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We present an efficient implementation of the Density Matrix Renormalization Group (DMRG) algorithm that
includes an optimal ordering of the proton and neutron orbitals and an efficient expansion of the active space
utilizing various concepts of quantum information theory. We first show how this new DMRG methodology
could solve a previous 400 keV discrepancy in the ground state energy of 56Ni. We then report the first DMRG
results in the pf + g9/2 shell model space for the ground 0+ and first 2+ states of 64Ge which are benchmarked
with reference data obtained from a Monte Carlo shell model. The corresponding correlation structure among the
proton and neutron orbitals is determined in terms of two-orbital mutual information. Based on such correlation
graphs we propose several further algorithmic improvement possibilities that can be utilized in a new generation
of tensor network based algorithms.
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Large-scale shell model calculations in physically sound
valence spaces are the prime choice in the nuclear spectroscopy
of light and medium mass nuclei. The catch is that the
dimensions of the basis (the number of Slater determinants)
grow as the product of the two combinatorial numbers made
with the number of single-particle states (n,l,j,m) in the
valence space and the number of particles, for neutrons and
protons. Modern shell model codes can cope with dimen-
sions O(1011) [1]. Going beyond this limit requires clever
truncation and extrapolation schemes. In addition, different
approximation methods may be implemented. Among them,
perhaps the most accurate is the Monte Carlo shell model
(MCSM) that stochastically samples the Hilbert space to find
the relevant basis states for the description of a particular
eigenstate [2]. Several improvements have been added to the
original methodology over the years, making the MCSM a
robust and accurate technique to study medium-mass nuclei.
The most important are the sequential conjugate gradient
to select the Slater determinants and the parity and angular
momentum projection of the determinants, plus an energy
variance extrapolation method [3,4].

Another efficient numerical tool to approximate the exact
wave function in a truncated basis is the Density Matrix
Renormalization Group (DMRG) method [5] that was earlier
introduced in nuclear structures either in the particle-hole basis
(phDMRG) [6,7] or in the j-coupling scheme (JDMRG) [7,8].
Both methods found difficulties in treating systems beyond
the limits of an exact diagonalization. However, phDMRG
in the j-coupling scheme has been successfully applied to
the Gamow shell model of weakly bound light nuclei [9,10]
due to the weak entanglement between the valence space
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and resonances with the discretized continuum. Moreover,
a standard implementation of DMRG to nuclear structure
found a serious discrepancy of 400 keV for the 56Ni ground
state energy in the pf shell [11]. These results hindered
further application of the DMRG method to medium-size
nuclei. Meanwhile, there have been important efforts made
to implement DMRG in quantum chemistry (QC-DMRG)
[12] by utilizing various concepts of quantum information
theory [13–16]. Nowadays, DMRG is capable of providing
the low-lying energy spectrum of complex molecules with
great accuracy [17–21] and it has ranked among the standard
multireference QC methods.

In this Rapid Communication we will use the new QC-
DMRG techniques to overcome first the 400 keV discrepancy
found in the 56Ni calculations in the pf shell. Afterward,
we will show how DMRG can deal with nuclei well beyond
the limits of an exact diagonalization by studying 64Ge in
the pf and in the enlarged pf + g9/2 valence space, and
compare our results with benchmark calculations of MCSM.
As a byproduct of the method, we will depict the single-site
entropy and mutual information of 64Ge, shedding new light
on the landscape of entanglement and correlations in nuclear
structure.

In our DMRG implementation we study the most general
Hamiltonian with one- and two-body interaction terms given as

H =
∑

α

εαc†αcα + 1

2

∑

αβγ δ

Vαβγ δc
†
αc

†
βcδcγ , (1)

where c†α and cα creates and annihilates a particle with
quantum numbers α = (n,l,j,m,τz).

