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Spectra and scattering of light lattice nuclei from effective field theory
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An effective field theory is used to describe light nuclei, calculated from quantum chromodynamics on a lattice
at unphysically large pion masses. The theory is calibrated at leading order to two available data sets on two-
and three-body nuclei for two pion masses. At those pion masses we predict the quartet and doublet neutron-
deuteron scattering lengths, and the α-particle binding energy. For mπ = 510 MeV we obtain, respectively,
4anD = 2.3 ± 1.3 fm, 2anD = 2.2 ± 2.1 fm, and Bα = 35 ± 22 MeV, while for mπ = 805 MeV 4anD = 1.6 ±
1.3 fm, 2anD = 0.62 ± 1.0 fm, and Bα = 94 ± 45 MeV are found. Phillips- and Tjon-like correlations to the
triton binding energy are established. We find the theoretical uncertainty in the respective correlation bands to be
independent of the pion mass. As a benchmark, we present results for the physical pion mass, using experimental
two-body scattering lengths and the triton binding energy as input. Hints of subtle changes in the structure of the
triton and α particle are discussed.
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I. INTRODUCTION

The vast number of phenomena of the nuclear chart
depend on a relatively small set of quantum chromodynamics
(QCD) parameters—in the low energies relevant for nuclear
physics, a mass scale MQCD associated to the strong coupling
constant, the masses mq of the two lightest quarks, the
electromagnetic coupling strength, and the vacuum angle.
Lattice QCD (LQCD) is a numerical framework which enables
us, at least in principle, to relate nuclear and QCD parameters,
once effects due to finite lattice spacing and size are removed.
The last few years have witnessed significant progress in
predicting the properties of light nuclei with nucleon number
A � 4, but at relatively large quark masses and neglecting
time-reversal and isospin violation. (See Ref. [1] for a review
and a list of relevant references.)

Increasing A at fixed quark masses presents significant
difficulties because the noise-to-signal rate increases expo-
nentially. Although there seem to be ways around this problem
[1], large A also requires that longer distances be covered by
the lattice, since the nuclear volume increases with A. As in
other areas of physics, it is profitable to change to a more
effective description, in this case to an effective field theory
(EFT) involving nucleons as degrees of freedom. Because
an EFT is based on the most general Hamiltonian with the
appropriate symmetries, it is guaranteed to produce S-matrix
elements consistent with the S matrix of the underlying theory
[2], here QCD. After matching the EFT amplitudes to the
LQCD-calculated quantities at small A, one can describe the
longer-distance dynamics involved in larger-A systems within
the EFT [3], which is considerably simpler than doing so
directly within LQCD.

Most LQCD results so far concern binding energies, but
reactions convey much more information and will command
increasing attention in the years to come. Unfortunately, as

discussed in Ref. [4], which also summarizes the progress
in this field, volume artifacts are more pronounced. EFT quite
naturally accounts for scattering states, and allows bound states
and scattering to be treated on equal footing. Here we elaborate
on the findings of Ref. [3] for A � 4 and extend, for the first
time, LQCD predictions to reactions involving nuclei. As an
example, we consider neutron-deuteron (nD) scattering at low
energies, where the two S-wave channels—with total spin
s = 3/2 (quartet) and s = 1/2 (doublet)—are most important.

The noise-to-signal rate in LQCD also increases with
decreasing mq . Results obtained with unphysical mq can, in
principle, be extrapolated to the physical point in a systematic
way using chiral effective field theory (χEFT), as long as
pion masses are within the radius of convergence of the
latter. From χEFT with up to one nucleon—that is, chiral
perturbation theory (χPT)—one obtains the mq dependence
of, for example, the average pion mass (mπ ) [5], and of the
nucleon (mN ) and Delta (m�) masses [6]. The mq dependence
of some few-nucleon observables has also been estimated [7],
but unfortunately significant uncertainties still exist due to
subtleties in the proper accounting of renormalization-group
(RG) invariance in this nonperturbative context [7–9].

The average pion mass mπ is commonly used as a measure
for the detuned value of the average quark mass. At present,
LQCD can be carried out in the meson and single-hadron sector
down to values of mπ close to physical, where the low-lying
mass spectrum is reproduced within theoretical error bars (see
Ref. [10] for a status report). Comparison with LQCD data
suggests that χPT converges for pion masses no larger than
about 500 MeV [11]. In contrast, the quark masses employed
in current nuclear LQCD are likely beyond reach of χEFT.

As proposed in Ref. [3] and elaborated here, the EFT that
describes existing light-nuclear LQCD data need not include
pions explicitly. In fact, it has been understood for over 15
years that even at the physical pion mass light nuclei are well
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described by pionless EFT (/πEFT), an EFT with nonrelativis-
tic nucleons interacting through contact forces with an increas-
ing number of derivatives—each with a strength parameter or
“low-energy constant” (LEC)—which contribute at increasing
orders. In two-nucleon scattering, /πEFT reproduces [12–15]
the effective range expansion (ERE): scattering lengths at
leading order (LO), effective ranges at next-to-leading order
(NLO), etc. It thus also gives two-nucleon binding momenta
in the 3

S1 and 1
S0 with corresponding accuracy. More impor-

tantly, /πEFT offers a consistent extension of the ERE to other
systems [16]. For example, S-wave nD scattering in the quartet
channel can be very accurately postdicted [16–20] once the
two-nucleon LECs have been fixed in the two-nucleon system.
In the doublet channel, in contrast, RG invariance requires
that the three-body force with no derivatives appear already at
LO, with isospin-symmetric corrections starting beyond NLO
[19,21–28]. Current evidence from the RG in the four-body
system suggests that there is no four-body force up to NLO
[29–32]. The existence of a single three-body parameter up to
NLO, which determines the three- and higher-body spectra,
leads to many correlations among few-body observables at
fixed two-body input. Examples are the so-called Phillips
[33] and Tjon [34] lines obtained in plots of the doublet nD
scattering length [23,24] and alpha-particle binding energy
[30,32] as functions of the triton binding energy. Higher
partial waves in three-nucleon scattering [20,35], four-nucleon
scattering [36], and even 6Li [37] can also be reasonably well
described in /πEFT.

We will show that an analogous approach to describe light
nuclei is equally useful at larger mπ . Using higher-than-
physical mq not only increases mπ , but also changes the
nucleon mass mN and the masses of all other hadrons. We
will argue on the basis of scales inferred from LQCD data that
nucleons are sufficient for momenta up to mπ , with neither
explicit pions nor other baryons. Whether it is indeed mπ

(instead of, say, m� − mN ) that determines the convergence
rate of the theory used here is the subject of an upcoming
investigation. At each value of mπ a pionless EFT exists with
specific values of the LECs; we refer to /πEFT with varying mπ

as π↗EFT in the following. Until nuclear LQCD calculations
are extended to include time-reversal and isospin violation,
mπ is the only QCD parameter determining nuclear properties.
Existing data at mπ = 805 [38] and 510 [39] MeV give A � 4
binding energies that are much larger than in the real world
and increase with the pion mass. The dineutron is bound,
which could signal qualitative new features in lattice worlds.
An obvious question is the extent to which properties of /πEFT
survive in π↗EFT, where all scales change.

In Ref. [3] the binding energies of nuclei with A � 6
were studied in LO π↗EFT using as input the LQCD data
for dineutron, deuteron, and triton/helion at mπ = 805 MeV
[38]. The α-particle binding energy provided a consistency
check between π↗EFT and LQCD data, and the A = 5,6
binding energies obtained with π↗EFT can be viewed as
an extrapolation of LQCD. Here, we extend π↗EFT to the
mπ = 510 MeV LQCD data [39] and to a broader range of
observables including scattering amplitudes.

The methods of /πEFT have for some time been deployed
in the study of reactions directly on the lattice [4,40]. Both

two-nucleon elastic scattering [41] and neutron radiative
capture on the proton [42] have been considered directly
on the lattice. Our strategy is, instead, to analyze reactions
outside the lattice box with π↗EFT once its LECs have been
determined from binding energies at LO and, eventually, also
two-nucleon scattering observables at NLO. We exploit the
dramatic advances in the development of the so-called ab
initio methods that have taken place in nuclear physics over the
same period in which /πEFT was formulated. In particular, here
we employ the effective-interaction hyperspherical-harmonic
(EIHH) method [43–45], and the refined resonating-group
(RGM) method [46]. Although these methods have been
developed for traditional nuclear potentials, they can be
adapted to pionless EFT, as already done for π↗EFT in the
EIHH [3] and /πEFT in the RGM [32,36].

