 21.37 −0.0274 16.46 −1.75 119
135
56 Ba 4 0.65 48.69 3.32 36.57 86.84
137
56 Ba 3 0.75 366 0.194 23.047 128.6

TABLE III(a). Energy spectra for 101
45 Rh isotope.

101
45 Rh J π K νd Eexp (keV) Ecal (keV)

(1/2)−1 2 0 0 0
(3/2)−1 2 1 305.5 267.3
(5/2)−1 2 1 305.5 273.5
(3/2)−2 1 2 355.3 665.8
(5/2)−2 1 2 355.3 671.9
(7/2)−1 1 2 851.4 704.1
(9/2)−1 1 2 851.4 715.2
(9/2)−2 1 2 899.3 821.2
(5/2)−3 2 1 996.4 794.6
(3/2)−4 1 2 1058 997.9
(5/2)−4 1 2 1058 971.8
(1/2)−2 2 0 1531 1472.9

values for Ba and Rh isotopes, respectively. For Rh isotopes
this value evolves from 2.1 to 2.8 while Ba isotopes vary from
2.85 to 1.9. Figure 12 displays that E(νd=2)

E(νd=1) values for 105
45 Rh

and 133−135
56 Ba isotopes are approximately 2.2–2.4.

B. B(E2) transition

The observables such as electric quadrupole transition
probabilities, B(E2), as well as quadrupole moment ratios
within the low-lying state provide important information
about QPTs. In this section we discuss the calculation of E2
transition strengths and compare the results with the available
experimental data. The electric quadrupole transition operator
T̂ (E2) in odd-A nuclei consists of a bosonic and a fermionic
part [8,27]:

T̂ (E2) = T̂
(E2)
B + T̂

(E2)
F , (28)

with

T
(E2)
B,μ = q2[s+ × d̃ + d+ × s̃](2)

μ + q ′
2[d+ × d̃](2)

μ = qBQB,μ,

(29)

QB,μ = [s+ × d̃ + d+ × s̃](2)
μ + χ [d+ × d̃](2)

μ , (30)

T
(E2)
F = qf

∑
jj ′

Qjj ′ [a+
j × ãj ′ ](2), (31)

TABLE III(b). Energy spectra for the 103
45 Rh isotope.

103
45 Rh J π K νd Eexpt (keV) Ecalc (keV)

(1/2)−1 3 0 0 0
(3/2)−1 2 1 294.984 334
(5/2)−1 2 2 357.408 450.6
(1/2)−2 3 0 803.07 598.6
(3/2)−2 2 2 803.07 692.4
(7/2)−1 2 2 847.58 705.4
(5/2)−2 2 2 880.47 809
(9/2)−1 2 2 920.1 915.3
(3/2)−3 2 1 1277.04 1226.7

(13/2)−1 1 3 1637.64 1576.5
(15/2)−1 1 4 2221.2 2036.3
(17/2)−1 1 4 2345.35 2432.6
(17/2)−2 0 5 2418.6 2065.5
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TABLE III(c). Energy spectra for the 105
45 Rh isotope.

105
45 Rh J π K νd Eexpt (keV) Ecalc (keV)

(1/2)−1 3 0 129.781 129.8
(3/2)−1 3 1 392.65 229.2
(5/2)−1 3 1 455.61 511.7
(3/2)−2 2 2 762.11 811.2
(3/2)−3 3 1 783 703.6
(5/2)−2 2 2 817 821.7
(7/2)−1 2 2 817 833.1
(5/2)−3 2 3 866 868.2
(7/2)−2 2 3 898 861.5
(7/2)−3 2 3 976 937.9
(9/2)−1 2 2 976 1043.5
(3/2)−4 2 2 1147 1312.7
(5/2)−4 2 2 1147 1311.9

where QB and Qjj ′ are the boson and fermion quadrupole
operators and qB and qf are the effective boson and fermion
charges [8,27]. In the j = 1/2 case, the E2 transitions
are completely determined by the bosonic part of the E2
operator. The bosonic part has specific selection rules,
where for the former term, �νd = ±1, |�L| � 2 and for
the latter, �νd = 0, ± 2, |�L| � 0,4. The reduced electric
quadrupole transition rate between the Ji → Jf states is given
by [8]

B(E2; αiJi → αf Jf ) = |〈αf Jf ||T (E2)||αiJi〉|2
2Ji + 1

. (32)

The electric quadrupole moment for a state with spin J is given
by [8]

QJ =
√

16π

5

(
J (2J − 1)

(2J + 1)(J + 1)(2J + 3)

) 1
2

〈J ||T (E2)||J 〉.

