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Nuclear matter equation of state including two-, three-, and four-nucleon correlations
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Light clusters (mass number A � 4) in nuclear matter at subsaturation densities are described using a quantum
statistical approach to calculate the quasiparticle properties and abundances of light elements. I review the
formalism and approximations used and extend it with respect to the treatment of continuum correlations. Virial
coefficients are derived from continuum contributions to the partial densities which depend on temperature,
densities, and total momentum. The Pauli blocking is modified taking correlations in the medium into account.
Both effects of continuum correlations lead to an enhancement of cluster abundances in nuclear matter at higher
densities. Based on calculations for A = 2, estimates for the contributions with A = 3,4 are given. The properties
of light clusters and continuum correlations in dense matter are of interest for nuclear structure calculations,
heavy-ion collisions, and astrophysical applications such as the formation of neutron stars in core-collapse
supernovae.
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I. INTRODUCTION

Nuclear matter is a strongly interacting quantum system,
and the determination of the physical properties is a chal-
lenging issue in many-body theory. In this work, nuclear
matter in thermodynamic equilibrium is investigated, confined
in the volume � at temperature T , and consisting of Nn

neutrons (total neutron density ntot
n = Nn/�) and Np protons

(total proton density ntot
p = Nn/�). In the thermodynamic

limit, the state is given by the parameter set {T ,ntot
n ,ntot

p }; the
dependence on � is trivial. The subsaturation region will be
considered where the baryon density nB = ntot

n + ntot
p � nsat

(with the saturation density nsat ≈ 0.16 fm−3), the temperature
T � 20 MeV, and the proton fraction Yp = ntot

p /nB between
0 and 1. This region of warm dense matter is of interest
not only for nuclear structure calculations and heavy-ion
collisions explored in laboratory experiments [1], but also in
astrophysical applications. For instance, core-collapse super-
novae at postbounce stage evolve in this region of the phase
space [2], and different processes such as neutrino emission
and absorption, which strongly depend on the composition of
warm dense matter, influence the mechanism of core-collapse
supernovae.

Recently, standard versions [3,4] of the nuclear-matter
equation of state (EOS) for astrophysical simulations have
been improved, see Refs. [5–23]. Here I do not discuss
different approaches but rather contribute to a special question,
the treatment of light clusters which is a long-standing
problem [24]. A simple chemical equilibrium of free nuclei
is not applicable up to saturation density because medium
modifications by self-energy shifts and Pauli blocking become
relevant. Concepts such as the heuristic excluded-volume
approach or in-medium nuclear cluster energies within the
extended Thomas-Fermi approach may be applied to heavier
clusters but are not satisfactory to describe light clusters that
require a more fundamental quantum statistical approach.

*gerd.roepke@uni-rostock.de

To treat the many-nucleon system (nuclei and nuclear
matter) at densities up to saturation, semiempirical mean-field
approaches have been worked out. Based on the Hartree-Fock-
Bogoliubov approximation and related quasiparticle concepts
such as the Dirac-Brueckner-Hartree-Fock (DBHF) approach
for the nuclear-matter EOS (see Ref. [25]), semiempirical
approaches such as the Skyrme parametrization [26] or rela-
tivistic mean-field (RMF) model give an adequate description
of the known properties of nuclear matter near the saturation
density. For a discussion of different versions of these models,
see, for instance, Refs. [14,15,22]. The mean-field potentials
may be considered as density functionals that include various
correlations beyond a microscopic Hartree-Fock-Bogoliubov
approximation. In this work the density-dependent relativistic
mean-field (DD-RMF) parametrization according to Typel
(Refs. [27,28]) is used. Other parametrizations of the nucleon
quasiparticle energies can alternatively be used to optimize the
description of nuclear matter near saturation density.

For the strongly interacting nuclear matter considered here,
in particular warm dense matter in the low-density region,
correlations are important, and a simple mean-field description
is clearly insufficient. A signature of strong correlations is
the formation of bound states. In the low-density limit, one
can consider the many-nucleon system as an ideal mixture of
nucleons and bound clusters (nuclei) where the interaction is
reduced to accidental, reacting collisions, leading to chemical
equilibrium as given by the mass-action law. This so-called
nuclear statistical equilibrium (NSE) (see Ref. [10]) has several
shortcomings, such as the exclusion of excited states, in
particular continuum correlations, and the failure to account
for the interaction between the different components (single
nucleons as well as nuclei), which is indispensable when
approaching saturation density.

Both problems are solved within a quantum statistical
(QS) approach [29,30] which is able to cover the entire
region from the low-density limit up to saturation density.
The many-particle aspects are treated in a systematic way,
using the methods of thermodynamic Green’s functions,
diagram techniques, or path-integral methods. Motivated by
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the chemical picture where bound states are considered as new
species, to be treated on the same level as free particles, a
consistent approach to treat few-body correlations and cluster
formation has been worked out. Evaluating thermodynamic
Green’s functions [24], a cluster decomposition of the self-
energy provides us with the possibility to take into account
the contribution of different clusters A. Physical properties,
including the thermodynamic relations (EOS) are obtained
from the spectral function. The nucleons as well as the bound
states (nuclei) are treated as quasiparticle excitations. The
properties, in particular the quasiparticle energies, are modified
by self-energy and (in the case of bound states) Pauli blocking.
Detailed calculations have been performed for A = 1,2;
see Ref. [31].

The inclusion of all light elements A � 4 is important—
deuteron d ( 2H), triton t ( 3H), helion h ( 3He), and α
( 4He)—in addition to free neutrons (n) and protons (p).
A theory for nuclear systems, assuming that clusters with
A > 4 are irrelevant, can be applied to a wide range of the
phase space at subsaturation densities; see Refs. [4,12,13,17]
for an illustration of the parameter space {T ,nB,Yp}, where
such regions are shown. Solving the Bethe-Salpeter equation
for the A-nucleon system, the constituents c = {d,t,h,α} are
considered as quasiparticles as discussed in Sec. III. The
cluster quasiparticle energy Ec(P; T ,ntot

n ,ntot
p ) depends not only

of the center-of-mass (c.m.) momentum P, but also the set of
thermodynamic parameters {T ,ntot

n ,ntot
p } or, changing the set

of thermodynamic variables, {T ,μn,μp}, with the chemical
potentials μn,μp as used in the grand-canonical ensemble. The
Coulomb energy that is screened in dense matter can be treated
rigorously in the QS approach [24]. For Z � 2 the Coulomb
contributions to the energy shift are small at subsaturation
densities and can be omitted.

Previous investigations (see Refs. [8,32,33]) considered the
in-medium shifts of the bound-state energies. In addition to
the density and temperature dependence, the dependence on
the total momentum of the cluster is essential. A consequence
is the Mott effect: the bound states disappear at a certain density
nMott

c (P; T ,Yp). To describe the low-density limit rigorously,
excited states and continuum correlations have to be consid-
ered. This is taken into account by a virial expansion [34] of
the EOS. The low-density region, where the contribution of the
continuum correlations to the virial expansion has significant
impact [35], was investigated recently in the context of the
generalized RMF approach [36]. Introducing the quasiparticle
concept, one has to be careful to avoid double counting because
part of the continuum correlations is already implemented in
the quasiparticle energy shift; see Ref. [37]. Similar to the
bound-states case, the contribution of the scattering states
to the EOS is modified by density effects as known from
the generalized Beth-Uhlenbeck approach [31]. However, this
contribution has not yet been investigated as a function of all
variables {P; T ,nB,Yp} for the light clusters, in contrast to the
contribution of bound states where the quasiparticle energy
shift is calculated for these variables.

Another shortcoming in previous studies is the calculation
of Pauli blocking under the assumption of an uncorrelated
medium. This has to be improved if one considers regions in
the phase diagram where clusters are abundant. In particular,

until now it was not possible to include it in the treatment
of α matter [38]. This problem should also be considered in
the context of clustering in low-density nuclei; see Ref. [39].
Pairing can also be treated within a QS approach [31], but
has not been included systematically in recent versions of the
EOS.

The aim of the present study is to improve these shortcom-
ings discussed above. The goal is to describe nuclear matter
in the entire region of subsaturation densities, connecting
the single-nucleon quasiparticle approach that reproduces the
properties near nsat to the low-density limit, where a cluster-
virial expansion [37] is possible. Correlations at densities
larger than the Mott density are taken into account. Expressions
for the contributions of continuum correlations vc(P; T ,nB,Yp)
will be given, which are calculated for A = 2 and estimated for
A = 3,4; see Secs. IV and V D. The calculations for A = 2 are
performed for a separable potential. Not only the low-density
limit of the second virial coefficient, but also, within a
generalized Beth-Uhlenbeck approach, the full dependence
on the variables {P; T ,nB,Yp} is of relevance. Because of the
small deuteron binding energy, the contribution of continuum
correlations to the second virial coefficient is large.

Within a cluster-virial expansion [37], the virial coefficients
for A = 3 in the low-density limit can be related to empirical
scattering phase shifts in the corresponding breakup channels;
see Ref. [40]. Future calculations may give more accurate
values not only for the low-density limit of the virial coeffi-
cients for A = 3,4 but also their modification at finite densities
to replace the estimates given in this work. Because of the
relatively large binding energies for A = 3,4 compared with
A = 2, the effect of the continuum correlations is less relevant.

Another problem is the treatment of correlations in the
medium. The Pauli blocking is overestimated if the medium
is approximated as uncorrelated. Although the formalism to
include correlations has been worked out [37,41,42] (see
Appendix B), the resulting cluster mean-field equations have
not yet been solved in a self-consistent way. In contrast to the
ideal Fermi distribution of free nucleons, the occupation of
the phase space is changed if correlations in the medium are
taken into account. A simple parametrization to modeling the
phase-space occupation is proposed; see Sec. II C.

These improvements have already been used to interpret
experimental results of heavy-ion collisions [1] but have not
been published until now. Analyzing experiments to obtain
the symmetry energy or the chemical constants, QS results
are presented showing clustering at baryon densities up to
0.03 fm−3. I collect in this work all inputs and parameters
used in the QS approach so that results as presented, e.g.,
in Ref. [1], can be followed in detail. Moreover, I point out
assumptions and estimates which demand more fundamental
research in the future. For the present level of experimental
accuracy, some of them are relevant, but other improvements
will not lead to a significant change of the results.

The QS approach can be extended to describe further
clusters with A > 4 (see Refs. [5,43]) but is not well worked
out for this regime yet. An alternative approach to include
heavy nuclei is the concept of the excluded volume (EV); see
Ref. [11]. In a simple semiempirical approach, the effect of
Pauli blocking is replaced by the strong repulsion determined
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by the EV. The comparison between the EV model and the
QS approach [44] gives qualitatively similar results, although
in the EV model the center-of-mass motion of clusters is
not systematically treated (for instance, effective mass and
quantum condensation effects). In addition, light clusters
such as the deuteron are not well described by a hard-core
potential, not depending on the energy, and correlations
in the continuum are not considered. However, to include
heavier clusters, a combination of the QS approach for A � 4
with the EV model or with Thomas-Fermi calculations for
A > 4 [12,15,18,20,21,45,46] is promising and will be further
worked out in the future.

The paper is organized as follows. After reviewing the
basis relations of the QS approach in Secs. II and III, Pauli
blocking in correlated matter is discussed in Sec. II C. New
results are presented in Sec. IV, where continuum correlations
and the virial coefficients as function of the thermodynamic
variables {T ,nB,Yp} and the c.m. momentum P are discussed.
The explicit presentation of all relevant relations and parameter
values should enable everybody to follow in detail the results
given in Sec. V. Some general issues, which need to be resolved
to devise an improved EOS, are discussed in Sec. VI.

II. GREEN’S FUNCTIONS APPROACH
AND QUASIPARTICLE CONCEPT

In Secs. II A and II B, some known relations are reviewed
to introduce the relevant concepts, to give some definitions,
and to indicate approximations performed in the evaluations.
A new result is the use of an effective phase-space occupation
number to take into account the effect of the correlated medium
on the Pauli blocking (Sec. II C).