Thus, we show that /πEFT remains useful in nuclear systems
with A � 4 and extrapolate LQCD data to observables that
might not be as easily obtained in the lattice. This is analogous
to the use of /πEFT correlations [47,48] to infer values of
poorly measured observables in the real world. If and when
scattering observables are determined directly on the lattice,
our predictions will be a further test of the consistency between
π↗EFT and LQCD, establishing the validity of a theory with
only contact interactions over a range of mπ from 140 MeV up
to 805 MeV. Such a consistency would provide a benchmark
for the extension of this method to the less-understood χEFT,
once LQCD data reaches sufficiently small pion masses.

We summarize the article as follows. In Sec. II we discuss
the degrees of freedom and breakdown scale of π↗EFT for
mπ up to ∼800 MeV. Still in Sec. II, we present the LO
Hamiltonian and the regulator we use in calculations, which
employ the computational tools introduced in Sec. III: the
EIHH and RGM methods. In Sec. IV, we determine the LO
LECs from the LQCD data for A � 3 in the alternate reality
assessed via LQCD at various mπ . With the Hamiltonian thus
calibrated, we calculate in Sec. V the α-particle binding energy,
establish the heavy pion Phillips and Tjon lines, and predict
the doublet and quartet neutron-deuteron scattering lengths
2anD and 4anD. As we conclude in Sec. VI the procedure is
analogous to the development of /πEFT over the last decades,
namely, a calibration of a small set of parameters to data in
order, first, to obtain predictions of low-energy observables
and, second, to explain correlations amongst them.

II. PIONLESS EFFECTIVE FIELD THEORY

At physical mπ , pionless EFT with nucleons as the sole
degrees of freedom has proved useful for light nuclei in the
low-momentum regime—see Refs. [49,50] for reviews and
Ref. [51] for a pedagogical introduction. Its organizational
scheme (“power counting”) is based on two basic scales: the
breakdown scale Qhigh estimated as mπ and an unnaturally
small scale ℵ related to the inverse of the two-nucleon
scattering lengths 1,3aNN in the singlet/triplet channels.

For external relative momenta k � mπ/2, the deuteron
and the virtual singlet bound state are the only singularities
of the two-body scattering amplitude. All mesons and ex-
cited baryons are short-range effects. The amplitude from a
Lagrangian built of derivative contact operators made of
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TABLE I. Relevant scales for a low-energy nuclear effective field theory. Physical data in the first column is relevant for /πEFT , lattice
data summarized in the second and third for π↗EFT . All numbers are given in MeV.

pion mass mπ 139.5 ± 0.1 [53] 511 ± 2 [39] 806 ± 1 [38]
nucleon mass mN 939 ± 1,938 ± 1 [54] 1320 ± 3 [39] 1634 ± 18 [38]

Delta-nucleon mass difference δ� = m� − mN 292 ± 1 [55] ≈200 [56] ≈180 [56]

dineutron binding energy Bnn — 7.4 ± 2 [39] 15.9 ± 4 [38]

deuteron binding energy BD 2.22 [57] 11.5 ± 2 [39] 19.5 ± 5 [38]
triton binding energy BT 8.482 [58] 20.3 ± 4.5 [39] 53.9 ± 10.7 [38]

inverse singlet scattering length 1a−1
np −8.31 [59] n.a. 84.7 ± 18 [41]

inverse triplet scattering length 3a−1
np 36.4 [59] n.a. 108 ± 13 [41]

Delta effective momentum
√

2mNδ� 741 890 767

two-nucleon binding momentum
√

mN (Bnn + BD)/2 46 112 170

triton-to-deuteron binding ratio BT/BD 3.82 1.8 2.8

nucleon fields can be matched to all orders of the ERE.
Matching the LO amplitude to the ERE results in a
Cs,t ∝ 4π (1,3aNN )/mN ∼ 4π/(mNℵ) scaling of the non-
derivative four-nucleon contact term. As the scattering lengths
1,3aNN are large relative to the pion range 1/mπ for both NN
S-wave channels, a refined power counting is required [12,13]
that goes beyond naive dimensional analysis. Of course, care
has to be taken that the necessary regularization and the
inclusion of higher-order contributions do not introduce poles
within the radius of convergence. As long as those singularities
are beyond the pion threshold, mπ , /πEFT converges for
two-nucleon processes at momenta Q < Qhigh, including the
3
S1 (deuteron) and 1

S0 poles [14,15]. In LO the two LECs Cs,t

suffice.
Extending /πEFT to systems with more nucleons requires

understanding how ℵ enters the LECs of multinucleon in-
teractions. The fact that the nonderivative six-nucleon contact
interaction is needed to define the EFT at LO [21,22] implies its
LEC scales as Dd ∼ (4π )2/(mNℵ4). In contrast, the apparent
lack of similar RG enhancements in other contact interactions
suggests they appear only in higher orders.

As /πEFT is applied beyond the deuteron, one needs to
account for effects of the Coulomb force among protons. The
importance of Coulomb effects is characterized by a ratio
αmN/Q, where α is the fine-structure constant. Although cru-
cial for very low-energy proton-proton [15] and proton-nucleus
scattering, the Coulomb interaction should be subleading in
relatively deep ground states such as helion and α particle,
where binding momenta are much larger than αmN .

At LO, the /πEFT Lagrangian can be written as

LLO = N †
(

i∂0 +
�∇2

2mN

)
N + Cs

8
(NT σ 2σ iτ 2 N )†

× (NT σ 2σ iτ 2 N ) + Ct

8
(NT σ 2τ 2τ a N )†

× (NT σ 2τ 2τ a N ) + Dd (N †N )(N †N )(N †N ), (1)

where N is a bispinor in both spin and isospin spaces, and
σ i (τ a) are the spin (isospin) Pauli matrices, the index i
(a) running over spin (isospin) vector components of the

projection operators on the spin singlet (triplet) state. Higher
orders contain terms with more derivatives and/or nucleon
fields, including those necessary to ensure Lorentz invariance
(in a Q/mN expansion).

Somewhat surprisingly, /πEFT seems to converge for triton
and helion [23,24,26], and even for the more-bound α particle
[30,32]. At the physical point, /πEFT is useful even at LO
to explain features like correlations amongst three-body ob-
servables (the Phillips line) and between three- and four-body
data (the Tjon line), with just the neutron-proton scattering
lengths 1,3anp as input. With an additional condition which
conventionally fixes either the triton binding energy BT or the
neutron-deuteron doublet scattering length 2anD, a few four-
nucleon observables, e.g., the binding energy of 4He [30,32],
and the neutron-triton and proton-helion scattering lengths
[36], have been found to agree with data within the expected
uncertainty margin. The only exception so far seems to be the
resonance location in the 0− neutron-triton channel, which
was found to be cutoff, and thus renormalization-scheme
dependent [52]. The origin of this pathology is unknown. LO
results for 6Li [37] do not allow conclusions about the range
in A where /πEFT converges.

With the usefulness at physical mπ thus established, we
follow an analogous approach at heavier mq . Available lattice
data [10] identifies the pion, still, as the lightest meson and
the � as the lowest excited state of the nucleon. However, the
ratios between the nucleon, pion, and � masses change, see
Table I. Also, nuclei become increasingly more bound.

The relevant momentum is very clear in the two-nucleon
system, from either the inverse scattering lengths or the two-
nucleon binding momentum estimated from the average two-
nucleon binding energy. At all pion masses it is much smaller
than the nucleon mass, meaning nucleons are nonrelativistic,
and even than the pion mass itself, ensuring pions can be
integrated out. However, in contrast to the physical world,
mπ > m� − mN ≡ δ� for the two lattice simulations, and
hence one might wonder if the � should not be included as an
explicit degree of freedom.

The reason the � can still be integrated out is, of course, that
in a nonrelativistic theory the relevant quantity for convergence
is momentum, not heavy-particle mass. In this case, it is
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the “Delta effective momentum”
√

2mNδ�, which remains
above, or at least near, the pion mass. That

√
2mNδ� is

the relevant scale was shown explicitly in Ref. [60] for the
two-nucleon 1

S0 channel. In this case, the lowest accessible
state with excitations has two �s, and in addition to Cs two
other nonderivative contact interactions need to be included:
two-nucleon/two-� and four-�. Under the assumption that all
three LECs are of a similar size C0, they scale as [60]

C0 = 4π

mN

(1
a−1

NN +
√

2mNδ�

)−1 ≈ (234 MeV)−2 (2)

at mπ = 140 MeV. Because the inverse value of the singlet
scattering length for mπ = 805 MeV, displayed in Table I, is
about 10 times larger in magnitude than its physical analog,
the ensuing size of C0 would decrease and allow for higher
typical momenta in the two-nucleon amplitude. However, the
� effective momentum is still several times larger than the
inverse scattering length. Operators in a �-full, pionless theory
should then show similar scaling behavior as for physical pion
mass, where the � can be integrated out. Removing the �
generates an effective range not accounted for in LO, but this
contribution is characterized by the � effective momentum,
which does not seem to be smaller than the inverse pion
mass.