(33)

For evaluating B(E2), we consider eigenstates
Eq. (14) where the normalization factor is obtained

TABLE III(d). Energy spectra for the 107
45 Rh isotope.

107
45 Rh J π K νd Eexpt (keV) Ecalc (keV)

(1/2)−1 4 0 268.36 268.4
(3/2)−1 3 1 485.66 345.4
(5/2)−1 3 1 543.84 410.9
(9/2)−1 3 2 559.97 423.4
(3/2)−2 3 2 752.55 818.8
(5/2)−2 3 2 877.75 870.4
(3/2)−3 3 1 974.44 921.9
(5/2)−3 2 3 974.44 958.6
(7/2)−1 3 2 974.44 780.9
(3/2)−4 3 2 1009.76 1016.3
(5/2)−4 3 2 1009.76 1055.3
(7/2)−2 2 3 1251 1099.5
(1/2)−2 4 0 1334 1431.2

TABLE III(e). Energy spectra for the 109
45 Rh isotope.

109
45 Rh J π K νd Eexpt (keV) Ecalc (keV)

(1/2)−1 4 0 374.1 374.1
(3/2)−1 4 1 568.2 436.6
(5/2)−1 4 1 623.2 401.5
(3/2)−2 3 2 704.9 758.1
(5/2)−2 3 2 856.1 819.6
(5/2)−3 3 3 926.9 827.6
(3/2)−3 4 1 1162.3 1378.8
(3/2)−4 3 2 1214.3 1003.3
(5/2)−4 3 2 1283.9 985.6
(1/2)−2 4 0 1631 1876.6
(3/2)−5 4 1 1631 1627.4
(1/2)−3 4 0 1753 1703
(3/2)−6 4 1 1753 1750

as

N =
√√√√ 1∏k

p=1

∑k
i=p

(
2C2(k−p+ 1

2 (νs+ 1
2 ))

(1−C2yk+1−p)(1−C2yi )
+ 2(k−p+ 1

2 (νd+ 5
2 ))

(1−yk+1−p)(1−yi )

) .

(34)

Unfortunately there are very few experimental data available
on electromagnetic properties for odd-mass Ba [31] and
Rh [27] isotopes. The values of effective charge (qB,qf ) are
listed in Table V. Table VI shows experimental and calculated
values for B(E2) for negative-parity states of 103

45 Rh and
positive-parity states of 135

56 Ba. The quadrupole moments for
103
45 Rh and 135

56 Ba are also displayed in Table VII. Tables VI
and VII show that in general there is good agreement between
the calculated B(E2) values and the quadrupole moments with
the experimental data.

The values of the control parameter, C, suggest structural
changes in nuclear deformation and shape-phase transitions in
odd-proton Rh isotopes and odd-neutron Ba isotopes. Because
of the effect of a single nucleon on the transition and especially
the critical point, exact selection of the critical point is difficult.

TABLE IV(a). Energy spectra for the 127
56 Ba isotope.

127
56 Ba J π K νd Eexpt (keV) Ecalc (keV)

(1/2)+1 4 0 0 0
(3/2)+1 3 1 56.1 51.4
(5/2)+1 3 1 81 146.9
(7/2)+1 3 2 195.1 265.7
(3/2)+2 3 2 269.5 256.3
(5/2)+2 3 2 269.5 237.2
(7/2)+1 2 3 324.1 376.3
(7/2)+2 2 3 374.9 367.1
(9/2)+1 3 2 415.6 526.1
(11/2)+1 2 3 668.9 723.8
(11/2)+2 2 4 867.9 759.4
(13/2)+1 2 3 963.6 972.1
(15/2)+1 2 4 1291.2 1259.8
(15/2)+2 1 5 1519.6 1425.5

2 4 1654.4 1584.4
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TABLE IV(b). Energy spectra for the 129
56 Ba isotope.

129
56 Ba J π K νd Eexpt (keV) Ecalc (keV)

(1/2)+1 3 0 0 0
(7/2)+1 2 2 8.42 48.71
(3/2)+1 3 1 110.56 185.67
(3/2)+2 2 2 253.77 210.76
(9/2)+1 2 2 263.1 249.9
(1/2)+2 3 0 278.58 331.88
(3/2)+3 3 1 278.58 228.15
(5/2)+1 3 1 278.58 292.83
(5/2)+2 2 2 318.4 290.66
(3/2)+4 2 2 457.03 483.53
(3/2)+5 3 1 459.29 492.44
(5/2)+3 2 3 459.29 548.4
(7/2)+2 2 3 467.3 589.6
(11/2)+1 2 3 544.7 441.257
(13/2)+1 2 3 864.1 918.66

TABLE IV(c). Energy spectra for the 131
56 Ba isotope.