A. Cluster decomposition of the equation of state

The total neutron number density ntot
n , the total proton

number density ntot
p , and the temperature T are considered

as independent thermodynamic variables. Weak interaction
processes leading to β equilibrium are not considered. The
chemical potentials μn,μp are an alternative to ntot

p and ntot
n

in characterizing thermodynamic equilibrium of warm dense
matter. The relations

1

�
Nn = ntot

n (T ,μn,μp),
1

�
Np = ntot

p (T ,μn,μp), (1)

are EOS that relate the set of thermodynamic quantities
{T ,μn,μp} to {T ,ntot

n ,ntot
p }. These EOS (chemical potentials)

for warm dense matter are solved in this work. Further
thermodynamic variables are consistently derived after a
thermodynamic potential is found by integration; see Sec. V B
and Appendix A.

The nuclear-matter EOS (� is the system volume,
τ = {n,p})

ntot
τ (T ,μn,μp) = 1

�

∑
p1,σ1

∫
dω

2π

1

e(ω−μτ )/T + 1
Sτ (1,ω) (2)

is obtained from the spectral function Sτ (1,ω; T ,μn,μp),
which is related to the self-energy 	(1,z) (see Refs. [29,30]):

Sτ (1,ω) = 2Im	(1,ω − i0)

[ω − E(1) − Re	(1,ω)]2 + [Im	(1,ω − i0)]2
.

(3)

The single-nucleon quantum state |1〉 can be chosen as 1 =
{p1,σ1,τ1}, which denotes wave number, spin, and isospin,
respectively. The EOS (2) relates the total nucleon numbers
N tot

τ or the particle densities ntot
τ to the chemical potentials μτ

of neutrons or protons so that one can switch from the densities
to the chemical potentials. However, if this EOS is known
in some approximation, all other thermodynamic quantities
are obtained consistently after calculating a thermodynamic
potential as shown in Sec. V B.

The spectral function Sτ (1,ω; T ,μn,μp) and the corre-
sponding two-point correlation functions (density matrix)
are quantities well-defined in the grand canonical ensemble
characterized by {T ,μn,μp}. The self-energy 	(1,z; T ,μn,μp)
depends, besides the single-nucleon quantum state |1〉, on the
complex frequency z and is calculated at the Matsubara fre-
quencies. Within a perturbative approach it can be represented
by Feynman diagrams. A cluster decomposition with respect to
different few-body channels (c) is possible [24], characterized,
for instance, by the nucleon number A, as well as spin and
isospin variables.

Using the cluster decomposition of the self-energy which
takes into account, in particular, cluster formation, one obtains

ntot
n (T ,μn,μp) = 1

�

∑
1

∫
dω

2π
f1,0(ω)Sn(1,ω)

= 1

�

∑
A,ν,P

NfA,Z[EA,ν(P; T ,μn,μp)],

(4)

ntot
p (T ,μn,μp) = 1

�

∑
1

∫
dω

2π
f1,1(ω)Sp(1,ω)

= 1

�

∑
A,ν,P

ZfA,Z[EA,ν(P; T ,μn,μp)],

where P denotes the c.m. momentum of the cluster (or, for
A = 1, the momentum of the nucleon). The internal quantum
state ν contains the proton number Z, and neutron number
N = A − Z of the cluster,

fA,Z(ω; T ,μn,μp) = 1

exp[(ω − Nμn − Zμp)/T ] − (−1)A
,

(5)

is the Bose or Fermi distribution function for even or odd
A, respectively, that is depending on {T ,μn,μp}. The integral
over ω is performed within the quasiparticle approach; the
quasiparticle energies EA,ν(P; T ,μn,μp) are depending on
the medium characterized by {T ,μn,μp}. These in-medium
modifications will be detailed in Secs. II B, II C, and III.

I review the contributions of the clusters (A � 2), sup-
pressing the thermodynamic variables {T ,μn,μp}. In Eq. (4),
the summation (integral) over the c.m. momentum P must be
done numerically because the dependence of the in-medium

054001-3
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quasiparticle energies EA,ν(P; T ,μn,μp) on P is complex. The
summation over ν concerns the bound states as far as they
exist, as well as the continuum of scattering states. One can
introduce different channels (c) characterized, e.g., by spin
and isospin quantum numbers. This intrinsic quantum number
will be denoted by νc, and one has in the nondegenerate case
[
∑

P → �/(2π )3
∫

d3P ]

nA,c = 1

�

∑
νc,P

fA,Z[EA,νc
(P)]

= e(Nμn+Zμp)/T

∫
d3P

(2π )3

∑
νc

gA,νc
e−EA,νc (P)/T

=
∫

d3P

(2π )3
z

part
A,c(P), (6)

with gA,c = 2sA,c + 1 the degeneration factor in the channel
c. The partial density of the channel c at P,

z
part
A,c(P; T ,μn,μp)

= e(Nμn+Zμp)/T

{
bound∑

νc

gA,νc
e−EA,νc (P)/T

×�
[−EA,νc

(P) + Econt
A,c (P)

] + zcont
A,c (P)

}
, (7)

contains the intrinsic partition function which can be decom-
posed in the bound-state contribution and the contribution of
scattering states zcont

A,c (P; T ,μn,μp).
The summations of Eq. (7) over A, c, and P remain to

be done for the EOS (4), and Z may be included in c. The
region in the parameter space, in particular P, where bound
states exist, is restricted as expressed by the step function
�(x) = 1,x � 0; = 0 else. The continuum edge of scattering
states is denoted by Econt

A,c (P; T ,μn,μp), e.g., defined in Eq. (22)
below.

For instance, in the case A = 2 the deuteron is found in the
spin-triplet, isospin-singlet channel ({A,c} → d) as a bound
state (in the zero-density limit gd = 3, E2,TI =0(P) = Ed (P) =
E0

d + �
2P 2/4m, E0

d = −Bd = −2.225 MeV). In addition, in
the same channel one has also contributions from scattering
states, i.e., continuum contributions, characterized by the
relative momentum as internal quantum number. According
to the Beth-Uhlenbeck formula [34] (see Ref. [24]), one has
in the low-density limit∫

d3P

(2π )3
z

part
d (P)

=
∫

d3P

(2π )3

[
bound∑

νc

gA,νc
e−EA,νc (P)/T + zcont

A,c (P)

]

= 23/2

�3

[
gde

−E0
d /T +

∫ ∞

0

dE

π
e−E/T d

dE
δtot

2,TI =0(E)

]
, (8)

with � = (2π�
2/mT )1/2 being the baryon thermal wave-

length (the neutron and proton masses are approximated by
mτ ≈ m = 939.17 MeV/c2) and δtot

2,TI =0(E) = ∑
S,L,J (2J +

1)δ2S+1LJ
(E) the isospin-singlet (TI = 0) scattering phase

shifts with angular momentum L as function of the energy E of
relative motion. A similar expression can also be derived for the
isospin-triplet channel (e.g., two neutrons) where, however, no
bound state occurs; see also Ref. [35], where detailed numbers
are given. The relation (8) gives an exact relation for the second
virial coefficient in the low-density limit where in-medium
effects are absent.

It should be noted that the ideal gas NSE is recovered if
the summation over νc is restricted to only the bound states
(nuclei), neglecting the contribution of correlations in the
continuum. Furthermore, for EA,νc

(P; T ,μn,μp) the bound-
state energies of the isolated nuclei are taken, neglecting the
effects of the medium such as mean-field terms or contributions
owing to correlations in the medium.

Note that the separation in Eqs. (7) and (8) into a bound state
contribution and a contribution zcont

A,c (P; T ,μn,μp) of contin-
uum states is not unique. One can use another decomposition
which follows after performing an integration by parts; see
Eq. (37) below.

B. Cluster mean-field approximation

For finite densities, the main problem is the medium
modification of few-body properties which defines also
EA,νc

(P; T ,μn,μp) in the contribution (6) of the different
components. Quasiparticles are introduced to describe the
propagation of few-nucleon clusters (including A = 1) in
warm dense matter. The Green’s function approach describes
the propagation of a single nucleon by a Dyson equation
governed by the self-energy, and the few-particle states
are obtained from a Bethe-Salpeter equation containing the
effective interaction kernel. Both quantities, the effective
interaction kernel and the single-particle self-energy, should be
approximated consistently. Approximations which take cluster
formation into account have been worked out [37,41]; the
general scheme of the cluster mean-field approximation is
outlined in Appendix B.

For the A-nucleon cluster, the in-medium Schrödinger
equation

[Eτ1 (p1; T ,μn,μp) + · · · + EτA
(pA; T ,μn,μp)

−EAν(P; T ,μn,μp)]ψAνP(1, . . . ,A)

+
∑

1′,...,A′

∑
i<j

[1 − n(i; T ,μn,μp) − n(j ; T ,μn,μp)]V (ij,i ′j ′)

×
∏
k �=i,j

δkk′ψAνP(1′, . . . ,i ′, . . . ,j ′, . . . ,A′) = 0 (9)

is derived from the Green’s function approach after the
effective occupation numbers n(i; T ,μn,μp) [Eq. (B5)] are
introduced and exchange terms are neglected. This equation
contains the effects of the medium in the single-nucleon
quasiparticle shift

�ESE
τ (p; T ,μn,μp)

= Eτ (p; T ,μn,μp) −
√

m2c4 + �2c2p2 + mc2

≈ Eτ (p; T ,μn,μp) − �
2p2

2m
(10)
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(nonrelativistic case), as well as in the Pauli blocking terms
given by the occupation numbers n(1; T ,μn,μp) in the phase
space of single-nucleon states |1〉 ≡ |p1,σ1,τ1〉. Thus, two
effects have to be considered, the quasiparticle energy shift
and the Pauli blocking.

In the lowest order of perturbation theory with respect to
the nucleon-nucleon interaction V (12,1′2′), the influence of
the medium on the few-particle states (A = 1, . . . ,4) is given
by the Hartree-Fock shift

�EHF
τ1

(p1) =
∑

2

V (12,12)exf1,τ2 (2) (11)

and, consistently, the Pauli blocking terms

�V Pauli
12 (12,1′2′) = − 1

2

[
f1,τ1 (1) + f1,τ1′ (1

′)
]
V (12,1′2′) (12)

for A = 2, . . . ,4; see Eqs. (B3) and (B4) neglecting the
contributions with mass number B > 1.

Both terms (11) and (12) have a similar structure; besides
the nucleon-nucleon interaction V , the single-nucleon Fermi
distribution f1,τ (1) = f1,n/p[Eτ (p1); T ,μn,μp] occurs. In this
simplest approximation, only the free nucleons contribute to
the self-energy shift and the Pauli blocking. The distribution
function is the Fermi distribution with the parameter set
{T ,μn,μp}.

It is obvious that also the nucleons found in clusters
contribute to the mean field, leading to the self-energy, but
occupy also phase space and contribute to the Pauli block-
ing. The cluster mean-field (CMF) approximation [32,37,41]
considers also the few-body T matrices in the self-energy
and in the kernel of the Bethe-Salpeter equation. The CMF
approximation leads to similar expressions (11) and (12), but
with the free-nucleon Fermi distribution f1,τ1 (1) replaced by
the effective occupation number (B5),

n(1) = f1,τ1 (1) +
∞∑

B=2

∑
ν̄,P̄

∑
2...B

BfB[EB,ν̄(P̄; T ,μn,μp)]

× |ψBν̄P̄(1, . . . ,B)|2 , (13)

which contains also the distribution function fB[EB,ν̄(P̄)] for
the abundance of the different cluster states and the respective
wave functions ψBν̄P̄(1, . . . ,B). (The variable Z has not been
given explicitly.) For the QS derivation, see the references
given in Appendix B.

Because the self-consistent determination of n(1; T ,μn,μp)
for given {T ,μn,μp} is very cumbersome, I consider appropri-
ate approximations. In particular, I use the Fermi distribution
with new parameters {Teff,μ

eff
n ,μeff

p } (effective temperature and
chemical potentials),

n(1; T ,μn,μp) ≈ f1,τ1

(
1; Teff,μ

eff
n ,μeff

p

)
. (14)

These effective parameters make it possible to reproduce some
moments of the occupation number distribution. For instance,
besides the normalization (which gives the total neutron/proton
number)∑

p1

n(1; T ,μn,μp) = N tot
σ1,τ1

=
∑

p1

f1,τ1

(
1; Teff,μ

eff
n ,μeff

p

)
,

(15)

also∑
1

p2
1n(1; T ,μn,μp) =

∑
1

p2
1f1,τ

(
1; Teff,μ

eff
n ,μeff

p

)
(16)

can be used to fix the values of Teff,μ
eff
n ,μeff

p as functions of
{T ,μn,μp} [47].