This argument can be generalized to other channels [61]
where

√
2mNδ� is replaced by

√
mN�r, with �r the difference

between the mass of the state containing the nucleon excita-
tion(s) and 2mN . Since lattice results suggest that the lowest
state with a single excitation involves the Roper resonance,
whose mass is somewhat larger than the �, one does not
expect a significant decrease in convergence rate by keeping
only the nucleon explicit in the EFT.

Therefore, we formulate π↗EFT as an EFT formally
equivalent to /πEFT , but with different scales and values
for the LECs. The breakdown or high-momentum scale Qhigh

is assumed to be the smallest of mπ and
√

mN�r. The
low-momentum scale Qlow is set by the binding momenta
of the nuclei we consider and by the external momenta in the
reactions we are interested in. We expand all observables in
powers of Qlow/Qhigh. Eventually, an NLO calculation will
yield an estimate on the convergence rate and thereby the
breakdown scale of π↗EFT . The Lagrangian in LO is given
by Eq. (1), in which four mπ -dependent parameters enter: the
nucleon mass mN and the LECs Cs,t and Dd .

For the calculation of few-body observables we solve the
Schrödinger equation in configuration space. The potential
is the sum of all irreducible contributions to the A-body
scattering matrix from the Lagrangian. This amounts at LO
to the sum of three tree-level diagrams with vertex factors Cs,t

and Dd . The infinities resulting from the zero-range contact
interactions are here regularized via Gaussian regulator func-
tions, 
3 exp(−
2r2

ij /4)/(16π3/2) for two nucleons i,j and

6 exp[−
2(r2

ik + r2
jk)/4]/(64π3) for three nucleons i,j,k,

where 
 arbitrarily separates states included explicitly as
propagating degrees of freedom from states accounted for
implicitly in the LECs. If it is smaller than the breakdown
scale it produces larger errors than the truncation of the EFT
Lagrangian (Sec. V A 2 exemplifies ramification of a violation

of this condition). The resulting Schrödinger equation for the
A-body wave function � and the corresponding energy E
takes the form⎧⎨
⎩−

∑
i

∇2
i

2m N
+

∑
i<j

1

4

[
3 C1,0 + C0,1 + (C1,0 − C0,1) σ i · σ j

]

× e− 
2

4 r2
ij +

∑
i<j<k

∑
cyc

D1e
− 
2

4 (r2
ik+r2

jk )

⎫⎬
⎭� = E �. (3)

Here, a factor from the regulator was absorbed into the bare
couplings of Eq. (1):

C0,1(
) = 
3

16π3/2
Cs(
), (4)

C1,0(
) = 
3

16π3/2
Ct (
), (5)

D1(
) =
(


3

8π3/2

)2

Dd (
). (6)

As in any EFT, the bare LECs depend on 
 so as to
guarantee that observables do not. The 
-dependent LECs
are determined from input data in Sec. IV, after we discuss the
solution of Eq. (3) in the next section.

III. TOOLBOX

To solve the Schrödinger equation we have utilized two
computational methods: EIHH and RGM. Hereafter, we
present a short description of both methods.

A. The effective-interaction hyperspherical harmonics method

The hyperspherical coordinates are the D-dimensional
generalization of the three-dimensional spherical or polar
coordinates. As such they allow the description of the A-
body wave function in terms of a single length variable,
the hyper-radius ρ, and (D − 1) hyper-angular variables 
[62,63]. Removing the center-of-mass coordinate, the A-body
dynamics can be described by A − 1 Jacobi vectors η1, . . . ,
ηA−1, therefore D = 3A − 3.

The nice feature of these coordinates is that, in perfect
analogy to the two-particle case, the kinetic energy operator T
of the A-particle system splits into a hyper-radial and hyper-
centrifugal terms, with a hyperspherical angular momentum
operator K̂ that depends on . The resulting A-particle
Hamiltonian reads

H [A] = − 1

2mN

(
�ρ − K̂2

ρ2

)
+ V [A](ρ,) , (7)

where �ρ is the hyper-radial Laplacian.
The hyperspherical harmonics (HH) Y[K] are the A-body

generalization of the spherical harmonics. As such they are
the eigenfunctions of K̂2 with eigenvalues K(K + 3A − 5).
They form a complete set of hyper-angular basis functions.
Choosing a complementary set of hyper-radial basis states
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Rn(ρ), the A-body wave function can be expanded in the form

�(ρ,) =
∑
n[K]

Cn[K]Rn(ρ)Y[K]() (8)

with coefficients Cn[K]. The nuclear wave function � must
be complemented by the spin-isospin parts, and the whole
function must be antisymmetric. The construction of antisym-
metric HH spin-isospin basis states is a nontrivial task, which,
however, has been solved in Refs. [64,65].

To accelerate the convergence rate of the HH expansion,
Eq. (8), we construct an effective interaction (EI) using the Lee-
Suzuki similarity transformation [66]. Applying this method
to the HH basis we identify the model space P with all the A-
body HH states such that K � Kmax, and the complementary
space Q = 1 − P as the rest of the Hilbert space. The Lee-
Suzuki method then gives a recipe to construct a similarity
transformation such that the spectrum of the resulting effective
P -space Hamiltonian, H [A]eff = T + V [A]eff , coincides with
the spectrum of H [A]. Finding V [A]eff , however, is as difficult
as solving the original problem, and therefore we do not search
for the total EI, but for a partial EI constructed through the
solution of the simpler two- and three-body problems.

The resulting EI is tailored to our HH model space, and
constrained to coincide with the bare one when enlarging
the model space. This EIHH method [43–45] has been
successfully applied to the study of bound states and reactions
for nuclear systems with 3 � A � 7.

B. The refined resonating-group method

In contrast to the EIHH method where the few-body wave
function is expanded over a complete set of states, the RGM
is a variational approach that utilizes an overcomplete set of
states (for its original formulation, see Refs. [67,68]; for the
refinement and implementation, Ref. [46]). To construct these
states, the RGM considers all possible channels {[c]}, where
each channel consists of a specific spin-isospin configuration
�[c], a set of Jacobi vectors η1, . . . ,ηA−1, and the angular
momentum quantum numbers �1, . . . ,�A−1 associated with
these vectors. The orbital functions are given by the ansatz

Rn[c](η1, . . . ,ηA−1) =
A−1∏
j=1

η
�j

j Y�j mj
(η̂j )e−κnj η

2
j , (9)

where Y�m are the spherical harmonics, and κnj comprise a set
of width parameters used to expand the wave function, i.e., the
sum over the channels includes an expansion of each radial
dependence in Gaussians with widths {κnj }.

The few-body wave function is then a linear combination of
an antisymmetric product of a spin-isospin channel state and
the orbital function, coupled to yield the desired total angular
momentum quantum numbers JM ,

�JM = A
∑
n[c]

Cn[c][Rn[c]⊗�[c]]
JM. (10)

The sum over channels allows the consideration of all possible
spin-isospin configurations or clusters �[c]. In practice, how-
ever, our implementation omits channels that have negligible

contribution to the wave function. For example, the ansatz for
the α-particle wave function includes triton-proton, helion-
neutron, and deuteron-deuteron spin-isospin configurations.
The conceivable two-neutron–two-proton arrangement was
found to contribute less than 100 keV to Bα and therefore
is not included in the variational ansatz.

Thus, the RGM method includes three intertwined expan-
sions: (i) the cluster or resonating-group expansion, which
defines the spin-isospin configuration and the Jacobi coordi-
nates; (ii) the partial-wave expansion; and (iii) the expansion
in Gaussian functions. Convergence is assessed along each
of those “axes”. First, the thresholds of a system serve as
guidance for the initial choice of resonating groups. Second,
contributions from subleading partial waves are considered.
For s-wave nuclei, and central forces, � > 0 configurations
do not have to be included due to the cluster expansion.
Consequently, at this order of our EFT we consider only � = 0
terms in our description of the light, A � 4 nuclei. Third, the
set of Gaussians is extended and scaled until this modification
of the model space does not affect binding energies by more
than 1%.

With the RGM, we also calculate scattering observables.
To solve the few-body problem with the RGM for a range of
cutoff [
 as introduced above to obtain the regularized Eq. (3)]
values, i.e., to approximate a wave function with structure
around ηj ≈ 
−1, the variational basis has to be either
very large—leading to numerical instabilities—or tailored to
each 
—requiring a convergence check with regards to all
parameters of the basis set.