131
56 Ba J π K νd Eexpt (keV) Ecalc (keV)

(1/2)+1 3 0 0 0
(3/2)+1 2 1 108.08 70.5
(3/2)+2 2 2 285.25 359.2
(5/2)+1 2 1 316.587 424.7
(1/2)+2 3 0 365.16 487.8
(3/2)+3 2 1 525.85 577.3
(5/2)+2 2 2 525.85 494.8
(7/2)+1 2 2 543.11 638.1
(3/2)+4 2 1 561.752 643.5
(5/2)+3 1 3 561.75 473.3
(3/2)+5 0 5 718.78 573.7
(5/2)+4 2 1 718.78 778.6
(1/2)+2 1 3 719.49 698.1
(15/2)+1 1 4 1796.4 1821.6
(17/2)+1 1 4 2121.7 2282.6

TABLE IV(d). Energy spectra for the 133
56 Ba isotope.

133
56 Ba J π K νd Eexpt (keV) Ecalc (keV)

(1/2)+1 2 0 0 0
(3/2)+1 2 1 12.3 64.86
(5/2)+1 2 1 291.2 175.93
(3/2)+2 1 2 302.4 419.34
(1/2)+2 1 2 539.8 443.23
(7/2)+1 1 2 577.5 701.22
(3/2)+3 1 3 630.6 705.24
(5/2)+2 1 2 630.6 720.84
(5/2)+3 1 3 676.5 675.45
(3/2)+4 0 5 676.5 726.015
(5/2)+4 1 3 858.5 696.45
(9/2)+1 1 2 883.3 933.86
(7/2)+2 1 3 1112.3 938.98

TABLE IV(e). Energy spectra for the 135
56 Ba isotope.

135
56 Ba J π K νd Eexpt (keV) Ecalc (keV)

(3/2)+1 2 0 0 0
(1/2)+1 1 1 220.954 200.66
(5/2)+1 1 1 480.52 502.31
(3/2)+2 1 1 587.82 696.93
(3/2)+3 2 0 855 866.9
(1/2)+2 1 2 910.35 985.569
(5/2)+2 1 2 979.966 904.815
(3/2)+4 1 2 979.969 1145.37

In considering this problem, we proposed C ∼ 0.5–0.65 as the
critical point. So, we conclude from the values of the control
parameter that were obtained, the E(νd=2)

E(νd=1) value, and energy

differences that 105
45 Rh and 133−135

56 Ba isotopes are the best
candidates for UBF (5)-OBF (6) transition. Phase transitions
from the spherical to the γ -unstable limit for odd nuclei in
the frameworks of the IBFM and the Bohr collective model,
with the odd nucleon lying in a j = 3/2 shell, were considered
in Refs. [11,15,16]. So, it must be useful and worthwhile to
compare the present method and results to the method and
results of these papers. The paper by Alonso et al. [11]
investigated the phase transition around the critical point
in the evolution from spherical to γ -unstable shapes in the
case where an odd j = 3/2 particle coupled to an even-even
boson core that undergoes a transition from the spherical
U(5) to the γ -unstable O(6) situation. They used the coherent
state formalism and semiclassical approach to get energy
eigenvalues, whereas our method for obtaining spectra is
quantal. We also investigated the transition from the spherical
to the γ -unstable limit in odd-A nuclei when only the boson
core experiences the transition and fermions with j = 1/2 and
3/2 are coupled to boson core. In our work, the eigenstates and
energy eigenvalues for the transitional region were evaluated
by using the dual algebraic structure, the Richardson-Gaudin
method, and affine ̂SU(1,1) Lie algebra; thus, the natures of the
two schemes are completely different. They obtained energy

TABLE IV(f). Energy spectra for the 137
56 Ba isotope.