This ansatz contains the special case where the medium is
described by noninteracting single-nucleon states. Then, the
effective parameter values coincide with T ,μn,μp. However,
a correlated medium has a more diffuse Fermi surface. In the
general case, the contributions of clusters according to Eq. (13)
have to be taken into account.

C. Medium modification of few-body properties
in warm dense matter

For the A-nucleon cluster, the in-medium Schrödinger
equation (9) is derived, depending on the occupation
numbers n(i; T ,μn,μp) of the single-nucleon states |i〉.
As a consequence, the solutions [the energy eigenvalues
EAν(P; T ,μn,μp) and the wave functions] will also depend
on the parameters which characterize the occupation numbers.

New variables {Teff,μ
eff
n ,μeff

p } are introduced according to
the approximation (14) to characterize the occupation number
distribution. Because in the effective wave equation (9) the
Pauli blocking 1 − n(i; T ,μn,μp) − n(j ; T ,μn,μp) depends
on the surrounding medium only via the occupation number
distribution, one can employ the calculations for the Fermi
distribution (uncorrelated medium [32,33]) and replace the
variables {T ,μn,μp} with the new effective variables. Accord-
ing Eq. (14), these new variables are related to the original
variables {T ,μn,μp} so that the effects of Pauli blocking
implicitly depend on the temperature T and the chemical
potentials μc. One can go a step further and switch from the
chemical potentials to densities so that one uses {Teff,nB,Yp} as
variables to characterize the occupation number distribution,

n(1; T ,μn,μp) ≈ f̃1,τ1 (1; Teff,nB,Yp). (17)

The tilde f̃1,τ (1; Teff,nB,Yp) denotes a Fermi distribution
as a function of densities instead the chemical potentials.
Implicitly, f̃1,τ (1) depends on the effective parameter val-
ues {Teff,μ

eff
n ,μeff

p } so that the normalization holds; i.e.,
μeff

τ (Teff,nB,Yp) are the solutions of the normalization con-
ditions (15).

The use of nB = ntot
n + ntot

p and Yp = ntot
p /nB realizes that

all nucleon participate in the phase-space occupation [see
Eq. (13)], and Teff is a further parameter that takes into account
the formation of correlations in the medium. As a consequence,
the solutions [the energy eigenvalues EAν(P; T ,nB,Yp) and
the wave functions] will also depend on the parameters
{Teff,nB,Yp}, which now characterize the occupation numbers,
but are functions of {T ,μn,μp}.

From nuclear-matter calculations it is well known that
because of correlations the occupation in phase space is more
diffuse compared with the ideal Fermi gas, and tails in the
single-nucleon distribution are related to the nucleon-nucleon
interaction. For instance, the phase-space occupation function
for various temperatures and densities was considered in
Ref. [48].
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At low densities, the phase-space occupation is determined
by the composition of the nuclear matter and the wave function
of the corresponding clusters. In particular, at decreasing
temperatures the abundance of α particles is increasing, and
the occupation in phase space is determined by the internal
momentum distribution of α particles.

Based on the results for the phase-space occupation n(1)
obtained in Ref. [48] for different values of T and nB , I
determined the effective temperature Teff(T ,nB,Yp). For this,
f̃1,τ (Teff,nB,Yp) was fitted to the calculated values of n(1) so
that not only the normalization ntot

n ,ntot
p are fulfilled, but also

the maximum of the first derivative (near the Fermi energy) is
reproduced. A simple relation,

Teff ≈ 5.5 MeV + 0.5T + 60nB MeV fm3, (18)

was obtained as an approximation.
Obviously, the simple linear dependence on T and nB is

only a rough estimate, and a more complex dependence is
expected for Teff(T ,nB,Yp) if a wide region in the parameter
space is considered. At finite temperature, in the low-density
limit all correlations disappear in the nuclear medium which
can be treated as an ideal gas of nucleons. The linear increase of
correlations and subsequently Teff(T ,nB,Yp) with increasing
nB does not apply if degeneration sets in, and a nonlinear
dependence on nB is expected. At low temperature, the nuclear
medium is described by α matter, and the effective temperature
describes the single-nucleon momentum distribution in the
α bound state. The simple fit formula (18) is applicable in
the region 5 MeV < T < 15 MeV and densities nB < nsat/2
of the parameter space. More detailed investigations are
necessary to derive a more general expression for the effective
temperature as function of T ,nB,Yp. The present simple fit
formula (18) may be considered as a first step in this direction.

To evaluate the dependence of the cluster energy eigen-
values EAν(P; T ,nB,Yp) on {T ,nB,Yp}, one has to solve the
in-medium Schrödinger equation

[Eτ1 (p1; T ,nB,Yp) + · · · + EτA
(pA; T ,nB,Yp)

−EAν(P; T ,nB,Yp)]ψAνP(1, . . . ,A)

+
∑

1′,...,A′

∑
i<j

[1 − f̃1,τi
(i; Teff,nB,Yp) − f̃1,τj

(j ; Teff,nB,Yp)]

×V (ij,i ′j ′)
∏
k �=i,j

δkk′ψAνP(1′, . . . ,A′) = 0 (19)

obtained from Eq. (9), replacing the occupation numbers
n(i; T ,μn,μp) with a Fermi distribution f̃1,τi

(i; Teff,nB,Yp).
This equation contains the effects of the medium in the single-
nucleon quasiparticle shift �ESE

τ1
(P; T ,nB,Yp) [Eq. (10)], as

well as in the Pauli blocking terms given by the occupation
numbers f̃1,τi

(i; Teff,nB,Yp) in the phase space of single-
nucleon states |i〉.

Obviously, the bound-state wave functions and energy
eigenvalues EAν(P; T ,nB,Yp) (Pauli blocking), as well as the
scattering phase shifts, become dependent on the effective
temperature Teff and the densities ntot

τ . In particular, one obtains

the cluster quasiparticle shifts

EA,ν(P) − E0
A,ν(P)

= �ESE
A,ν(P) + �EPauli

A,ν (P) + �ECoulomb
A,ν (P), (20)

with the free contribution E0
A,ν(P) = E0

A,ν + �
2P 2/(2Am).

Expressions for the in-medium self-energy shift
�ESE

A,ν(P; T ,nB,Yp) and Pauli blocking �EPauli
A,ν (P; Teff,nB,Yp)

are given in Sec. III B and Appendix C below. The Coulomb
shift owing to screening effects is added, which can be approx-
imated by the Wigner-Seitz expression. For the light elements
with Z � 2 considered here, the Coulomb corrections are
small compared with the other contributions and are omitted.

Of special interest are the binding energies

Bbind
A,ν (P; T ,nB,Yp)

= −[
EA,ν(P; T ,nB,Yp) − Econt

A,ν (P; T ,nB,Yp)
]
, (21)

with

Econt
A,ν (P; T ,nB,Yp)

= NEn(P/A; T ,nB,Yp) + ZEp(P/A; T ,nB,Yp), (22)

which indicate the energy difference between the bound state
and the continuum of free (scattering) states at the same total
momentum P. This binding energy determines the yield of the
different nuclei according to Eq. (4), where the summation
over P is restricted to that region where bound states exist, i.e.,
Bbind

A,ν (P; T ,nB,Yp) � 0. Note that the edge of the continuum
states is determined by the decomposition to single-particle
states. Other channels containing lighter clusters are already
blocked out earlier because the respective Mott densities are
smaller; see Sec. III C below.

In addition to the bound states, in solving Eq. (19), also
continuum states have to be considered. The continuum states
are also influenced by the medium effects, but the results are
less obvious and demand more discussions. Some estimates
are given in Sec. IV.

III. QUASIPARTICLE CONTRIBUTIONS TO THE EOS

The contributions of different mass numbers A to the
EOS (4) are analyzed. Before presenting new results with
respect to the contribution of continuum correlations in the
following section, known results concerning the contribution
of bound states are briefly repeated, according to the intention
to present all prerequisites for reproducing the calculations.
Furthermore, to investigate continuum correlations, it is useful
to review the treatment of the bound-state part.

The single-nucleon contribution A = 1 is extensively
discussed; the quasiparticle picture is well elaborated and
broadly applied. An exhaustive discussion of the two-nucleon
contribution (A = 2) has been given in Ref. [31]. Besides
the bound-state part, also the scattering states have been
treated. A generalized Beth-Uhlenbeck equation has been
considered where not only the low-density limit (second virial
coefficient) is correctly reproduced, but also mean-field terms
are consistently included avoiding double counting. The results
can be applied to finite densities of warm dense matter up to
saturation density.
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Then, all light clusters (A � 4) are included. Besides the
cluster-virial expansion in the low-density limit, the medium
modifications which are increasing with increasing density
are of interest, and the effect of correlations in the medium is
discussed. The behavior of bound states has been investigated
in previous work [32,33]. Some usable results are available,
but the continuum contributions remain until now very difficult
to treat. Some estimates and simple interpolation formulas are
given in Sec. IV.

A. Single-nucleon quasiparticle approximation

Before improving the low-density limit of the EOS con-
sidering the ideal gas NSE and cluster-virial expansion, the
influence of the medium is discussed which is necessary to
describe warm dense matter up to saturation density. First the
approximation of the EOS (4) is considered where only the
single-nucleon contributions are taken, i.e., the sum over A is
reduced to A = 1, which contains the neutron (n) and proton
(p) quasiparticle contribution to the EOS.

In the quasiparticle approximation, the imaginary part of
	 is neglected in Eq. (3). The spectral function is δ-like,
and the densities are calculated from Fermi distributions with
the single-nucleon quasiparticle energies E1(1) = �

2p2
1/2m +

Re 	[1,E1(1)] = �
2p2

1/(2m) + �ESE(1) so that (spin fac-
tor 2)

nqu
τ (T ,μn,μp) = 2

�

∑
p

f1,τ [Eτ (p; T ,nB,Yp); T ,μn,μp].

(23)
The quasiparticle approximation is well elaborated in

nuclear physics; see Refs. [49,50]. Starting from a microscopic
approach with suitable nucleon-nucleon interaction potentials,
standard approximations for the single-nucleon self-energy
shift �ESE(1) are the Hartree-Fock-Bogoliubov or the DBHF
approximation; see Sec. I. In the spirit of the density-functional
approach, semiempirical expressions such as the Skyrme
forces or RMF approaches have been worked out. The
relativistic quasiparticle energy

Eτ (p; T ,nB,Yp) =
√

[mτc2 − S(T ,nB,Yp)]2 + �2c2p2

+Vτ (T ,nB,Yp) − mτc
2 (24)

gives in the nonrelativistic limit �ESE
τ (0) = −S(T ,nB,Yp) +

Vτ (T ,nB,Yp) and m∗
τ /mτ = 1 − S(T ,nB,Yp)/(mτc

2). Explicit
expressions for S(T ,nB,Yp) and Vτ (T ,nB,Yp) in form of Padé
approximations which are suitable for numerical applications,
are given in Appendix D. They are obtained from the DD-
RMF parametrization and can be replaced with alternative
parametrizations [14,15,22].

Fitted to properties near the saturation density, the descrip-
tion of warm dense matter at densities near nsat is adequate.
No cluster formation can be described in the single-nucleon
quasiparticle (mean field) approach. One has to go beyond this
approximation [24] and has to treat the imaginary part of the
self-energy 	(1,z) in (3) to include cluster formation and to
reproduce the correct low-density limit.

B. Shifts of light cluster binding energies in dense matter

Coming back to the EOS (4), one has to add the contri-
butions of clusters with A = {2,3,4}. We first consider the
bound-state parts. In the low-density limit one can use the
empirical binding energies Bc = −E0

c (see below Table I,
first line), as also used in the ideal gas NSE. In the case of
c = {d,t,h} there is no excited bound state above the ground
state. In the case of α, binding energy Bα = 28.3 MeV, there
exists an excited α′ state with excitation energy 20.2 MeV to
be included into the partial density (7), which also contains
the contribution of scattering states.

The contribution to the dispersion relation of the cluster
quasiparticles according to Eq. (20) has to be discussed. The
most significant medium effect is the Pauli blocking, which is
also strongly dependent on temperature. The Pauli blocking
shift of the binding energies �EPauli

c (P; Teff,nB,Yp) [see
Eq. (C1)] has been evaluated within a variational approach.
The results are presented in Ref. [33], and a parametrization
has been given which makes it possible to calculate the
medium modification of the bound-state energies with simple
expressions in good approximation; see Eq. (14) of Ref. [33].
The results for the Pauli-blocking medium shifts of the
bound-state energies are collected in Appendix C.