Our variational approach is analog to Kohn-Hulthèn’s
method [69] which minimizes a functional parametrizing the
reactance matrix, corresponding to Ricatti-Bessel asymptotic
solutions for uncharged particles and Coulomb functions for
charged fragments. We use in- and outgoing waves as boundary
conditions (spherical Hankel functions h±), because this
method turned out to be more accurate in practice. Specifically,
for two-fragment scattering with an incoming channel c we
denote the relative intercluster Jacobi coordinate by ηc and
make the ansatz

� = A
⎛
⎝−h−

c (ηc) +
∑
c′

Scc′h+
c′ (ηc′) +

∑
n[c]∈C

Dn[c]Rn[c]

⎞
⎠,

(11)

with variational parameters Scc′ (the S matrix) and Dn[c].
If either target or projectile are compound objects, e.g., the
deuteron in Sec. V A, their wave functions are predetermined
via the ansatz in Eq. (10) and multiplied with the asymptotic
solutions h± of the relative motion. For small distances ηc,
the interaction between nucleons of different fragments is
nonzero and the full scattering wave function will differ from
the asymptotic form as given by the first two terms in Eq. (11).
This difference is described by the third term in Eq. (11). Con-
vergence and stability are assessed with respect to the subset
C which is taken from the full set of channels. It is sufficient
to include those n[c] in C which are nonzero for ηc ≈ 
−1

and, as Gaussians, square-integrable. For ηc � 
−1, this
expansion should be zero, i.e., � is identical to the asymptotic
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FIG. 1. (Color online) Dependence of the α-particle binding energy Bα (in MeV) calculated with the EIHH method on the maximal
hyper-angular eigenvalue Kmax. Results are shown for a π↗EFT interaction with 
 = 2 fm−1 at mπ = 140 MeV (a), 510 MeV (b), and 805 MeV
(c). The horizontal green line represents the corresponding RGM result.

solution. The Kohn-Hulthèn variational condition expressed
in terms of the scattering matrix is

δ{〈�|(H − Ec.m.)|�〉 − iScc} = 0 , (12)

where Ec.m. is the center-of-mass energy. This condition yields
optimal values for Scc′ and Dn[c]. Here the channel index
c discriminates between different two-body fragmentations,
e.g., neutron/deuteron or neutron/neutron-proton singlet, and
angular momentum. Using an appropriate decomposition of
the Hamiltonian (for the latest summary and references to the
original work see Ref. [70]), the variational coefficients Scc′ ,
Dn[c] can be expressed in terms of integrals of the short-ranged
part of the potential. Therefore, an accurate expansion of the
asymptotic solution is required for a finite range. In practice,
we minimize

I (ε) =
∫ ∞

0
dη

⎛
⎝h±

c (η) −
∑
n[c]

Cn[c]Rn[c]

⎞
⎠

2

ηe−εη2
, (13)

to approximate the Hankel or Coulomb functions. Finally, we
obtain scattering lengths from the phase shift δ(Ec.m.) at a finite
Ec.m. through

a(Ec.m.) = − 1

k cot δ(Ec.m.)
. (14)

As the scattering length is defined for Ec.m. = 0, the uncer-
tainty due to this approximation has to be assessed. In this
work, we extracted a at 0.001 MeV, used 10–13 Gaussians to
expand the deuteron and singlet neutron-proton fragment in
the three-body scattering calculations, and adapted the Hankel
functions with a weight ε = 0.03 fm−2.

To conclude, we summarize the convergence check:

(i) First, we determine appropriate Gaussian basis for
the fragments by fixing the number of Gaussians and
optimize their widths via a genetic algorithm [71].

(ii) Second, we diagonalize the Hamiltonian, Eq. (3),
in the scattering basis. This basis uses a different
coupling scheme which adopts the one implied in
Eq. (10) for each fragment. The total fragment spins
are coupled to a channel spin which forms, with the
orbital angular momentum on the relative coordinate
ηc between the fragments, the total J . We enlarge C

until the lowest eigenvalues reproduce the thresholds
defined by the ground states of the fragments and
the bound states of the compound system of the two
fragments, if there is a bound state in the channel (the
triton in Sec. V A).

(iii) Third, we take

lim
ε→0

I (ε) and lim
E→0

a(E) (15)

in Eqs. (13) and (14). While taking both limits, we
identify a plateau in the predicted scattering length for
ε < 
2 and Ec.m. < 0.0001 MeV.

After these steps, we deem the basis large enough for
an accuracy that is then dominated by the higher-order
contributions of the EFT expansion.

C. Comparison

With EFT parameters calibrated as described below, we
compared the results for BT and Bα of the RGM with
the corresponding EIHH values to test the accuracy of the
resonating-group expansion. As an example, we show in Fig. 1
the convergence of EIHH calculations to the RGM results for
Bα at a cutoff 
 = 2 fm−1. For all three pion masses, the
EIHH converges with Kmax to the respective RGM value.

For subsequent calculations the RGM was chosen to
minimize computing time.

IV. CALIBRATION

Through Eq. (3), all LO predictions depend on three
LECs CS,T (S,T = 0,1 or 1,0) and D1, beside the nucleon
mass. Lattice data are available for the two- and three-body
binding energies (Bnn,BD,BT) at mπ = 510 MeV [39] and
at mπ = 805 MeV [38]. At mπ = 805 MeV [41], the singlet
and triplet scattering lengths (1anp,

3anp) and effective ranges
are also available. We fit CS,T to the two-nucleon binding
energies in the singlet and triplet channels (Bnn,BD) by solving
the Schrödinger equation via the Numerov algorithm. The D1

term is fixed through BT using the RGM. For comparison, we
also consider the physical pion mass, mπ = 140 MeV, where
we fit the experimental singlet scattering length, in addition to
experimental deuteron and triton binding energies.
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TABLE II. The LO LECs CS,T and D1 [GeV] for real
(mπ = 140 MeV) and lattice (mπ = 510, 805 MeV) nuclei for
various values of the momentum cutoff 
[fm−1]. D

(∗)
1 yields the

triton as the ground (excited) state.

mπ 
 C1,0 C0,1 D1 D∗
1

140 2 −0.142 −0.106 0.068 –
4 −0.505 −0.435 0.677 –
6 −1.09 −0.986 2.65 –
8 −1.90 −1.76 7.82 –

510 2 −0.145 −0.130 0.157 −0.120
4 −0.438 −0.412 0.907 −0.441
6 −0.889 −0.853 3.21 −0.855
8 −1.50 −1.45 9.44 −1.27

805 2 −0.148 −0.138 0.071 –
4 −0.405 −0.388 0.354 –
6 −0.789 −0.766 1.00 –
8 −1.30 −1.27 2.22 –

These renormalization conditions determine the 
 depen-
dence of the LECs. The values of the bare LECs for cutoffs

 = 2, 4, 6, 8 fm−1 are given in Table II. and a graphical
representation of the fit results is given in Fig. 2. The input to
calibrate the values at the physical pion mass (black squares
in Fig. 2), namely the deuteron binding energy and the singlet
neutron-proton scattering length, are known accurately. Thus
we abstain from a display of the sensitivity of those values to
the uncertainty in the input. For the unphysical pion masses,
the uncertainty in the input data is significant. For each cutoff,
we thus obtain LECs not only for the central values but also for
the boundaries of the two- and three-body binding energies. In
the case of D1, we fix the two-nucleon LECs to their central
values when varying BT within its error margins. The widths
of the blue (mπ = 805 MeV) and red/gray (510 MeV) bands
in Fig. 2 represent how input-data uncertainty translates into
coupling strength uncertainty.

Some aspects of the cutoff dependence of the LECs shown
in Fig. 2 can be understood from general arguments. For a non-
derivative four-nucleon LEC C [multiplied by 
3/(16π3/2) as

in Eqs. (4) and (5)] which determines a scattering length a, an
expansion in powers of relative momentum over 
 of the loop
integrals appearing in the T matrix gives [13]

mN
−2C(
) = θ0 + θ1

a

+ O((a
)−2), (16)

where θi are regulator-dependent numbers of O(1) that depend
neither on a nor on mN , and thus also not on mπ . This large-

behavior is apparent in panels (a) and (b) of Fig. 2, where we
display mN
−2CS,T rather than CS,T . As we can see, all curves
approach a limit θ0 � −0.7, at a rate that depends on a. The
different sign of the scattering length in the singlet channel for
physical mπ results in a different approach to the asymptotic
value compared to the other channels and pion masses, where
relatively shallow bound states exist.