137
56 Ba J π K νd Eexpt (keV) Ecalc (keV)

(3/2)+1 2 0 0 0
(7/2)+1 1 1 1252.5 1093.9
(5/2)+1 1 1 1294 1124.25
(3/2)+2 1 1 1463.8 1607
(1/2)+1 1 2 1857 1782.9
(1/2)+2 1 1 1836.2 1899.2
(3/2)+3 2 0 2041 1940.4
(5/2)+2 1 2 1899 2063.2
(3/2)+4 1 2 1899 1883.5
(5/2)+3 1 2 2041 2041.8
(7/2)+2 1 2 2230 2258
(9/2)+1 1 2 2230 2248.6
(7/2)+3 1 2 2340 2263.5
(7/2)+4 1 1 2423.8 2530

054306-8



ALGEBRAIC SOLUTIONS FOR UBF (5)-OBF (6) . . . PHYSICAL REVIEW C 92, 054306 (2015)

TABLE V. The coefficients of T (E2) used in the present work for
103
45 Rh and 135

56 Ba isotopes.

Nucleus qB (eb) qf (eb)

103
45 Rh 0.461 0
135
56 Ba 4.7329 −0.7194

spectra and electromagnetic transitions in the critical point and
their displayed results are also in qualitative agreement with the
proposed E(5/4) model [15]. They showed that energy spectra
and electromagnetic transitions, in correspondence with the
critical point, display behaviors qualitatively similar to those
of the even core. We investigated the change in level structure
induced by the phase transition (Figs. 3–7) by doing a quantal
analysis (Sec. III). In order to exhibit the qualitative features
of our model, we presented extensive numerical results. New
experimental data on Ba and Rh isotopes were used to test
the predictions of the scheme in dynamical symmetry limits
and the transition region. We presented experimental evidence
for the Bose-Fermi critical symmetry in Ba and Rh isotopes.
Iachello [15] extended the concept of critical symmetry to
critical supersymmetry and provided a benchmark for the
study of odd-even nuclei in most situations in which the
system is undergoing a phase transition between two different
phases (shapes). A special solution, called E(5/4), for odd-
even nuclei in the transitional region between spherical and
γ -unstable shapes was introduced. The energy spectrum and
electromagnetic transitions were obtained for the odd-A nuclei
in critical point symmetry. In this paper, the states in 133

56 Ba built
on the single-particle neutron level d3/2 were considered an
E(5/4) candidate. We also investigated 133

56 Ba in a state where
the odd nucleon is in a j = 1/2 shell and showed that 133

56 Ba
can be considered as the Bose-Fermi critical symmetry. Caprio
and Iachello [16] obtained analytic descriptions for transitional
nuclei near the critical point. The solutions provided baselines
for experimental studies of even-even [E(5)] and odd-mass
[E(5/4)] nuclei near the critical point of the spherical to
γ -unstable phase transition. They concentrated upon those
distinguishing observables that vary along the U(5)-O(6)
transition. The observables such as the energy ratios and the
B(E2) strength ratios are the most sensitive to the U(5)-O(6)
structural transition. Their results provided benchmarks for
nuclei near the critical point of the U(5)-O(6) phase transition
and can be used as a basis for comparison with experiment.
So, we also presented experimental evidence for the U(5)-O(6)
transition for negative-parity states of the 101−109

45 Rh isotopic
chain and positive-parity states of the 127−137

56 Ba isotopic chain
and performed an analysis for these isotopes. We calculated the
energy ratio quantity for Rh and Ba isotopes by using Caprio’s
study [16].

C. Two-neutron separation energies

Shape-phase transitions in nuclei can be studied exper-
imentally by considering the behavior of the ground-state
energies of a series of isotopes, or, more conveniently, the
behavior of the two-neutron separation energies, S2n [2].

TABLE VI. B(E2) values for 103
45 Rh and 135

56 Ba isotopes. The ex-
perimental data for the 103

45 Rh isotope are taken from Refs. [23,27]. The
experimental data for the 135

56 Ba isotope are taken from Refs. [23,33].

Nucleus J π
i → J π

j B(E2(e2b2)

Expt. Calc.

103
45 Rh (3/2)−1 → (1/2)−1 0.109 0.1172

(5/2)−1 → (1/2)−1 0.118 0.1172
(5/2)−2 → (1/2)−1 0.0044 0.0044
(5/2)−2 → (3/2)−1 0.0768 0.0645
(5/2)−2 → (5/2)−1 0.015 0.0097
(7/2)−1 → (3/2)−1 0.13 0.1165
(9/2)−1 → (5/2)−1 0.179 0.1349

135
56 Ba (1/2)+1 → (3/2)+1 4.6 3.696

(5/2)+1 → (1/2)+1 2.65 2.913
(7/2)+1 → (3/2)+1 19.9 14.784
(1/2)+2 → (3/2)+1 11.7 14.403
(3/2)+2 → (3/2)+1 18 14.785
(3/2)+3 → (3/2)+1 7 7.001