The contribution of the single-nucleon energy shift to
the cluster self-energy shift �ESE

A,ν is easily calculated in
the effective mass approximation, where the single-nucleon

TABLE I. Binding energies, effective coupling strengths λeff
c , and suppression parameter γc for light nuclei.

c d t h α

Bc (MeV) 2.225 8.482 7.718 28.3
λeff

c (MeV) 1287.4 1775.1 1724.3 2865
nMott

c (T = 5 MeV) (fm−3) 0.003 965 3 0.005 483 6 0.005 145 4 0.007 888 9
nMott

c (T = 10 MeV) (fm−3) 0.007 987 0.010 122 0.009 464 3 0.014 532
nMott

c (T = 15 MeV) (fm−3) 0.011 97 0.015 118 0.014 141 0.021 162
nMott

c (T = 20 MeV) (fm−3) 0.015 861 0.020 939 0.019 92 0.027 892

γc/T (T = 5 MeV) (fm3) 376.917 506.894 517.639 595.077
γc/T (T = 10 MeV) (fm3) 187.62 274.613 281.421 323.049
γc/T (T = 15 MeV) (fm3) 124.829 183.855 188.349 221.832
γc/T (T = 20 MeV) (fm3) 94.2282 132.748 133.707 168.309

γc (MeV fm3) 1876.2 2746.1 2814.2 3230.5
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quasiparticle energy shift

�ESE
τ (p) = �ESE

τ (0) + �
2p2

2m∗ − �
2p2

2m
(25)

can be represented by the energy shift �ESE
τ (p = 0) and the

effective mass [m∗
τ ]−1 = [mτ ]−1 + ∂2�ESE

τ (p)/∂p2|p=0. One
can use the empirical value [51]

m∗

m
= 1 − 0.17

nB

nsat
. (26)

In the rigid-shift approximation where m∗ = m, the self-
energy shift �ESE

τ cancels in the binding energy because the
continuum is shifted by the same value. It can be absorbed in
the chemical potential of the EOS (4).

In general, in the kinetic part of the the wave equation (19)
which consists of the single-nucleon quasiparticle energies
Eτi

(pi ; T ,nB,Yp), one can introduce the c.m. momentum P
and the intrinsic motion described by Jacobi coordinates. In the
effective mass approximation, the separation of the c.m. mo-
tion is simple because the single-particle dispersion relations
are quadratic. The self-energy shift �ESE

A,ν(P; T ,nB,Yp) =
�E

SE,c.m.
A,ν (P; T ,nB,Yp) + �E

SE,intr.
A,ν (P; T ,nB,Yp) consists of

the c.m. part �E
SE,c.m.
A,ν (P; T ,nB,Yp) = Econt

A,ν (P; T ,nB,Yp) −
�

2P 2/(2Am), which coincides with the edge of the contin-
uum (22) for the intrinsic motion, and the intrinsic part

�E
SE,intr
A,ν (P; T ,nB,Yp) = E

kin,intr
A,ν

(
m

m∗ − 1

)
. (27)

The intrinsic part of the cluster self-energy shift �E
SE,intr
A,ν (P)

is easily calculated for given wave functions [5,32] (see also
Ref. [8]) within perturbation theory. Values for E

kin,intr
A,ν for the

light elements are given below in Table II. It results as the
averages of �

2/mq2
1 for A = 2, �

2/m(q2
1 + 3/4q2

2 ) for A = 3,
and �

2/m(q2
1 + 3/4q3

2 + 2/3q2
3 ) for A = 4, where qi denote

the respective Jacobian momenta [32].

TABLE II. Parameter values for the Pauli blocking shift
�EPauli

ν (P; T ,nB,Yp) [Eq. (C1)] for different nuclei (ν = {d,t,h,α}).

Parameter Units d ( 2H) t ( 3H) h ( 3He) α ( 4He)

fν,1 MeV3/2 fm3 6792.6 20 103.4 19 505.9 36 146.7
fν,2 MeV 22.52 11.987 11.748 17.074
fν,3 – 0.2223 0.854 65 0.844 73 0.9865
fν,4 fm−1 0.2317 0.9772 0.9566 1.9021

cν,0 MeV 2.752 11.556 10.435 150.71
cν,1 MeV3 32.032 117.24 176.78 9772
cν,2 MeV 0 3.7362 3.5926 2.0495
cν,3 MeV2 9.733 4.8426 5.8137 2.1624

dν,1 MeV2 fm6 523 757 108 762 90 996 5391.2
dν,2 MeV 0 9.3312 10.72 3.5099
dν,3 MeV2 15.273 49.678 47.919 44.126

uν fm 11.23 25.27 25.27 44.92
wν MeV−1 fm 0.145 0.284 0.27 0.433

Ekin,intr.
ν MeV 10.338 23.735 23.021 51.575

The intrinsic part of the bound-state energies is introduced
as

Eintr
A,ν(P; T ,nB,Yp)

= EA,ν(P; T ,nB,Yp,Teff) − Econt
A,ν (P; T ,nB,Yp)

= E0
A,ν + �E

SE,intr.
A,ν (P; T ,nB,Yp) + �EPauli

c (P; Teff,nB,Yp).

(28)

With Eq. (21), the intrinsic parts of the bound-state energies
are the negative values of the binding energies, Eintr

A,ν(P) ≡
−Bbind

A,ν (P).

C. Mott points

A consequence of the medium modification is the disap-
pearance of bound states with increasing density, which is
of significance for the physical properties. To calculate the
composition, one has to check for given parameter values
{T ,nB,Yp} whether the binding energy of the cluster with
quantum numbers {A,ν,P} is positive. I denote the density
nMott

A,ν (T ,Yp) as Mott density [24] where the binding energy of
a cluster {A,ν} with c.m. momentum P = 0 vanishes, with (22)
and (28)

Eintr
A,ν

(
0; T ,nMott

A,ν ,Yp

) = 0. (29)

For baryon densities nB > nMott
A,ν (T ,Yp) I introduce the Mott

momentum PMott
A,ν (T ,nB,Yp), where the bound state disappears,

Eintr
A,ν

(
PMott

A,ν ; T ,nB,Yp

) = 0. (30)

At nB > nMott
A,ν (T ,Yp), the summation over the momentum to

calculate the bound-state contribution to the composition is
restricted to the region |P| > |PMott

A,ν (T ,nB,Yp)|.
Crossing the Mott point by increasing the baryon density,

part of correlations survive as continuum correlations so that
the properties change smoothly. Therefore, the inclusion of
correlations in the continuum is of relevance.

IV. VIRIAL EXPANSION AND CORRELATED MEDIUM

In the low-density limit, rigorous expressions for the EOS
are obtained for the virial expansion. The second virial
coefficient is related to experimental data such as the bound-
state energies and scattering phase shifts, according to the
Beth-Uhlenbeck formula [34]. The application to nuclear
matter [24,37], as well as the generalized Beth-Uhlenbeck
formula [31] and the cluster-virial expansion [6,13,37], make
it possible to take into account continuum correlations for the
EOS.

The virial coefficients are also determined by continuum
correlations which are neglected in the ideal gas NSE.
However, in particular for the deuteron contribution where
the binding energy is small, their influence on the second
virial coefficient is of relevance; see the comparison of QS
with generalized RMF calculations in Ref. [8]. A detailed
description of the virial expansion in the context of a RMF
treatment has been given by Voskresenskaya and Typel [36].
Of interest is the extension of the virial expansion to higher
densities up to nsat. For the two-nucleon case rigorous results
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can be given, whereas for the treatment of higher order
correlations only some estimates can be made. Expressions for
the residual continuum contributions to the partial densities are
presented, which depend on temperature, densities, and total
momentum.

A. Two-nucleon contribution

The virial expansion of the EOS (4) reads [24,31,34–36]

ntot
n (T ,μn,μp) = 2

�3
[bn(T )eμn/T + 2bnn(T )e2μn/T

+ 2bnp(T )e(μn+μp)/T + · · · ],
(31)

ntot
p (T ,μn,μp) = 2

�3
[bp(T )eμp/T + 2bpp(T )e2μp/T

+ 2bpn(T )e(μn+μp)/T + · · · ].

Already the noninteracting, i.e., ideal Fermi gas of nucleons
contains two effects in contrast to the standard low-density,
classical limit.

(i) The relativistic dispersion relation Eτ (p) =
c
√

(mτc)2 + (�p)2 − mτc
2 results in a first virial

coefficient bτ �= 1. The value bτ = 1 follows from the
dispersion relation Eτ (p) = �

2p2/2mτ . For a more
detailed investigation, see Ref. [36].

(ii) The degeneration of the fermionic nucleon gas leads to
the contribution −2−5/2 to bττ [34].

The remaining part of the second virial coefficient is de-
termined by the two-nucleon interaction. One can introduce
different channels, in particular the isospin-triplet (TI = 1,
dineutron) and isospin-singlet (TI = 0, deuteron) channels,
which are connected with the spin-singlet and spin-triplet
state, respectively, if even angular momentum is considered
(for instance, S-wave scattering). The second virial coefficient
in both channels is derived from bnn and bnp. Empirical values
are given as functions of T in Ref. [35] (isospin symmetry is
assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coefficients bnn and bnp cannot be directly
used within a quasiparticle approach. Because part of the
interaction is already taken into account when introducing
the quasiparticle energy, one has to subtract this contribution
from the second virial coefficient to avoid double counting;
see Refs. [31,36,37]. Expanding the density with respect to the
fugacities within the quasiparticle approximation picture (23)
and (24), one can identify the residual isospin-triplet contri-
bution v0

2,TI =1(T ) from the neutron matter case as (the index 0
denotes the zero-density limit)

ntot
B,neutron m.(T ,μn,μp)

= nqu
n (T ,μn,μp) + 25/2

�3
e2μn/T v0

2,TI =1(T ) + · · · , (32)

and the residual isospin-singlet contribution v0
2,TI =0(T ) from

the symmetric matter case (μp = μn) according to

ntot
B,symmetr.m.(T ,μn,μp)

= nqu
n (T ,μn,μp) + nqu

p (T ,μn,μp) + 25/23

�3
e(μn+μp)/T

× [
e−E0

d /T − 1 + v0
2,TI =0(T ) + v0

2,TI =1(T )
] + · · · , (33)

where dots indicate higher orders in densities. The residual
second virial coefficients v0

c (T ) are given by [31]

v0
c (T ) = 1

πT

∫ ∞

0
dE e−E/T

{
δc(E) − 1

2
sin[2δc(E)]

}
. (34)

(The index c denotes the isospin channel. For the two-nucleon
system considered here, the isospin channel TI = 0 contains
the deuteron d, TI = 1 the dineutron system.) Comparing
Eq. (33) with the ordinary Beth-Uhlenbeck formula (8), there
are two differences.

(i) After integration by parts, the derivative of the scat-
tering phase shift is replaced with the phase shift, and
according to the Levinson theorem for each bound state
the contribution −1 appears.

(ii) The contribution − 1
2 sin[2δc(E)] appears to avoid

double counting [31,37] when introducing the quasi-
particle picture. E denotes the relative energy in the
c.m. system.

The EOS (4) is not free of ambiguities with respect to the
subdivision into bound-state contributions and continuum
contributions; compare Eqs. (33) and (34) with Eqs. (7) and (8).
The continuum correlations in bτ,τ ′(T ) are reduced to the
residual part v0

c (T ) if the quasiparticle picture is introduced.
The remaining part of the continuum contribution in Eq. (8) is
absorbed in the quasiparticle shift. This has been discussed in
detail in Refs. [31,36,37].

To give an approximation for v0
c (T ), I performed calcula-

tions within the generalized Beth-Uhlenbeck approach [31]
for a simple separable potential,

Vc(12,1′2′) = −λce
− (p1−p2)2

4γ 2 e
− (p′

1−p′
2)2

4γ 2 δp1+p2,p′
1+p′

2
δσ,σ ′δτ,τ ′ ,

(35)

with λd = 1287.37 MeV for the deuteron (isospin 0) channel,
γ = 1.474 fm−1 (see Ref. [33]), adapted to binding energy
and point r.m.s. radius of the deuteron. After evaluating the
T matrix, the scattering phase shifts are obtained, and v0

d (T )
has been evaluated. For details, see Ref. [31]. The result is
approximated by

v0
d (T ) = v0

2,TI =0(T ) ≈ 0.308 57 + 0.653 27 e−0.102 424 T/MeV.