We can also gain some insight into the cutoff dependence
of D1. In the absence of a three-nucleon force, the triton
spectrum depends sensitively on 
, indicating a lack of
renormalizability. The example of mπ = 510 MeV is shown in
Fig. 3. When D1 = 0, the open circles on the dotted line show
an almost exponential dependence of the ground state on the
cutoff. As indicated by the filled circles on another dotted
line, around 1.2 GeV a second bound-state pole emerges,
which also becomes increasingly more bound as the cutoff
increases. The pattern repeats as the cutoff increases further.
Renormalizability can be achieved with the nonderivative
three-body force [21–23]

mN
−2D1(
) = F (
/
∗), (17)

where 
∗ is an mπ -dependent parameter that determines the
three-body spectrum and F is a dimensionless function that
depends on the regulator and on which state is kept at the
observed BT. Accordingly, in panel (c) of Fig. 2 we display
mN
−2D1.

For all values of mπ we fit D1 to ensure the deep bound
state remains at the observed value of BT, in which case F
increases monotonically with 
. The resultant values of the
LEC define bands which vary significantly in width with mπ .
For mπ = 805 MeV [blue band around pentagons in panel
(c) of Fig. 2] and the physical mπ (black squares), the band
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FIG. 2. (Color online) Dependence on the cutoff 
 (in MeV) of the LO LECs of π↗EFT : mN
−2C1,0 (a), mN
−2C0,1 (b), and mN
−2D1

(c). The squares (mπ = 140 MeV), circles (510 MeV), and pentagons (805 MeV) represent values fitted to the central values of the shallowest
two-nucleon S-matrix poles in the singlet and triplet channels. D1 is adjusted to the triton as the ground (full circles, gray shading) or (for
mπ = 510 MeV only) first-excited (empty circles, red shading) three-nucleon state. The shaded uncertainty is obtained by varying the input
data within its margin of error.
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FIG. 3. (Color online) Dependence on the cutoff 
 (in MeV)
of the three-nucleon bound-state spectrum BT (in MeV) in the
triton channel at mπ = 510 MeV. The neutron-deuteron threshold
is indicated by a dashed line. Empty (filled) circles mark ground
(excited) bound states. The dotted lines are for D1 = 0. For the full
lines the three-nucleon force fixes the shallow state to BT.

width is narrow relative to mπ = 510 MeV (gray band around
circles). All three bands correspond to repulsive interactions.
This means that without a three-nucleon force there is a three-
body state which is more bound than the observed triton. This
state is then “raised” to the triton by the repulsive interaction.

Since additional three-body bound-state poles appear at
the two-body threshold with increasing cutoff, it is possible
to renormalize D1 to a shallow state instead. In this case,
F changes. In the example of Fig. 3, we can fit D1(
) so
that the first excited state is “lowered” to the triton level as
indicated by the filled circles on a full line—we label the
corresponding values of D1 as D∗

1 in Table II and Fig. 3. In
this case, two states remain bound: the triton and a deep state
shown by the empty circles on full line in Fig. 3, the latter with
a binding energy that goes from 170 MeV at 
 = 400 MeV
to 900 MeV at 
 = 1.6 GeV. The increased binding of the
deep state compared to its binding when D1 = 0 shows that
the force is attractive in this range of cutoffs, and it indeed has
an opposite sign to the force that keeps the ground state at BT,
as seen in Fig. 3.

The functional dependence of the three-nucleon LEC in
Fig. 2 is, by construction, identical to that of the binding
energies on the cutoff when D1 = 0. The latter grows faster
than quadratic (upward bending of the black dotted line with
empty circles in Fig. 3). This deviation is consistent with
the increase of D1 in Fig. 2 which is not just quadratic
but receives contributions from higher powers of 
. For
both fitting choices, we find the uncertainty in D1 by taking
BT ∈ [15.8,24.8] MeV (see Table I) at mπ = 510 MeV. It is
considerably larger when a repulsive three-nucleon force is
used, as shown by the width of the gray band in panel (c) of
Fig. 2, which is much larger than the red band that represents
the variation in the attractive force strength. In contrast to the

log-periodic behavior of the three-body force as a function of
the cutoff found in Refs. [21–23] we find both, the central
value and the uncertainty, to increase monotonically with 

for all mπ except for the calibration to the excited state (empty
circles in Fig. 2). No discontinuities at critical values of 
 are
observed because the eigenstate we chose to fit D1 was always
either the ground or the first excited state. A log-periodic F ,
as in Refs. [21–23], is found if the LEC is calibrated always to
the shallowest state in the spectrum. As a consequence, after
renormalization the smallest binding energy is fixed, while
states accrete from very large binding energies at the critical
values of 
.

The significant difference in uncertainty of the three-
nucleon-force parameter when fitted to the ground or excited
state is related to the functional dependence of those states
on 
. In the vicinity of a critical 
 where an additional
state enters the spectrum, the eigenvalue of the excited
state increases much slower than that of the ground state
(compare slopes of the dotted lines in Fig. 3). The respective
three-nucleon interaction strength inherits a larger slope if the
ground state is fitted relative to calibrating the excited state.
Since both input and regulator variation represent a change
in the renormalization scheme, the observed difference in
uncertainty is a consequence of the differences in slope.

Different values of 
 and different regularization schemes
correspond to different models of the short-distance behavior
of the theory. These models might allow for deeply bound
states in the deuteron, triton, and α-particle spectra. A tenet
of EFT is that high-energy, or short-distance, phenomena can
be accounted at each order by the most general interactions
consistent with symmetries and required by RG invariance.
In the specific case, we use this tenet to conjecture that low-
energy observables, such as the nD scattering lengths, should
be independent of whether we fit the triton to the deepest,
second-deepest,..., or shallowest state. This has been seen in
simple explicit examples, such as Ref. [72], where invariants
of few-body spectra were analyzed with respect to changes in
the short-distance structure of the employed models. It is not
the scope of this work to assess differences between the various
schemes, and hence we employ repulsive three-nucleon forces
consistently in all calculations below.

V. RESULTS

The Phillips [33] and Tjon [34] correlations are nontrivial
features of nuclear physics. Their sensitivity with respect to
mπ is analyzed here. In addition, we consider the quartet
three-nucleon channel which is less sensitive to the short-
distance structure of the interaction, i.e., no three-nucleon
interaction contributes up to high order. With these predictions,
we conclude that key nuclear properties are, qualitatively,
insensitive to mπ—a conjecture based on the universal EFT
approach. We compare the results for mπ = 510 MeV and
mπ = 805 MeV with LO /πEFT results at the physical pion
mass to make similarities and differences explicit.

Besides identifying the peculiarities of large pion masses,
we predict the outcomes of “experiments” in these hypothetical
worlds. As described in the previous section, for each cutoff,
i.e., model for unobservable short-distance structure, π↗EFT
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differs in its coupling constants. If these models differ in
predictions by a finite amount, it is this amount that quantifies
the theoretical error. In the physical world, theoretical error
estimates of this kind were used previously to make predictions
through correlations (see, e.g., Refs. [47,48]). Since the
theoretical error for BT and Bα is large relative to the
experimental one, the Phillips and Tjon lines at LO in /πEFT
do not constrain observables further at physical mπ . At larger
mπ , however, the lattice uncertainty is still significant (see
Table I) and, a priori, there is no reason why π↗EFT should
not be able to constrain observables more tightly through those
correlations than solely by the “experimental” error.

We assess sensitivity of results to higher-order terms in the
EFT expansion by a variation of the cutoff-regulator parameter
in the range 
 ∈ {2,4,6,8} fm−1. This range includes the
critical value for appearance at the physical pion mass of
an excited state, when D1 = 0 (see discussion of Fig. 3 in
Sec. IV). For lattice pion masses, the upper limit is 2–3 times
the expected breakdown scale, where in general we see signs of
convergence in observables. Although we might ideally want
even higher cutoffs at the expense of further computational
time, our estimate of the truncation error is probably not an
underestimate because we include cutoff values below the
expected breakdown scale. Such low cutoffs introduce larger
errors than the truncation. A more reliable error estimate has
to await higher-order calculations where the breakdown scale
manifests itself.

A. The three-body sector

The physical nucleon-deuteron system splits into two
significantly different spin channels: doublet (or triton) with
s = 1/2 and quartet with s = 3/2. The former (latter) supports
(does not support) a bound state. In the doublet channel, an
additional counterterm enters at LO—D1 term in Eq. (3)—
while the quartet channel is renormalized with CS,T , only.
The consequences of the existence of this counterterm also at
values of mπ explored in current lattice simulations are the
subject of the following two sections. Since we include no
Coulomb interactions, our results at physical pion mass apply
only to neutron-deuteron scattering.