However, the ground-state two-neutron separation energies,
S2n, are observables that are very sensitive to the details
of the nuclear structure. The occurrence of continuities in
the behavior of two-neutron separation energies describe a
second-order shape-phase transition between spherical and
γ -unstable rotor limits [2,34]. We investigated the evolution of
two-neutron separation energies along the Ba and Rh isotopic
chains by both experimental and theoretical values, which are
presented in Fig. 13. The binding energy as a function of proton
and neutron number is given by [2]

EB(Nπ,Nν) = Ec + AπNπ + AνNν + 1
2BπNπ (Nπ − 1)

+ 1
2BνNν(Nν − 1) + CNπNν + ED(Nπ,Nν),

(35)

where Nπ (Nν) is the number of proton (neutron) bosons in the
valence shell, Ec is the contribution from the core, and ED is
the contribution to the binding energy due to the deformation.

TABLE VII. Quadrupole moments for 103
45 Rh and 135

56 Ba iso-
topes. The experimental data for the 103

45 Rh isotope are taken from
Refs. [23,27]. The experimental data for the 135

56 Ba isotope are taken
from Refs. [23,33].

Nucleus J π Q (eb)

Expt. Calc.

103
45 Rh (1/2)−1 0 0

(3/2)−1 −0.32 −0.2588
(5/2)−1 −0. 41 −0.2824
(7/2)−1 −0.5538
(9/2)−1 −0.5355

135
56 Ba (3/2)+1 0.146 0.1509

(1/2)+1 0.1349
(5/2)+1 0.5126
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FIG. 8. (Color online) Experimental and calculated energies (in keV) for the low-lying positive-parity states of odd-A Ba isotopes. The
parameters of the calculation are given in Table II. The experimental data are taken from Ref. [23].

FIG. 9. (Color online) Experimental and calculated energies (in keV) for the low-lying negative-parity states of odd-even Rh isotopes. The
parameters of the calculation are given in Table I. The experimental data are taken from Ref. [23].

FIG. 10. (Color online) A comparison between the calculated continuous energy differences and experimental data for Ba. The experimental
data are taken from Ref. [23].
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FIG. 11. (Color online) A comparison between the calculated continuous energy differences and experimental data for Rh. The experimental
data are taken from Ref. [23].

FIG. 12. (Color online) (E(νd = 2))/(E(νd = 1)) prediction values for (a) odd-A Ba isotopes and (b) odd-even Rh isotopes. The
experimental data are taken from Ref. [23].

FIG. 13. (Color online) A comparison between theoretical and experimental two-neutron separation energies, S2n (in keV) for (a) Ba
isotopes and (b) Rh isotopes. The experimental data are taken from Ref. [23].
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Using Eq. (35), one obtains the following relation for the two-
neutron separation energy [2]:

S2n(Nπ,Nν) = EB(Nπ,Nν) − EB(Nπ,Nν − 1)

= An + BNπ + CnNν + [ED(Nπ,Nν)

−ED(Nπ,Nν − 1)]. (36)

Using the S2n empirical values for these isotopic chains [23],
we extracted An + BNπ = 15.1857,20.526 MeV and
Cn = 1.9784,−1.7992 MeV for Ba and Rh, respectively.
Then, we obtained the two-neutron separation energies, which
are shown in Fig. 13, together with the experimental values.
It can be seen from Fig. 13 that there exist continuities (linear
variation) in the behavior of two-neutron separation energies;
thus, the phase transition for Ba and Rh isotopic chains is of
second order. Our result confirmed the predictions made in
Refs. [2,34], where they suggest a linear variation of S2n with
respect to the neutron number for the U(5)-SO(6) transitional
region.

V. CONCLUSIONS

We analyzed the transition from spherical to γ -unstable
shapes in odd-A nuclei. Key observables of the phase transition
such as level crossing, ground-state energy and derivative of
the ground-state energy, and expectation values of the d-boson
number operator were calculated. We presented experimental
evidence for the U(5)-O(6) transition for negative-parity states
of the 101−109

45 Rh isotopic chain and positive-parity states
of 127−137

56 Ba isotopic chain, and performed an analysis for
these isotopes via a SU(1,1)-based Hamiltonian. The results
indicate that the energy spectra of the Rh and Ba isotopes
can be reproduced quite well. The calculated B(E2) values
and two-neutron separation energies are in agreement with
the available experimental data. Our results show that Rh
isotopes have γ -unstable rotor features but the vibrational
character is dominant, while a dominance of dynamical
symmetry O(6) exists for the Ba isotopic chain and also
105
45 Rh and 133−135

56 Ba isotopes are the best candidates for the
UBF (5)-OBF (6) transition.
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