(36)

A similar calculation has been performed for the isospin-
triplet channel. The empirical value for the n-n scattering
length (−18.818 fm) is reproduced with the interaction poten-
tial (35), λTI =1 = 814.2 MeV, leaving γ unchanged. Also, the
effective range (2.834 fm) is well approximated. The resulting
value v0

2,TI =1(T ) ≈ 0.16 is nearly independent of T .
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Thus, for the EOS (4) one has the residual contribution of
continuum correlations in the isospin-triplet channel as well as
in the isospin-singlet channel. The contribution of the isospin-
triplet channel v0

2,TI =1(T ) gives only a small contribution to the
free-nucleon densities and will be omitted in the present work.
[Note that according Eq. (34) the lowest orders of δc(E) are
compensated because of the introduction of the quasiparticle
shift of the nucleons.] The residual continuum correlations in
the isospin-singlet channel v0

d (T ) are part of the partial density
of the deuteron channel. The latter changes smoothly at the
Mott point where the bound-state contributions vanish.

The contribution of bound states to the EOS is not simply
given by the term e−E0

c /T with the bound-state energy E0
c , as

known, for instance, from the NSE. At the same time one has
to take into account the contribution of continuum correlations
(scattering states). Only the total contribution of the channel c
to the partial densities is well defined. The subdivision in the
bound-state contribution and the scattering state contribution
to the density is not unique. An alternate expression for the
contribution of bound states is e−E0

c /T − 1, which remains
smooth when the binding energy goes to zero (for instance, at
the Mott point).

To discuss this issue more clearly, I consider the two-
nucleon isospin-singlet (d) channel. The partial density
z

part
d (P; T ,nB,Yp) (7) of the d channel (switching from the

variables {T ,μn,μp} to the set {T ,nB,Yp}) reads in the low-
density limit

z
part
d (P; T ,nB = 0,Yp)

= e(μn+μp)/T e−�
2P 2/(4mT )gd

[
e−E0

d /T − 1 + v0
2,TI =0(T )

]
.

(37)

Compared with Eq. (8), the term e−E0
d /T − 1 occurs as

consequence of the Levinson theorem. The residual second
virial coefficient v0

2,TI =0(T ) is given as an integral over
the relative energy E in Eq. (34). One can implement
the term e−E0

d /T − 1 into the integral over E if the phase
shift δ2,TI =0(E) = π�(E − E0

d ) is defined for E < 0 and the
integral over E starts from −∞; see Ref. [52].

To illustrate the relevance of the continuum contributions
in the d channel, these extended phase shifts are shown in
Fig. 1. The calculations are performed for various densities
(zero density is almost identical with nB = 0.0001 fm−3) at
T = 4 MeV, using the separable interaction (35). For other
values of T and a more detailed discussion, see Ref. [52].
Together with the Boltzmann factor e−E/T in Eq. (34), the
negative region of E gives the contribution e−E0

d /T − 1 to this
integral (now −∞ as lower limit of integration), which is small
if the binding energy is small. The relative importance of the
two parts of the integral, the bound part (E < 0) and the part of
the residual continuum correlations (E > 0), is clearly shown.
As discussed in the following section, both parts do not jump
at the Mott point where the bound-state energy goes to zero.

Similar to the deuteron case, I assume that the expression

zpart
c (P; T ,nB = 0,Yp)

≈ e(Nμn+Zμp)/T e−�
2P 2/(2AmT )gc

[
e−E0

c /T − 1 + v0
2,TI =0(T )

]
(38)
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FIG. 1. (Color online) Role of continuum correlations in the
d channel. Extended phase shifts, containing a contribution at
negative intrinsic energies E describing the bound state part,
are presented for baryon densities of the nuclear medium nB =
0.0001, 0.003, 0.01, 0.03, 0.1 fm−3 and T = 4 MeV.

can be taken to continue the contribution of bound states to the
continuum of scattering states for the other light elements t,h.
In the α case, there is also an excited state of the ground
state, excitation energy Eα′ = Eα + 20.2 MeV. Within our
estimations, the two bound states lead to larger continuum
contribution,

zpart
α (P; T ,nB = 0,Yp)

≈ e(2μn+2μp)/T e−�
2P 2/(8mT )

× [
e−E0

α/T + e−E0
α′ /T − 2 + 2 v0

2,TI =0(T )
]
. (39)

To motivate the ansatz (38) and (39), one can consider
the effective interaction between the constituent nucleons of
the cluster which are comparable with the nucleon-nucleon
interaction in d. As in the deuteron case, one can represent
the total contribution to the partial density (7) of channel c
as integral over the intrinsic energy E; see Eq. (34), which is
extended to negative energies to include the bound-state part.
According to the Levinson theorem, the integrand has the value
π in this region (E < 0) and goes smoothly to zero at positive
energies. The detailed behavior at E > 0 may differ from the
deuteron case, and different channels for the decomposition
of clusters with A > 2 are possible. It is only a rough
approximation that all residual virial coefficients v0

c (T ) can be
estimated by v0

2,TI =0(T ). However, the results for the EOS are
not very sensitive to the continuum contributions for A = 3,4.
In the high-temperature region, continuum correlations are of
relative importance in the deuteron channel because of the
small binding energy of 2.225 MeV. The other clusters {t,h,α}
are more strongly bound so that the contribution of continuum
correlations is of less relevance for the EOS.

The more precise determination of the residual virial
coefficients v0

c (T ) for A = 3,4 would be an interesting issue
of future work. Within the cluster-virial expansion, empirical
scattering phase shifts can be considered to calculate the
residual virial coefficients. For instance, virial coefficients for
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the scattering of nucleons with the A = 3 nuclei are given in
Ref. [40]. Using measured and calculated data, the 3He −n
and 3H −p scattering contributions of the virial expansion are
obtained. Because both combinations belong to the α channel,
these scattering data can be used to find an alternate estimate
for the residual virial coefficient v0

α(T ). For T = 10 MeV, the
values 0.781 for bp3He, 0.803 for bn3H, and 0.198 for bn3He

are given there. The latter (together with the estimated same
amount for bp3H) contribute to the α channel as 0.396 and is not
very different from the estimate 0.543 according to Eq. (36) for
v0

d . Of course, a better treatment of the continuum contributions
in the A = 3,4 channels is desirable, but not solved until now.
Anyhow, the contributions of continuum correlations from the
A = 3,4 channels are small at the conditions considered here.

C. Extrapolation to saturation densities, deuteron case

Using the quasiparticle concept, the virial expansion
introduced at low densities can be extended to arbitrary
subsaturation densities. Using Eqs. (28) and (22) to introduce
the intrinsic energy, the partial density (7) of the channel c (A
has been dropped) with c.m. momentum P reads

zpart
c (P; T ,nB,Yp)

= e[Nμn+Zμp−NEn(P/A;T ,nB ,Yp)−ZEp(P/A;T ,nB ,Yp)]/T

× gc

{[
e−Eintr

c (P;T ,nB ,Yp)/T − 1
]
�

[−Eintr
c (P; T ,nB,Yp)

]
+ vc(P; T ,nB,Yp)

}
(40)

(the set of variables {T ,nB,Yp} is used). The residual con-
tinuum contribution vc(P; T ,nB,Yp) depends on the nucleon
densities.

For A = 2, the second virial coefficient was investigated
within a generalized Beth-Uhlenbeck approach starting from
the quasiparticle approach [31]. The cluster binding energy as
well as the in-medium scattering phase shifts are modified by
self-energy and Pauli blocking shifts; see Eqs. (9) and (20).
The calculations for realistic nucleon-nucleon interaction [31]
show the following.

(i) At the Mott point, the bound state disappears abruptly,
but at the same time the scattering phase shifts jump
by π so that the total contribution (8) to the virial
coefficient changes smoothly. In particular, the EOS
which relates the total baryon density to the chemical
potentials remains smooth.

(ii) Near the saturation density, approximately only the
single-nucleon quasiparticle contribution to the den-
sity (4) remains. The correlated partial densities
[zpart

A,c(P) with A > 1] becomes very small when the
baryon density approaches the saturation density.
However, part of the correlations is already included in
the quasiparticle approach. For instance, two-nucleon
correlations are treated in the Brueckner approximation
for the self-energy.

To estimate the density dependence of the residual virial coef-
ficient vd (P; T ,nB,Yp) (34), the in-medium wave equation (9)
has been solved for A = 2 with the separable potential (35);
for details see Ref. [31]. The Pauli blocking term was taken

in the Tamm-Dancoff form [1 − f1,τi
(i)][1 − f1,τj

(j )] [53],
so that pairing has been neglected. The T matrix has been
solved taking into account the fermionic Pauli blocking terms.
From the T matrix, the in-medium scattering phase shifts are
obtained. For illustration, results for the scattering phase shifts
at various densities nB are shown in Fig. 1. The phase shifts are
extended to negative E to include the contribution of bound
states. Of interest is the behavior near the Mott point where
the bound state part continuously goes to zero.

The contribution of residual continuum correlations (34)
to the EOS according to the generalized Beth-Uhlenbeck
expression has been evaluated as function of T and nB

contained in the Pauli blocking terms (symmetric matter
Yp = 0.5). The result at P = 0 is approximated by

vd (P = 0; T ,nB,Yp)

≈
{

1.24 +
[

1

v2,TI =0(T )
− 1.24

]
eγdnB/T

}−1

, (41)

where γd = 1876.2 MeV fm3 and v2,TI =0(T ) given by Eq. (36).
At high temperatures, the dominant part of the d component is
caused by the scattering states because the binding energy is
small compared with the temperature, and the residual virial
coefficient describing continuum correlations is of relevance in
the deuteron case. For the simultaneous treatment of the bound-
state and scattering-state contribution, see also Ref. [52]. The
dependence of Yp has been neglected.

One can interpret this result (40) as follows: The contribu-
tion e−Ed (P ;T ,nB ,Yp)/T − 1 of the bound state (d) is decreasing
with increasing density and disappears at the so-called Mott
density. The bound state merges with the continuum of
scattering states and forms a resonance so that there remains
a contribution to the baryon density. When the density is
further increasing, the resonance moves to higher energies
and becomes broader. Consequently, the contribution to the
continuum states is strongly reduced.

Note that to describe pairing at high densities and very low
temperatures, the Tamm-Dancoff form of the Pauli blocking
used, for instance, in the Brueckner theory, must be replaced
with the Feynman-Galitsky form [1 − f1,τi

(i) − f1,τj
(j )] ac-

cording Eq. (9); see Ref. [31].

D. Estimates for higher clusters A = 3,4

In contrast to the deuteron case (c → d), no simple way
is known to estimate the continuum contribution of the other
clusters with A = 3,4. I took Yp = 0.5, neglected the depen-
dence on Yp, and estimated the residual virial contribution of
the continuum vc(P; T ,nB,Yp) at P = 0.

All bound states behave quite similarly; the binding
energy is decreasing with increasing density. The shift of
the quasiparticle cluster bound-state energies was considered
elsewhere [33]; see Appendix C. Similar to the deuteron case,
it can be expected that also for the clusters with A = 3,4 a
contribution to the residual virial coefficient remains when
the bound state is dissolved. To estimate this contribution,
I considered a two-particle system (for A > 2 there are
several possibilities) with an effective interaction of separable
Gaussian type [33] and fixed range parameter γ = 1.474 fm−1,
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Eq. (35), but with effective coupling parameter λeff
c which

reproduces the binding energy Bc of cluster c. The corre-
sponding parameter values are given in Table I. Changing
the strength λeff

c , at the critical value λcrit
c = 885.996 MeV,

the bound state merges with the continuum. From the strict
evaluation of the bound-state (quasiparticle) energy [33], the
so-called Mott densities nMott

c (T ,Yp) (29) are known where
the bound states at P = 0 disappear; see Table I. As before,
calculations are preformed for P = 0. Finite values for P are
discussed in Sec. V D.