1. Neutron-deuteron 4 S3/2 channel

The phase shifts in the quartet channel can be calculated in
LO solely on the basis of two-nucleon input. In Fig. 4, we show
our phase shift results for elastic nD scattering below 10 MeV,
calculated with the RGM. For all three pion masses, the cutoff
variation between 2 fm−1 and 8 fm−1 is shown by green
(mπ = 140 MeV), red (mπ = 510 MeV), and blue
(mπ = 805 MeV) bands. The upper (lower) edge corresponds
to 8 (2) fm−1. For the physical mπ , we compare our results
to previous LO and N2LO /πEFT calculations [18,22] (black
solid and dashed-dotted lines) obtained from the solution
of the Skorniakov–Ter-Martirosian (STM) equations. The
difference between these curves is, of course, a good reflection
of the uncertainty of the LO calculation at the physical pion
mass. Our result has the correct energy dependence and lies
between the two curves. Our error band accounts for cutoff
variation but not numerical uncertainty. The latter is included

0 2 4 6 8 10

δ n
−d

(4
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3/
2
)

E

0 2 4 6 8 10

mπ = 140
mπ = 510
mπ = 805

π

π

FIG. 4. (Color online) Elastic neutron-deuteron scattering phase
shift δ in the spin-quartet 4

S3/2 channel (in degrees) for various
pion masses as function of the center-of-mass energy Ec.m. (in
MeV). The green (mπ = 140 MeV), red (mπ = 510 MeV), and
blue (mπ = 805 MeV) shaded areas are the LO π↗EFT results of
the RGM for a cutoff in the range [2,8] fm−1. For the overlapping
mπ = 510,805 MeV uncertainty bands, the upper (lower) edge,
corresponding to 
 = 8 (2) fm−1, is given by dashed lines. For
mπ = 140 MeV, the solid (dashed-dotted) black line represents LO
(N2LO) /πEFT results from the solution of the STM equation [18,22].

in the postdiction of the nD scattering length given below.
The energy dependence and band widths are similar for the
three values of the pion mass we consider. This suggests
an invariance with respect to mπ of the uncertainty—and
therefore the convergence rate of the EFT.

We extract a scattering length at Ec.m. = 0.001 MeV. The
cutoff dependence is illustrated in panel (a) of Fig. 5. For
all values of the pion mass we observe a nice convergence
pattern. Our final values are shown in the first row of Table III.
The errors are the sum of the sensitivity to higher-order
effects assessed with the cutoff variation, and the numerical
uncertainty, which we measured to be less than 1 fm. They are
of similar size for the three pion masses, as for the phase shifts
at higher energies.

The quartet scattering length is an example of what is
sometimes called a low-energy theorem: to a high order it
is entirely determined by LECs fixed in other processes. The
value we obtain for 4anD at physical pion mass is consistent
with the /πEFT postdictions [16] of 4anD = 5.1 ± 0.80 at LO
and 4anD = 6.4 ± 0.020 at N2LO, and with the experimental
value [73]. We find a slow decrease with mπ , but no significant
change, which could have arisen if there were a shallow
bound state in this channel. The ERE should apply below
the deuteron break-up threshold, where the deuteron can be
treated as a single body. We might expect that, barring some
fine-tuning, the size of the ERE parameters is set by the
deuteron break-up threshold, kpn � √

4mNBD/3. The numbers
in Table III show indeed very good agreement with the
expectation |4anD| = O(1/kpn).
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FIG. 5. (Color online) Dependence on the cutoff 
 (in MeV) of the quartet [4anD, (a)] and doublet [2anD, (b)] neutron-deuteron scattering
lengths (in fm), and of the α-particle binding energy [Bα in MeV, (c)], for mπ = 140 MeV (black squares), 510 MeV (red circles), and 805 MeV
(blue pentagons).

Both the convergence pattern with the cutoff (reflected in
error bands) and the natural size of the resulting observables
suggest that π↗EFT behaves in similar ways to /πEFT . There is
no evidence that observables in this channel require a different
treatment from an EFT point of view for the larger pion masses,
i.e., the same power counting is applicable.

2. Neutron-deuteron 2S1/2 channel

As precise calculations of the three-nucleon system became
possible in the late 1960s, correlations were observed among
certain three-body observables calculated with a variety of
potentials fitted to two-nucleon data. The best-known example
is the Phillips correlation [33] between the doublet scattering
length 2anD and the triton binding energy BT. In /πEFT these
correlations are understood [21,22] by the fact that, if the
two-body input is fixed, three-body predictions in the doublet
channel still depend on one parameter in LO, which determines
the three-body force in Eq. (1). As this parameter is varied,
three-body observables sensitive to the LO three-body force all
change in a correlated way. π↗EFT, by construction, predicts
the correlations, and we establish here similar higher-order
uncertainties for all pion masses.

Fixing the LO three-body parameter to one datum, other
observables are calculated as for the quartet channel. The cutoff

TABLE III. Leading-order postdictions (/πEFT ) and predictions
(π↗EFT ) for the quartet and doublet neutron-deuteron scattering
lengths 4anD and 2anD at three pion masses, in comparison with
experiment and LQCD. The theoretical uncertainty considers cutoff
variation between 2 fm−1 and 8 fm−1, model-space truncation, and
LQCD-input variation.

mπ [MeV] /πEFT π↗EFT

140 510 805

4anD [fm] 5.5 ± 1.3 2.3 ± 1.3 1.6 ± 1.3
2anD [fm] 0.61 ± 0.50 2.2 ± 2.1 0.62 ± 1.0

experiment [73] LQCD
4anD [fm] 6.4 ± 0.020 ? ?
2anD [fm] 0.65 ± 0.040 ? ?

dependence of the doublet neutron-deuteron scattering length
is shown in panel (b) of Fig. 5 in the case where the three-body
parameter is determined by BT, as described in Sec. IV. Again
signs of convergence are visible, but not as clearly as for the
quartet scattering length. The lowest cutoff of 2 fm−1 is not
clearly above the breakdown scale at mπ = 805 MeV, and
indeed it generates significant errors. Therefore, for this pion
mass we consider only cutoffs 4 fm or higher in the following
analysis. While calculations at other cutoff values would be
desirable, for values above 4 fm−1 we can already see a trend
towards convergence.

One also expects the values of the doublet scattering
length to be correlated with the triton binding energy. This
is particularly clear when |BT − BD| � BD, in which case
the triton can be described as a neutron-deuteron bound state
and the small binding translates into 1/2anD � 1. But this
correlation is observed also beyond this region: in Fig. 6, the
Phillips correlation is shown for the three pion masses. As the
renormalization condition fixes the binding energy but does
not eliminate a residual cutoff dependence, which can only
be removed by higher-order interactions, the correlation is
manifest as a band of finite width rather than a one-dimensional
line. This width represents the theoretical error at LO
π↗EFT. The bands were mapped out by a line for each cutoff

 ∈ {2,4,6,8} fm−1. Each such line is parametrized by a factor
multiplying the three-body interaction. At mπ = 805 MeV,
the correlation is about to break down for the lowest cutoff,

 = 2 fm−1 (blue dashed line in Fig. 6), which is another
evidence that this value cannot be considered representative of
the EFT truncation error.

We extract the values for 2anD shown in the second row of
Table III. In the doublet channel, a too-small model space
can be more easily detected than in the quartet channel
from an under- or overbound triton. As a consequence, the
numerical RGM uncertainty is about 0.1 fm and therefore
small relative to higher-order effects which are taken as the
width of the band: 0.26 fm for mπ = 510 MeV, and 0.13 fm
for mπ = 805 MeV. The approximately constant width of the
Phillips band for all three mπ suggests invariant higher-order
uncertainty with increasing BT. Since higher-order effects
scale with momenta—those of nucleons increase in the triton
as BT increases—the band should intuitively widen towards
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FIG. 6. (Color online) Correlation between the doublet neutron-deuteron scattering length 2anD (in fm) and the three-nucleon binding
energy BT (in MeV). The green [mπ = 140 MeV, (a)] and red [mπ = 510 MeV, (b)] shaded areas are the LO π↗EFT results of the RGM for a
cutoff in the interval [2,8] fm−1. The blue [mπ = 805 MeV, (c)] shaded area is the LO π↗EFT results of the RGM for a cutoff in the interval
[4,8] fm−1, with the cutoff 
 = 2 fm−1 shown as a blue dashed line. For mπ = 140 MeV [panel (a)], experimental data are marked with a red
dot and blue dashed lines display LO /πEFT results obtained with the STM equation for sharp cutoffs of 140 and 900 MeV [19]. The gray
shaded area [panels (b) and (c)] marks the lattice uncertainty in BT. Values for 2anD between the horizontal dashed lines are consistent with all
other low-energy data.

larger BT. In effect, lattice input uncertainty dominates the
theoretical error. For the two unphysical pion masses [panels
(b) and (c)], the gray-shaded areas represent data uncertainty
given in Table I. The intersections of the edges of the error
bands with the correlation bands define areas (gray areas
bounded by horizontal dashed lines) in the BT − 2anD plane
which contain pairs of values that are consistent with all other
data points. The total theoretical uncertainty as estimated in
Table III includes the error in the LQCD input, 1.71 fm for
mπ = 510 MeV and 0.26 fm for mπ = 805 MeV.