I calculated the relation between the coupling strength
λc of the separable potential (35) and the residual virial
vc(T ) without any in-medium effects and found a simple
relation vc(T ) ∝ λ4

c in good approximation for all values T
under consideration. However, one can search for an effective
interaction strength which mimics the shift of the binding
energies, caused by the Pauli blocking as a density effect. This
reduced effective interaction strength λc(nB) is depending on
nB . I used the ansatz λc(nB) = λeff

c e−γc nB/(4T ) and determined
γc from the known value λeff

c at zero density, as well as the
value λc(nMott

c ) = λcrit
c at the Mott density nMott

c (T ,Yp), where
the bound state disappears.

With the expression (36), the fit formula

vc(P = 0; T ,nB,Yp)

≈
{

1.24 +
[

1

v2,TI =0(T )
− 1.24

]
eγcnB/T

}−1

(42)

for the residual virial coefficients is obtained. Parameter values
are found in Table I.

V. RESULTS

First, all the expressions are collected which are used
for the calculations in this section. Equations (4) are solved

considering the different contribution with A � 4, i.e., besides
the free nucleons n, p also the channels related to d, t, h, α.
The intrinsic quantum number νc refers to the bound states as
far as they exist and to the scattering states. The summation
over P is replaced with an integral, 1

�

∑
P → ∫

d3P/(2π )3.
The main ingredients are the medium modified energies

EA,ν(P; T ,nB,Yp). They are determined as function of the total
nucleon densities,

ntot
n = (1 − Yp)nB, ntot

p = YpnB, (43)

and a further parameter Teff(T ,ntot
n ,ntot

p ) [Eq. (18)] that takes
the correlations in the medium into account when calculating
the Pauli blocking effect. Consequently, Eqs. (4) have the form

ntot
n =

∑
c=n,p,d,t,h,α

Ncnc

(
T ,μn,μp; ntot

n ,ntot
p

)
,

(44)
ntot

p =
∑

c=n,p,d,t,h,α

Zcnc

(
T ,μn,μp; ntot

n ,ntot
p

)
.

For given {T ,ntot
n ,ntot

p }, a self-consistent solution of (44)
must be found which determines μn,μp. Then the EOS
μn(T ,ntot

n ,ntot
p ) and μp(T ,ntot

n ,ntot
p ) are found.

More explicitly, Eqs. (44) read ntot
n = nn + nd + 2nt +

nh + 2nα and ntot
p = np + nd + nt + 2nh + 2nα . The contri-

bution of free neutrons and protons (A = 1) to the total density
is given by

nτ

(
T ,μn,μp; ntot

n ,ntot
p

) = 1

π2

∫ ∞

0
dP

P 2

e[Eτ (P;T ,nB ,Yp)−μτ ]/T + 1
.

(45)

The single-nucleon quasiparticle energies Eτ (P; T ,nB,Yp) are
taken from a RMF approach (24). A parametrization of a
particular approach (DD-RMF) is given by Eqs. (D1) and (D3).

The contribution of the deuteron channel is (nondegener-
ated case)

nd

(
T ,μn,μp,ntot

n ,ntot
p

) = 3

2π2

∫ ∞

0
dPP 2e[−En(P/2;T ,nB ,Yp)−Ep(P/2;T ,nB ,Yp)+μn+μp]/T

× {[
e−Eintr

d (P;T ,nB ,Yp)/T − 1
]
�

[−Eintr
d (P; T ,nB,Yp)

] + vd (P; T ,nB,Yp)
}
, (46)

with the intrinsic in-medium bound-state energy [negative binding energy −Bbind
d (P) (21)] [see Eq. (28)],

Eintr
d (P; T ,nB,Yp) = E0

d + �E
SE,intr
d (P; T ,nB,Yp) + �EPauli

d (P; Teff,nB,Yp). (47)

The contribution of the c.m. motion to the kinetic energy is given by En(P/2; T ,nB,Yp) + Ep(P/2; T ,nB,Yp). Expressions for
�E

SE,intr
d (P; T ,nB,Yp) are given by Eq. (27) and for �EPauli

d (P; Teff,nB,Yp) by Eq. (C1) with Eq. (18). Beyond the Mott density
nMott

d (T ,Yp) [Eq. (29)], bound states arise only for c.m. momenta |P| larger than the Mott momentum |PMott
d (T ,nB,Yp)| [Eq. (30)].

One must not solve these relations but can use the � function in Eq. (46), which indicates the region where a bound state exists.
The merge with the continuum is smooth because of the subtraction of 1. The intrinsic energy which is the difference between the
bound-state energy Ed (P,T ,nB,Yp) and the edge of the continuum of scattering states En(P/2; T ,nB,Yp) + Ep(P/2; T ,nB,Yp)
[see Eq. (22)] goes to zero at the Mott point and is compensated for by the term −1. Above the Mott point, the residual virial
contribution vd (P; T ,nB,Yp) (41) to the partial density in the deuteron channel remains. It is strongly decreasing with increasing
density.
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Similar expressions are also obtained for the other light elements contributing, as cluster states, to the density. In particular,

nt

(
T ,μn,μp,ntot

n ,ntot
p

) = 1

π2

∫ ∞

0
dPP 2e[−2En(P/3;T ,nB ,Yp)−Ep(P/3;T ,nB ,Yp)+2μn+μp]/T

× {[
e−Eintr

t (P;T ,nB ,Yp)/T − 1
]
�

[−Eintr
t (P; T ,nB,Yp)

] + vt (P; T ,nB,Yp)
}
, (48)

nh

(
T ,μn,μp,ntot

n ,ntot
p

) = 1

π2

∫ ∞

0
dPP 2e[−En(P/3;T ,nB ,Yp)−2Ep(P/3;T ,nB ,Yp)+μn+2μp]/T

× {[
e−Eintr

h (P;T ,nB ,Yp)/T − 1
]
�

[−Eintr
h (P; T ,nB,Yp)

] + vh(P; T ,nB,Yp)}, (49)

nα

(
T ,μn,μp,ntot

n ,ntot
p

) = 1

2π2

∫ ∞

0
dPP 2e[−2En(P/4;T ,nB ,Yp)−2Ep(P/4;T ,nB ,Yp)+2μn+2μp]/T

× {[
e−Eintr

α (P;T ,nB ,Yp)/T − 1
]
�

[−Eintr
α (P; T ,nB,Yp)

]
+ [

e−Eintr
α′ (P;T ,nB ,Yp)/T − 1

]
�

[−Eintr
α′ (P; T ,nB,Yp)

] + 2vα(P; T ,nB,Yp)}. (50)

The intrinsic in-medium bound-state energy Eintr
c [see Eq. (28)]

and the values for the shifts �ESE,intr
c (P; T ,nB,Yp) and

�EPauli
c (P; Teff,nB,Yp) are given by Eqs. (27) and (C1). For the

α-like contribution, the excited state at E0
α′ = −8.1 MeV has

been taken into account, with shifts estimated by the values
of the shifts for the ground state at E0

α = −28.3 MeV. The
residual virial contribution of continuum states vc(P; T ,nB,Yp)
is estimated with P = 0 by Eq. (42).

A. EOS and critical point

The self-consistent solution of Eqs. (44) is shown in Fig. 2
(nB = ntot

n + ntot
p ,Yp = ntot

p /nB). Isotherms of the chemical
potential μ̄ = g = (1 − Yp)μn + Ypμp are shown for fixed
asymmetry Yp = 0.5 (symmetric matter) as function of the
baryon density nB . The temperatures are chosen as 5, 10, 15,
and 20 MeV. The solution for T = 1 MeV is also shown for
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FIG. 2. (Color online) Baryon chemical potential μ̄ as function
of the baryon density nB for symmetric matter (Yp = 0.5). Isotherms
are shown for T = 1, 5, 10, 15, and 20 MeV. The QS result (solid
line) is compared with the RMF solution which considers only the
contributions with A = 1 in Eq. (4); see also Eq. (23) (thin line) and
the ideal gas NSE solution (dashed). (Inset) Comparison with the QS
calculations (Pauli blocking in uncorrelated matter) given in Ref. [8]
(thin lines).

discussion, but in this case the formation of larger cluster is of
importance.

For comparison, the pure mean-field (RMF) solution (4)
neglecting all contributions A > 1 is also shown. It dominates
at low densities where (because of entropy) all bound states
dissociate, but becomes a good approximation at high densities
where all bound states are blocked out and dissolved. The
thermodynamics of the RMF approximation is modified in the
region where clusters are formed. The chemical potential is
lowered when correlations are taken into account.

The region where the mean-field approach is not sufficient
depends strongly on T . For T = 20 MeV deviations owing to
cluster formation appear below nB = 0.07 fm−3; for T = 5
MeV they appear below nB = 0.03 fm−3. At the low-density
region, the deviation from the mean-field solution (which
coincides approximately with the free-nucleon solution) is
attributable to cluster formation as described by the mass-
action law (NSE). It is well understood and also strongly
depending on T . At low temperatures (compare T = 1 MeV)
clustering occurs already at very low densities.

The ideal gas NSE is also shown in Fig. 2 what gives the
correct behavior in the low-density limit. Cluster formation is
described by the NSE, but deviations from μ̄ are shown as
soon as the mean-field effects arise at about nB = 10−3 fm−3.

A comparison with former QS calculations [8] is shown
in the inset of Fig. 2. The improved treatment of residual
continuum contributions to the partial densities as well as the
modification of the Pauli blocking owing to cluster formation
in the medium makes the clusters more stable. In particular
at low temperatures, the RMF solution without clustering is
approximated only at higher densities. The general features
are not changed, but the region where correlations and bound
states are relevant is extended to higher densities, resulting in
a lowering of the chemical potential.

Thermodynamic stability requires ∂μ̄/∂nB � 0. As seen in
Fig. 2, below a critical temperature a phase transition appears,
and a Maxwell construction can be applied. For the pure mean-
field (RMF) solution (4) neglecting all contributions A > 1, the
critical point is at T RMF

cr = 13.72 MeV, nRMF
B,cr = 0.0486 fm−3.

Taking clustering with A � 4 into account, our QS approach
gives T QS

cr = 12.42 MeV, n
QS
B,cr = 0.063 fm−3. The lowering

of the critical temperature, if clustering is taken into account,
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is a general feature of many-particle systems. The lowering of
Tcr owing to clustering has been obtained for the QS approach
in Ref. [24] and, in contrast to the generalized RMF, also
in Ref. [8]. Calculations of Tcr with the Skyrme interaction,
accounting for clustering, have been performed some time
ago [41]; see also Refs. [13,17].

A region of metastability is seen for low temperatures near
nB ≈ 0.02 fm−3. Note that the results at very low temperatures
have to be improved taking into account quantum condensates
like pairing and quartetting. This is also possible within the QS
approach, introducing, e.g., the pair amplitude and performing
a Bogoliubov transformation to new quasiparticles. For some
results, see Refs. [38,39,54]. At low temperatures, also clusters
with A > 4 have to be taken into account.

B. Thermodynamic potential: The free energy

There are different relations between thermodynamic vari-
ables, so-called EOS. The present work focused on the density
as function of the temperature and chemical potentials (1);
others are the thermodynamic EOS for the pressure or the
caloric EOS for the internal energy. For further examples, see
Ref. [8]. I do not discuss here the various thermodynamic
quantities but consider only the free energy per nucleon FA =
F/(Nn + Np) as function of the natural variables ({T ,nB,Yp}),
which is a thermodynamic potential; see Appendix A. All
other thermodynamic quantities such as pressure, entropy,
and internal energy can be derived from the thermodynamic
potential.

Isotherms of FA for symmetric matter (Yp = 0.5) are shown
in Fig. 3 as function of the baryon density. For comparison, also
the results of former QS calculations neglecting correlations
in the continuum [8] are shown. The account of continuum
correlations in the partial densities and in the Pauli blocking,
as performed in the present work, gives, in general, rather small
effects and does not change the overall picture, with exception
of the low-temperature region. However, light clusters (A � 4)
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FIG. 3. (Color online) Free energy per nucleon FA as function of
the baryon density nB for symmetric matter (Yp = 0.5). Isotherms
are shown for T = 1,5,10,15,20 MeV. The QS result (solid lines)
is compared with former QS calculations [8] neglecting continuum
correlations (dashed lines).

can survive up to larger densities, and, consequently, the free
energy per nucleon becomes lower in the region 0.001 fm−3 �
nB � 0.1 fm−3.