The calculation at physical mπ [panel (a) in Fig. 6] serves
as a benchmark. The dashed lines represent the solution of the
STM equation at LO in π/EFT when a sharp cutoff was varied
between from 140 to 900 MeV [19]. Experiment is represented
by the red dot. Our band is consistent with both. The small
scattering length compared to the break-up threshold inverse
momentum, 1/kpn � 2.2 fm, is a sign of a zero of the T matrix
near the nD threshold. As discussed in Ref. [13], such a zero
is located at k2

0 ∼ −2anD k3
pn with respect to the origin of the

complex relative-momentum plane, when |k0| � kpn and the
deuteron can be treated as elementary. A consequence is a
large effective range 2rnD ∼ −(2anD k2

0)−1 and a small radius
of convergence of the usual ERE. Data suggests |k0| ∼ 20 MeV
on the imaginary momentum axis, and indeed this is what was
found by explicit calculation already many years ago [74].
The negative slope of the Phillips line indicates that, as the
three-body force is changed so that the triton gets more bound,
this pole crosses threshold. The zero remains in the region
of validity of the elementary-deuteron theory for 1 or 2 MeV
around the physical value of BT. In this region a modified ERE
[75] holds [13].

In panels (b) and (c) of Fig. 6 we extend LQCD to the
realm of few-body scattering, which is not as easily accessible
directly on the lattice. The negative slope of the Phillips line
persists but the line moves up in the BT − 2anD plane, and it gets
flatter, as mπ increases. The “measured” triton binding energy
rises monotonously (Table I), the doublet scattering length first
increases then decreases (Table III). For mπ = 510,805 MeV,

the accidental zero of the nD scattering amplitude is no longer
clearly present in the region where the deuteron can be taken
as elementary, and no particularly large effective range is
expected.

The increasing 2anD with increasing BT from 140 MeV
to 510 MeV pion mass is opposite to the trend found for
fixed pion mass, as identified above. It is not the triton binding
energy but the triton-to-deuteron binding ratio shown in Table I
which decreases with increasing 2anD. This ratio is important
because it measures the motion of the “experimental” point
in the BT − 2anD plane: BD influences (together with Bnn)
the position of the line, and BT fixes the position along the
line. As the ratio BT/BD decreases from mπ = 140 MeV to
mπ = 510 MeV and increases from 510 MeV to 805 MeV
pion mass, the three-nucleon bound state comes closer to and
farther away from the nD threshold.

In particular, the relatively large scattering length at
mπ = 510 MeV reflects a less-bound triton relative to the
neutron-deuteron threshold. Once the errors are considered, BT

is just a few of MeV away from BD at mπ = 510 MeV. In fact,
in contrast to mπ = 140,805 MeV, the binding momentum of
the last nucleon can be smaller than the deuteron break-up
momentum, κnD � √

4mN (BT − BD)/3 < kpn, in which case
the ERE is likely to apply. This leads to the prediction

2anD = 1

κnD

(
1 +

2rnD κnD

2
+ · · ·

)
. (18)

The first term gives, for the central values of the binding
energies, 2anD = 1.6 fm with a correction of about 50% from
the second term if |2rnD| ∼ 1/kpn. This estimate agrees with
the central value calculated with the full three-body dynamics
given in Table III. Barring significant shifts in the central values
as lattice errors are reduced, in this lattice world the triton can
be viewed as a two-body halo system.

It is an open question whether there is a pion mass, possibly
around 510 MeV, where the triton converges to the deuteron
threshold. If there is, we would be witnessing a qualitatively
new phenomenon in few-nucleon physics. The Efimov effect
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FIG. 7. (Color online) Correlation between the three- (BT, in MeV) and four- (Bα , in MeV) nucleon binding energies. The green
[mπ = 140 MeV, (a)], red [mπ = 510 MeV, (b)] and blue [mπ = 805 MeV, (c)] shaded areas are the RGM-LO π↗EFT results for a cutoff in the
interval [2,8] fm−1. For mπ = 140 MeV [panel (a)], the green uncertainty band represents sensitivity to the cutoff and to the renormalization
input (whether BD or 3anp). Experimental data are marked with a red dot, and the blue dotted (dashed) line represents LO /πEFT results from
Ref. [30] using 1anp,

3anp (1anp,BD) as input. The gray shaded areas in (b) and (c) mark lattice uncertainty in BT and Bα . Values for Bα between
the horizontal dashed lines are consistent with all other low-energy data.

in the three-body system is a prominent example of a universal
feature emergent from the unitary limit in the two-body sector.
A pion mass which produces the analog three-body unitarity,
1/2anD → 0, would be a world where the four-body system
exhibits an Efimov-type spectrum.

B. The four-body sector

While there is no lattice data on three-nucleon scattering
observables and thus the results presented in the previous
subsection remain to be verified “experimentally”, i.e., with
a direct LQCD calculation, there is data on the ground-state
energy of the four-nucleon system. In this section, we find the
three- and four-nucleon ground-state energies correlated for
all three mπ . At the physical mπ , the relation is known as the
Tjon line [34] which can again be explained by a variation in
the single LO three-body force parameter.

In Fig. 7, the correlations between the ground-state energies
of the three- and four-nucleon systems are shown. The different
graphs represent results for the three pion masses. We observe
an increase in α-particle binding in step with the increase in
triton binding energy, which is not surprising in pionless EFT
because with fixed two-nucleon input it is the same three-body
force that controls the binding of the three- and four-nucleon
systems. The correlation is manifest in a band, not a line, and
the width of the band measures the theoretical uncertainty
assessed via cutoff variation. With the central value of BT as
input in the three-body force, the dependence on the cutoff
of the α-particle binding energy Bα is shown on panel (c) of
Fig. 5. The slope of the correlation lines—as before, each line
is parametrized by a variation of the D1 three-body interaction
strength—further affects the LO π↗EFT uncertainty. The larger
the slope, the larger the uncertainty in Bα due to the uncertainty
in BT.

For the physical pion mass, our error band does not agree
well with the LO results of Ref. [30] shown in panel (a) of
Fig. 7. In Ref. [30] the α-particle binding energy was found by
a solution of the Faddeev-Yakubovski integral equations with
a Gaussian regulator on the relative incoming (p′) and out-
going (p) momenta, exp[−(p2 + p′2)/
2]. The uncertainty
was assessed in [30] by a cutoff variation 
 ∈ [8,10] fm−1,

thus excluding a reported stronger cutoff dependence for

 < 8 fm−1. The cutoff variation was then deemed small
compared to the higher-order uncertainty estimated by chang-
ing the two-body input: the two curves obtained from BD

and 3anp are represented by the blue lines in Fig. 7. We have
similarly examined the input dependence: for 
 = 8 fm−1,
we replaced BD with 3anp and found Bα [upper bound of
the correlation band for mπ = 140 MeV, green area, panel
(a) in Fig. 7] larger by 2 MeV. Even with this extended
variation of the renormalization scheme, the two uncertainty
bands do not overlap. In contrast, the current RGM results
for the Tjon correlation band are consistent with the previous
RGM LO-/πEFT calculation of Ref. [32]. The convergence of
Bα to the physical value when the NLO potential is iterated [32]
suggests that in both LO calculations the theoretical error as
shown by the band widths in Fig. 7 is a lower bound. For our
theoretical error estimates, we interpret RGM and Faddeev
calculations, i.e., different regularizations and model-space
cutoffs, as different renormalization schemes. For Bα and
physical mπ , the uncertainty is thus given by the spread of
results of both methods (difference between short-dashed blue
line and lower edge of the green band).