C. Composition of symmetric matter

Of interest is the composition; i.e., the mass fractions Xc =
Acnc/nB . They are shown for symmetric matter (Yp = 0.5)
at different temperatures as function of the baryon density nB

in Fig. 4, c = {n,p,d,t,h,α}. In the low-density region, the
mass fractions evolve in proportional to the mass-action law
(NSE), whereas at higher densities medium effects become of
relevance for the QS approach. The bound states are dissolved
at the Mott density. Whereas within the ideal gas NSE the
mass fractions Xn,Xp of the free nucleons are continuously
decreasing with density, because of Pauli blocking the single-
quasiparticle mass fractions increase with density for nB >
0.02 fm−3. Correspondingly, the mass fractions of the clusters
are strongly decreasing at high densities.

At low densities, the discrepancies between the QS and the
ideal gas NSE results are attributable to the partial densities (7)
which contain also the continuum correlations. Compared
with the ideal gas NSE, the QS mass fractions Xd,Xt ,Xh are
reduced because of the contribution −1 + vc(0; T ,nB,Yp); see
Eqs. (33), (38), and (42). Thus, the contribution of the clusters
to the total density is smaller than expected from the NSE
approach. For Xα , the QS mass fraction is larger than the ideal
gas NSE result because the excited state α′ has also been taken
into account; see Eq. (39).

At lower temperatures, the role of correlations and cluster
formation is increasing; see Figs. 4(a) and 4(b). Whereas above
Tcr the two-particle correlations dominate, heavier clusters, in
particular α-like correlations, give an increasing contribution
to the composition of warm dense matter at decreasing
temperatures. For instance, at T = 5 MeV the mass fraction Xα

is large in the density range 0.001 fm−3 < nB < 0.03 fm−3.
In this intermediate density region, heavier clusters A > 4

may be formed that are not included in the present work.
Moreover, the thermodynamic instability in that region leads
to a first-order phase transition of the liquid ↔ gas type.
Droplet formation and formation of pasta states may occur;
see Refs. [12,15,17]. The inclusion of Coulomb interaction
is indispensable, but the theory of heavier clusters and phase
transition is not a subject of this work.

For illustration, also the case T = 1 MeV is considered in
Fig. 5. Up to densities of nB ≈ 0.02 fm−3, α-like correlations
dominate and are dissolved owing to the Pauli blocking terms.
At higher densities, neutrons and protons as single-nucleon
quasiparticles describe the internal structure, well-described
by RMF and other theories. At very low temperatures, quantum
condensates [38,39] appear which are not considered in the
present work. However, as already mentioned, at T = 1 MeV
the formation of clusters with A > 4 becomes relevant.

D. P dependence of Pauli blocking

In addition to Secs. V A–V C, where only the medium
modified continuum states with P = 0 have been taken
into account, the residual continuum contributions are now
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FIG. 4. (Color online) Composition of symmetric matter (Yp = 0.5) at (a) T = 5 MeV, (b) T = 10 MeV, (c) T = 15 MeV, and (d)
T = 20 MeV. The mass fraction Xc is shown as a function of the density nB . The QS solution (solid lines) is compared with the ideal gas NSE
solution (dashed lines).

considered as function of P. Like the in-medium shift of the
binding energy, the medium modification of scattering states
is strongly depending on P because the Pauli blocking changes
quickly with the c.m. momentum P. At large values of |P| the
Pauli blocking and, correspondingly, the reduction of the mass
fraction of the clusters become weaker.

For arbitrary P, the partial densities nc(T ,nB,Yp)
[Eqs. (46), (48), (49), and (50)] can be calculated with

the residual virial coefficients vc(P; T ,nB,Yp) now depend-
ing on P. The approximation (42) for the residual contin-
uum contributions contains the parameter γd (P; T ,nB,Yp),
which depends on P. Using the same method given in
Sec. IV D for P = 0, i.e., scaling the reduction of the
binding energy for increasing nB with the known value
for nMott

c (P,T ,Yp) according to Ref. [33], one finds the
expressions

γd (P,T ,nB,Yp) = 1873.2 MeV fm3 exp[−P 2 fm2/(1.8463 + 0.1617 T MeV−1 + 0.17 P 2 fm2)],

γt (P,T ,nB,Yp) = 2773.2 MeV fm3 exp[−P 2 fm2/(4.6671 + 0.3037 T MeV−1 + 0.19 P 2 fm2)],
(51)

γh(P,T ,nB,Yp) = 2843.5 MeV fm3 exp[−P 2 fm2/(4.6793 + 0.28486 T MeV−1 + 0.19 P 2 fm2)],

γα(P,T ,nB,Yp) = 3268.8 MeV fm3 exp[−P 2 fm2/(9.7514 + 0.6922 T MeV−1 + 0.24 P 2 fm2)].

For comparison, in Fig. 6 the composition of symmetric
matter (Yp = 0.5) at T = 10 MeV is calculated neglecting
the P dependence of the residual continuum contributions and
taking it into account. There are larger differences at higher
densities because now the Pauli blocking effect is reduced for
increasing |P|. Consequently, the correlations are stabilized
and the mass fractions of the clusters are larger.

At higher densities, also further corrections have to be
considered: Correlations in the medium as expressed by
Teff to replace T in the exponent of Eq. (42) will further
reduce the Pauli blocking, with the consequence of increasing
mass fractions, in particular Xd . However, the use of the
Feynman-Galitzky expression [1 − f1,τi

(i) − f1,τj
(j )] instead

of the Tamm-Dancoff expression [1 − f1,τi
(i)][1 − f1,τj

(j )]

054001-15
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FIG. 5. (Color online) Composition of symmetric matter (Yp =
0.5) at T = 1 MeV. The mass fraction Xc is shown as function of the
density nB . The QS solution (solid lines) is compared with the ideal
gas NSE solution (dashed lines). The mass fractions of d,t,h are very
small and are not seen here.

for the Pauli blocking in Eq. (9) will reduce the mass fraction
Xd . A systematic investigation was performed in Ref. [31], but
only two-nucleon correlations (c → d) have been considered,
and the occupation numbers in the Pauli blocking (9) was given
by the uncorrelated, free quasiparticles.

The self-consistent treatment of correlations in the medium
demands further work, beyond the introduction of an ef-
fective chemical potential and an effective temperature (18)
to calculate the Pauli blocking. Possibly, the fits for Teff

and vc(P; T ,nB,Yp) have to be improved for nB > nsat/2.
Note that a consistent treatment of nuclear matter at higher
densities has also to take into account the formation of heavy
nuclei, in particular at low temperatures, and thermodynamic
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FIG. 6. (Color online) Composition of symmetric matter (Yp =
0.5) at T = 10 MeV. The QS solution (solid lines), same as in
Fig. 4(b), is compared with the solution (dashed lines), where the
P dependence of the Pauli blocking for the residual continuum
contributions [Eq. (51)] is taken into account.

instability which leads to a phase transition. Therefore, in
the region where details of the contribution of continuum
correlations considered in this subsection influence the light
cluster abundances, also further effects like heavy cluster
formation and phase instability (pasta phases) interfere with
the contribution of light elements to the composition of warm
dense matter and have to be taken into account to derive the
EOS.

VI. DISCUSSION

The present work aims at deriving the EOS for warm dense
matter in the subsaturation region, incorporating the known
low-density virial expansions, as well as mean-field theories
near saturation density. In the context of a systematic QS
approach, the single-nucleon quasiparticle description (e.g.,
RMF theory) is improved by including few-body (A� 4)
correlations. The QS approach provides a many-particle
description of self-energy effects, Pauli blocking, and correla-
tions in the continuum. In the low-density region, the rigorous
results of the virial expansion are reproduced. It is challenging
to work out a generalized Beth-Uhlenbeck approach which
takes all light clusters into account. Based on a quasiparticle
concept, this approach is valid also near the saturation density.
Our study presents some steps in this direction. They should
be improved as indicated below.

Extending previous work [32,33], I estimated the effects of
continuum correlations, in particular the residual contributions
of the continuum states to the EOS and the modification of
Pauli blocking in a correlated nuclear medium. Results are
given for the EOS (chemical potentials) and the composition
at selected parameter values. A thermodynamic potential (free
energy) is calculated which can be used to evaluate other
thermodynamic variables, such as pressure, internal energy,
entropy, and symmetry energy. The quantitative results for the
EOS are sensitive to the contributions of continuum corre-
lations. Based on the solution of the two-nucleon problem,
estimates for the residual contributions of the continuum
states are presented depending on {T ,nB,Yp} and the c.m.
momentum P; see Secs. IV B and V D. Within a cluster-
virial expansion [37], future work is needed to improve the
description of contributions owing to continuum correlations,
considering in-medium scattering phase shifts for different
decay channels.

The treatment of Pauli blocking is of fundamental relevance
for determining the formation of correlations in warm dense
matter. The approximation (18) for the Pauli blocking in a
correlated medium is only a simple fit that should be improved.
For instance, at low temperatures, α matter is formed, and
quantum condensates may occur. Pairing is not included
in my approach because the Tamm-Dancoff expression was
used instead of the Feynman-Galitsky expression for the
Pauli blocking in the Bethe-Salpeter equation (9). Also,
quartetting [38] is not reproduced, but there are some recent
results which consider the energy as function of density [54],
including quantum condensates.

A related problem arises in nuclear structure calcula-
tions [52,53]. In particular, α-like correlations appear in
low-density isomers (e.g., the Hoyle state [39]) and in the
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low-density region at the surface of heavy nuclei which are α
emitters (for instance 212Po [53]); see also [45]. Here a local
density theory can be used to implement the results of the
QS approach to the EOS. I expect that a more general and
sophisticated approach to treat few-body correlations in warm
dense matter (determining Pauli blocking, Secs. II B and II C)
will be worked out in future, which is also of interest for
nuclear structure calculations.

In addition to the parametrizations of the residual con-
tinuum contributions to the partial densities and the Pauli
blocking in correlated matter discussed above, there are other
items to be improved in further works. A main disadvantage
is the omission of larger clusters (A > 4) which form at
low temperatures and high densities. It restricts the region of
applicability of the present results. A systematic QS approach
to describe these correlations in warm dense matter is rather
cumbersome; see Ref. [43]. As a semiempirical treatment [11],
the EV model may be introduced. Thomas-Fermi calcula-
tions [12,15,18,20,21,45,46] provide us with a microscopic
treatment of large nuclei in a dense medium. This may be
improved by considering the intrinsic partition function, in par-
ticular the continuum contributions. Furthermore, the region
of phase instability can be treated, and Coulomb corrections
are important and must be included. So-called nuclear pasta
phases are discussed to derive the EOS also within the region
of thermodynamic instability; see Refs. [12,15,17,18].

The free energy and other thermodynamic variables derived
from the thermodynamic potential are of interest in astro-
physics where warm dense matter can occur. In particular,
the physics of core-collapse supernovae enters the parameter
region where cluster formation with A � 4 in the subsaturation
region occurs [2]. The presence of clusters modifies the ther-
modynamic properties and affects, for instance, the neutrino
transport [6,12,40,55]. Whereas previous approaches [3,4]
considered only α-particle formation, recently also other light
elements have been taken into account, within a QS model [5]
or using the EV concept [11]. The systematic investigation
of correlations and formation of light elements as presented
in this work is relevant not only for the EOS but also for the
calculation of microscopic processes describing the evolution
of those astrophysical objects.

In heavy-ion collision (HIC) a description is required
which takes medium effects into account beyond the ideal gas
NSE. Recently, different versions of the EOS were compared
with laboratory results [1]. The QS approach which takes
cluster formation A � 4 into account agrees well with the
experimental data. Continuum correlations described by resid-
ual virial coefficients vc(P; T ,nB,Yp) (42) and the effective
phase-space occupation number f̃1,τ (1; Teff,nB,Yp) (17) for
the Pauli blocking energy shift, as presented in this work, have
been used recently to calculate the chemical constants and the
symmetry energy [1].

Results for equilibrium EOS have been used for HIC [1]
to calculate the yields (n,p,d,t,h,α) of the expanding fireball
within the freeze-out concept. The question arises how the con-
tinuum correlations are assigned to the different yields of light
elements. For instance, the residual continuum correlations in
the isospin-singlet channel v0

d (T ) were taken into account for
the deuteron yield. The partial density of correlations in the

isospin-triplet channel contributes solely to the free-nucleon
yields because no stable bound state is formed in this channel.
On a more fundamental level, a nonequilibrium approach is
necessary to determine the fate of continuum correlations
when the fireball is expanding. Future work is necessary to
devise a transport theory for HIC, which is compatible with the
thermodynamic properties and EOS, described in this work,
as equilibrium solution.
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APPENDIX A: THERMODYNAMIC POTENTIAL
FOR WARM DENSE MATTER

In this work, the EOS (1) (chemical potentials as function
of {T ,nB,Yp}) for warm dense matter is solved. Note that
there exist different EOS that refer to further thermodynamic
variables like the pressure, the internal energy, or the entropy.
To get all thermodynamic quantities consistently, one can
derive a thermodynamic potential. For instance, for fixed Yp

the free energy F (T ,�,Nn,Np) = �f (T ,nB,Yp) is found by
integration,

f (T ,nB,Yp) = f (T ,n0,Yp) +
∫ nB

n0

μ̄(T ,n′,Yp)dn′, (A1)

where

G/NB = μ̄(T ,nB,Yp)

= (1 − Yp)μn[T ,(1 − YP )nB,YpnB]

+Ypμp[T ,(1 − YP )nB,YpnB] (A2)

is the free enthalpy per baryon. μτ (T ,ntot
n ,ntot

p ) are the solutions
of the EOS (4), τ = {n,p}, and limn0→0 f (T ,n0,Yp) follows
from the solution of the free energy density for the ideal
classical gas.

APPENDIX B: GENERAL EXPRESSION
FOR THE CMF APPROXIMATION

The chemical picture gives the motivation to extend the
mean-field approximation for the case of cluster forma-
tion [32,37,41]. Bound states are considered as new species,
to be treated on the same footing as free particles.

I repeat expressions presented in Ref. [41]. The self-energy
of the A-particle cluster is calculated to first order in the
interaction with the single particles (n,p) as well as with the
B-particle cluster states (d,t,h,α) in the medium, but with
full antisymmetrization of the normalized wave functions of
both clusters A and B [37,41]. The notation {A,ν,P} is used
for the particle number, internal quantum number (including
proton number Z), and center of mass momentum for the
cluster under consideration and {B,ν̄,P̄} for a cluster of the
surrounding medium. For the A-particle problem, the effective
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wave equation is derived as

[E(1) + · · · E(A) − EA,ν(P)]ψAνP(1, . . . ,A) +
∑

1′,...,A′

A∑
i<j

V A
ij (1, . . . ,A,1′, . . . ,A′)ψAνP(1′, . . . ,A′)

+
∑

1′,...,A′
V

A,mf
matter(1, . . . ,A,1′, . . . ,A′)ψAνP(1′, . . . ,A′) = 0, (B1)

with the kinetic energy E(1) = �
2p2

1/2m1 and the interaction V A
ij (1, . . . ,A,1′, . . . ,A′) = V (12,1′2′)δ33′, . . . ,δAA′ . The effective

potential V
A,mf

matter(1, . . . ,A,1′, . . . ,A′) describes the influence of the nuclear medium on the cluster bound states and has the form

V
A,mf

matter(1, . . . ,A,1′, . . . ,A′) =
A∑
i

�ESE(i)δ11′ , . . . ,δAA′ +
∑
i,j

′
�V A

ij (1, . . . ,A,1′, . . . ,A′), (B2)

with

�ESE(1) =
∑

2

V (12,12)exn(2) −
∞∑

B=2

∑
ν̄P̄

∑
2...B

∑
1′...B ′

fB[EB,ν̄(P̄)]

×
m∑

i<j

V B
ij (1, . . . ,B,1′, . . . ,B ′)ψBν̄P̄(1, . . . ,B)ψ∗

Bν̄P̄(1′, . . . ,B ′), (B3)

�V A
12(1, . . . ,A,1′, . . . ,A′) = −

⎧⎨
⎩1

2
[n(1) + n(1′)]V (12,1′2′) +

∞∑
B=2

∑
ν̄P̄

∑
2̄,...,B̄

∑
2̄′,...,B̄ ′

fB[EB,ν̄(P̄)]

×
B∑
j

V B
1j (12̄,′ . . . ,B̄ ′,1′2̄, . . . ,B̄)ψ∗

Bν̄P̄(22̄, . . . ,B̄)ψBν̄P̄(2′2̄′, . . . ,B̄ ′)

⎫⎬
⎭δ33′ , . . . ,δAA′ , (B4)

n(1) = f1(1) +
∞∑

B=2

∑
ν̄P̄

∑
2,...,B

B fB[EB,ν̄(P̄)]|ψBν̄P̄(1, . . . ,B)|2, (B5)

where the variable Z in the cluster distribution function (5) has not been given explicitly. Equation (9) follows if all exchange
terms are omitted so that only (B5) remains to describe medium effects.

APPENDIX C: SHIFTS OF BOUND-STATE ENERGIES OWING TO PAULI BLOCKING

The cluster quasiparticle energies have been calculated from Eq. (19) as function of {T ,ntot
n ,ntot

p }, using a variational approach.
The single-nucleon occupation numbers are approximated by Fermi distributions f̃1,τ (p; Teff,nB,Yp) at the effective temperature
Teff and normalized to the densities ntot

n ,ntot
p . These parameters determine the effect of Pauli blocking leading to the bound-state

energy shift �EPauli
A,ν (P; Teff,nB,Yp) [Eq. (20)]. For the calculations, see Ref. [33], where results for the Fermi function depending

on {T ,nB,Yp} are derived. Expressions obtained for this parameter set are given below. To perform the calculations in Sec. V,
the variable T has to be replaced with Teff , which now is relevant for the Pauli blocking expression.

The shifts of bound-state energies owing to Pauli blocking are approximated by (ν = {d,t,h,α} is used for the component c)

�EPauli
ν (P; T ,nB,Yp) = cν(P; T )

{
1 − exp

[
−fν(P; T ,nB)

cν(P; T )
yν(Yp) nB − dν(P; T ,nB ) n2

B

]}
. (C1)

In the term linear in nB , fν(P; T ,0) is given by first-order perturbation theory with respect to the density, using the unperturbed
wave functions of the free nuclei. Motivated by the exact solution for A = 2 with the interaction potential (35) (for details, see
Ref. [33]) the following fit for arbitrary nB and ν is used:

fν(P; T ,nB )=fν,1 exp

[
− P 2/�

2

4
(
f 2

ν,4/f
2
ν,3

)
(1 + T/fν,2) + uνnB

]
1

T 1/2

2fν,4

P/�
Im

(
exp

{
f 2

ν,3(1 + fν,2/T )

[
1 − i

P/�

2fν,4(1 + T/fν,2)

]2}

× erfc

{
fν,3(1 + fν,2/T )1/2

[
1 − i

P/�

2fν,4(1 + T/fν,2)

]})
. (C2)

The parameter values fν,i and uν are given in Table II.
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TABLE III. Coefficients si,j,k for the Padé approximation of the scalar self-energy S(T ,nB,δ).

si,j,k i = 1 i = 2 i = 3 i = 4 i = 5

k = 0 4462.35 204 334 125 513 49.0026 241.935
j = 0 k = 2 1.638 11 −11 043.9 −64 680.5 −1.762 82 −19.8568

k = 4 0.293 287 −46 439.7 −4940.76 −10.6072 −48.3232

k = 0 −7.224 58 7293.23 1055.3 1.701 56 6.6665
j = 1 k = 2 0.926 18 −49 220.9 −19 422.6 −11.1142 −52.6306

k = 4 −0.679 133 35263 15 842.8 7.926 04 38.1023

k = 0 0.009 755 76 −209.452 132.502 −0.045 672 4 −0.112 997
j = 2 k = 2 −0.035 502 1 2114.07 572.292 0.473 553 2.15092

k = 4 0.026 292 −1507.55 −555.762 −0.337 016 −1.575 97

The dependence on the asymmetry Yp is given by the ex-
pression yν(Yp) in Eq. (C1) with yd (Yp) = yα(Yp) = 1, for tri-
ton yt (Yp) = ( 4

3 − 2
3Yp), and for helion yh(Yp) = ( 2

3 + 2
3Yp).

The term

cν(P; T ) = cν(0; T ) = cν,0 + cν,1

(T − cν,2)2 + cν,3
(C3)

is not depending on P, but

dν(P; T ,nB) = dν(0; T ,nB) exp

[
− P 2/�

2

wνT nB

]
,

(C4)

dν(0; T ,nB) = dν,1

(T − dν,2)2 + dν,3
,

is depending on P with the parameter wν . The corresponding
parameter values are given in Table II.

APPENDIX D: NUCLEON QUASIPARTICLES

The single-nucleon quasiparticle dispersion relation (24)
Eτ (p) = �

2p2/(2mτ ) + �ESE
τ (p) = �ESE

τ (0) + �
2p2/

(2m∗
τ ) + O(p4) is parametrized by various density functionals.

An improved parametrization of the DD-RMF model [8,37] is

given here in form of a Padé approximation. The variables are
temperature T , baryon number density nB = ntot

n + ntot
p , and

the asymmetry parameter δ = 1 − 2Yp with the total proton
fraction Yp = ntot

p /nB . The intended relative accuracy in the
parameter value range T < 20 MeV, nB < 0.16 fm−3 is 0.001.

The scalar self-energy (identical for neutrons and protons)
is approximated as

S(T ,nB,δ) = s1(T ,δ) nB + s2(T ,δ) n2
B + s3(T ,δ) n3

B

1 + s4(T ,δ) nB + s5(T ,δ) n2
B

, (D1)

with coefficients

si(T ,δ) = si,0(δ) + si,1(δ) T + si,2(δ) T 2,
(D2)

si,j (δ) = si,j,0 + si,j,2 δ2 + si,j,4 δ4,

with baryon number densities nB in fm−3 and temperatures T
as well as the self-energies S,V in MeV. Parameter values are
given in Table III.

TABLE IV. Coefficients vi,j,k for the Padé approximation of the vector self-energy Vp(T ,nB,δ) = Vn(T ,nB, − δ).

vi,j,k i = 1 i = 2 i = 3 i = 4 i = 5

k = 0 3403.94 −345.863 335 53.8 2.7078 18.7473
k = 1 −490.15 1521.62 4298.76 −0.162 553 4.094 836 4

j = 0 k = 2 −0.021 314 3 −2658.72 3692.23 −0.308 454 −0.030 801 2
k = 3 0.007 607 59 −408.013 −1083.14 −0.174 442 −0.751 981
k = 4 0.026 510 9 −132.384 −728.086 −0.058 1052 −0.585 746

k = 0 −0.000 978 098 29.309 −192.395 0.016 145 6 −0.102 959
k = 1 −0.000 142 646 −8.80748 −52.0101 −0.001 451 71 −0.044 524

j = 1 k = 2 0.001 769 29 −236.029 −141.702 −0.068 964 3 −0.308 021
k = 3 0.000 437 52 13.7447 −57.9237 −0.000 039 879 4 −0.019 092 1
k = 4 −0.003 217 24 111.538 −11.4749 0.031 799 6 0.086 952 9

k = 0 0.000 065 160 9 3.633 22 15.2158 0.001 051 79 0.011 804 9
k = 1 0.000 009 816 8 0.016 349 5 3.866 52 0.000 192 765 0.002 114 1

j = 2 k = 2 −0.000 039 403 6 6.882 56 −0.785 201 0.002 037 28 0.007 054 8
k = 3 0.000 038 140 7 −0.369 704 1.596 25 0.000 005 614 67 0.000 565 564
k = 4 0.000 110 931 −3.287 49 2.0419 −0.000 932 046 −0.001 827 14
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The vector self-energy Vp(T ,nB,δ) = Vn(T ,nB, − δ) is
approximated as

Vp(T ,nB,δ) = v1(T ,δ) nB + v2(T ,δ) n2
B + v3(T ,δ) n3

B

1 + v4(T ,δ) nB + v5(T ,δ) n2
B

,

(D3)

with coefficients

vi(T ,δ) = vi,0(δ) + vi,1(δ) T + vi,2(δ) T 2,

vi,j,k(δ) = vi,j,0 + vi,j,1 δ + vi,j,2 δ2 + vi,j,3 δ3 + vi,j,4 δ4.

(D4)

Parameter values are given in Table IV.
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Phys. Rev. C 84, 055804 (2011).
[45] S. Typel, arXiv:1504.01571 [nucl-th].
[46] S. Typel, H. H. Wolter, G. Röpke, and D. Blaschke, Eur. Phys.
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