For unphysical pion masses we indicate, as before, the
uncertainty in LQCD energies by gray bands in panels (b) and
(c) of Fig. 7: a vertical band for BT and a horizontal band for
Bα . Values for Bα in an interval bounded by the intersection of
the upper (lower) edge of the π↗EFT uncertainty band with the
right (left) boundary of the band of LQCD-allowed BT values
are indicated by horizontal dashed lines. This range is slightly
larger than the constraint already given by “experiment” for
mπ = 805 MeV, and slightly narrower for mπ = 510 MeV.
However, given the renormalization-input dependence seen at
physical pion mass, we estimate the theoretical uncertainty by
conservatively doubling the width of the RGM correlation
band, plus 2 MeV as an upper bound of the numerical
uncertainty (see Fig. 1 for this estimate), plus the experimental
LQCD uncertainties in Bα . At mπ = 805 MeV, we observe
an increased uncertainty in Bα for the lowest cutoff value
of 
 = 2 fm−1 as we did for the doublet neutron-deuteron
scattering lengths (see discussion of the mπ = 805 MeV
results in Figs. 5 and 6). In contrast to that three-nucleon
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TABLE IV. Predictions for the four-nucleon binding energy Bα

and the universal α-to-triton ratio Bα/BT from LO pionless EFT
at three pion masses, in comparison with experiment and LQCD.
The theoretical errors include numerical and EFT uncertainty. The
uncertainty in the fractions (lines 2 and 4) adds independent errors in
quadrature.

mπ [MeV] 140 510 805
/πEFT π↗EFT

Bα [MeV] 24.9 ± 4.3 35 ± 22 94 ± 45
Bα/BT 2.9 ± 0.51 1.7 ± 1.1 1.8 ± 0.9

experiment LQCD
Bα [MeV] 28.3 43.0 ± 14.4 107.0 ± 24.2
Bα/BT 3.34 2.1 ± 0.85 2.0 ± 0.6

scattering observable, the effect [dashed line, panel (c) in
Fig. 7] is expressed only at BT � 70 MeV and remains small at
lower binding energies. This indicates a significant difference
in the rate of EFT convergence for Bα relative to 2anD.

The results for the α-particle binding energy are sum-
marized in Table IV. The predicted value is taken as the
central value in the uncertainty band. The EFT results—
absolute binding energies and the ratios—are consistent with
experiment at physical pion mass and with LQCD at higher
masses given the uncertainty estimates on both, experimental
and theoretical side. One should keep in mind that the
experimental number reflects the additional effects of the
Coulomb interaction between protons, which does not enter
the LQCD results. As discussed in Sec. II, Coulomb effects
should be of higher order in the relatively tight helion and
α-particle ground states.

As expected, the Bα − BT correlation has a positive slope
for any pion mass. For each correlation band, we define
the slope with a linear regression through the BT,Bα pairs
predicted with π↗EFT for all cutoff values which are within
data uncertainty (gray areas) only. At physical mπ , our
calculation yields a smaller slope (≈3.6) than Ref. [30] (≈3.8).
With increasing mπ , the slope is found to decrease, ≈2.1
for mπ = 510 MeV and mπ = 805 MeV. In other words, the
ratio Bα/BT does change with mπ , consistent with the lattice
extractions, as shown in Table IV.

Since in obtaining the Tjon line the three-body force is being
varied, the structure of the line (slope, curvature, intercept)
must depend on the two-nucleon interactions. Indeed, from
the ratios listed in Table IV we infer that whatever leads to the
different ratios between the deeper two-nucleon state—recall
that for unphysical masses, the interaction in the 1

S0 channel
sustains a bound state, see Table I—and the triton is not the
main factor behind the change in the slope of the Tjon line. As
for the Phillips line, the structure of the Tjon line depends on
both pieces of two-nucleon input. For example, in Fig. 8, we
demonstrate the sensitivity of the slope of the Tjon line with
respect to the pole in the spin-singlet two-nucleon amplitude.
The triplet binding energy, i.e., the deuteron was held fixed to
the lattice central value at mπ = 510 MeV, BD = 11.5 MeV.
Three cases are shown for 
 = 4 fm−1, corresponding to
different calibrations of C0,1, the LEC controlling the channel:
(i) a singlet neutron-proton state with binding energy of

19 20 21 22 23 24 25

B
α

B

≈ B

ΔBα

ΔB ≈ 1.9

≈ 2.4

≈ 3.0

FIG. 8. Correlation between the three- (BT, in MeV) and four-
(Bα , in MeV) nucleon binding energies (Tjon line) for three values
of the binding energy of the singlet two-nucleon state: same as the
deuteron binding energy (continuous line, slope ≈1.9); shallower
than the deuteron (dashed line, slope ≈3.0); and unbound (dashed
line, slope ≈2.4). Results were obtained for ten values of the three-
body interaction strength at 
 = 4 fm−1 for BD = 11.5 MeV (mπ =
510 MeV).

approximately 11.5 MeV, i.e., the deuteron energy; (ii) a
shallow bound singlet state of BD ≈ 0.5 MeV; and (iii) an
unbound singlet state. Within the considered range for BT a
linear regression to the dependence of Bα on BT is appropriate.
When the singlet two-nucleon state is very close to threshold,
the slope is found maximal, �Bα/�BT ≈ 3.0 (red dashed
line in Fig. 8). If the interaction is tuned away from this
critical point, either to produce no bound singlet (red dotted
line), or a state with identical binding energy to the triplet
(red solid line), the slope parameter decreases. Naively, one
might have expected a monotonic dependence of the slope
on the strength of the two-body attraction. A larger two-body
attraction requires a more repulsive three-body force to fix
the triton. The contribution of this extra repulsion should be
stronger in the four-particle system and hence the latter should
not be as deeply bound. The nonmonotonicity found above
remains to be explained in a more general context taking into
account the possibility of a four-body Efimov effect mentioned
at the end of Sec. V A 2.

VI. CONCLUSION

We have adapted pionless effective field theory, /πEFT ,
to describe LQCD data at unphysical pion masses, dubbing
it π↗EFT . For the first time predictions were made for a
nuclear reaction, nucleon-deuteron scattering, in lattice worlds
where the pion mass is 510 and 805 MeV. Furthermore, the
Phillips and Tjon correlations were obtained at these high pion
masses with leading-order uncertainties of similar size and
thus offer no indication of a significantly different convergence
rate of the respective EFT expansions. The α-particle binding
energy was found in good agreement with direct lattice
measurements, which reassures us of the applicability of
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π↗EFT . It also strengthens confidence in the LQCD results
[38,39] themselves, despite the apparent subtlety in identifying
energy plateaus in the data.

Our work thus suggests that π↗EFT applies to light nuclei
independently of the exact LQCD data used as input. The
calculations presented here could be repeated if those values
change or if new values of the pion mass are explored. While
this manuscript was being written, new data have appeared
for mπ = 300 MeV [76], which do not quite fit with the trend
of increasing binding with pion mass but show a pattern of
dependence on A similar to the one found at higher pion masses
[38,39].1 More problematic is that another lattice collaboration
[77] does not find bound states over a wide range of pion
masses. Because the latter lattice data are processed through an
(unobservable) potential, uncontrolled errors are introduced.
Still, it is prudent to consider the specific numbers available
from LQCD so far as illustrative only, and focus instead on the
qualitative insights they bring into nuclear physics [3].

While much of the underlying structure of light nuclei
seems to remain the same at unphysical pion mass, existing
LQCD data give some hints of subtle changes. In the studied
lattice worlds, the triton and α-particle binding energies are
larger than in the real world, but their ratios to the deuteron
binding energy become smaller. In contrast to the quartet

1Note that the central values for deuteron and triton energies [76]
suggest a triton with a last nucleon that is even less bound than at
mπ = 510 MeV. From Eq. (18) we then expect 2anD � 2 fm with a
correction from the effective range of perhaps 40%. Alas, in this lattice
world, too, the large lattice errors do not yet allow firm conclusions
about the two-body halo character of triton.

neutron-deuteron channel, where we detected no qualitative
changes, the accidental zero of the doublet T matrix that exists
for physical pion mass near threshold seems to disappear.
It is replaced by effective-range parameters that suggest a
more prominent neutron-deuteron halo character for the triton.
LQCD data with smaller errors, and at other values of the pion
mass, would allow firmer conclusions about the organization
of nucleons in the triton and its implications for the α particle.

In an upcoming project, we plan to extend our EFT
calculations to NLO. Two independent observables are needed
as input in each two-nucleon S-wave channel, for example,
scattering lengths and effective ranges. These are already
available for mπ = 805 MeV [41]. No new input is needed
for more than two nucleons. The NLO calculation of Bα

should thus allow an assessment of the convergence rate
and breakdown scale of the EFT. In effect, the accuracy of
nucleon-deuteron scattering calculations would increase. In
the longer term, the application of /πEFT to systems with more
than four nucleons could guide the lattice effort to the relevant
few-body observables to be measured in order to pin down
additional LECs needed to understand nuclear structure.
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