In the so-called C2 representation an orbital can be either
empty or occupied, thus the dimension of the local Hilbert
space, �i of a single orbital, q = dim �i is 2. The full Hilbert
space of a finite system comprising N orbitals, �(N), is built
from tensor product spaces of local orbital spaces �i , which
can be written as �(N) = ⊗N

i=1�i .
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In the DMRG method, quantum correlations are taken into
account by an iterative procedure that variationally minimizes
the energy of the Hamiltonian given by Eq. (1). The method
eventually converges to the full configuration interaction (CI)
solution within the selected active orbital space. In the two-site
DMRG variant [5,22], �(N) is approximated by a tensor
product space of four tensor spaces defined on an ordered
orbital chain, i.e., 	

(N)
DMRG = 	(l) ⊗ �i+1 ⊗ �i+2 ⊗ 	(r).

The basis of states 	(l) comprises i orbitals to the left of
the chain (l ≡ left) and that of 	(r) comprises N − i − 2
orbitals to the right of the chain (r ≡ right). These states
are determined through a series of unitary transformations
based on the singular value decomposition (SVD) theorem
by going through the ordered orbital space from left to right
and then sweeping back and forth [20,22]. The number of
block states, Ml = dim 	(l) and Mr = dim 	(r), required to
achieve sufficient convergence can be regarded as a function
of the level of entanglement among the orbitals [13,23].
The maximum number of block states Mmax = max (Ml,Mr )
required to reach an a priori defined accuracy threshold
is inherently determined by truncation error, δεTR, when
the dynamic block state selection (DBSS) approach is used
[24]. During the initial sweeps of the DMRG algorithm
the accuracy is also affected by the environmental error,
δεsweep. The latter error can be reduced significantly by taking
advantage of the CI-based dynamically extended active space
(CI-DEAS) procedure [13,25] and using a large number of
DMRG sweeps until the energy change between two sweeps
is negligible. In the CI-DEAS procedure the active space of
orbitals is extended dynamically based on the orbital entropy
profile [15]. Mmax depends strongly on the orbital ordering
along the one-dimensional chain topology of the DMRG
method [24,26]. There exist various extrapolation schemes to
determine the truncation-free solution [21]. In this work, due to
the high level of entanglement of the nuclear wave functions,
we carry out the extrapolations as a function of the total number
of block states M . Using E(M) = E(M → ∞) + X1M

X2

we have estimated the truncation-free solution where
E(M → ∞),X1 and X2 are free parameters of our fit [27].
We have performed between 30 to 90 sweeps by requiring the
energy change between two sweeps to be below 10−4 MeV.

The amount of contribution to the total correlation energy of
an orbital can be quantified by the single-orbital von Neumann
entropy [13], si = −Trρi ln ρi , where ρi is the reduced density
matrix of orbital i. The two-orbital von Neumann entropy
sij is constructed similarly using the reduced density matrix
ρij of a subsystem built from orbitals i and j , and the
mutual information Iij = sij − si − sj describes how orbitals
are correlated with each other as they are embedded in the
whole system [14,15,28]. The orbital ordering is determined
by the minimization of the entanglement distance expressed
as Idist = Iij |i − j |η where η � 1. [14,15]. In this work we
used η = 2 in order to carry out the optimization task using
concepts of spectral graph theory [29].

Our DMRG code for nuclear structure calculations is
composed of two phases. The preprocessing phase in which
the orbital ordering and the active space vectors are optimized
by calculating the one-orbital entropy and two-orbital mutual
information using a fixed small number of block states. The

production phase in which an accurate calculation is performed
using a large fixed number of block states or the DBSS
procedure in order to reach an a priori set accuracy threshold
[30]. The preprocessing phase takes only a small fraction of
the total computational time.

First we perform the DMRG calculation for the sd nucleus
28Si employing the USD interaction [31]. This system was
treated almost a decade ago by the DMRG method [11]. By
keeping fixed M = 1024 block states we have reproduced the
exact value of the 0+ ground state energy and excitation energy
of the first 2+ state. Using the quantum information entropy
based ordering optimization, the CI-DEAS procedure, and the
DBSS approach with Mmin = 256 and δεTR = 10−3 − 10−6

we determined the ground state energy within the a priori
set accuracy threshold. This drastic improvement clearly
demonstrates the importance of the quantum entropy based
optimization procedures.

Next we consider the nucleus 56Ni with the KB3 interaction
[32,33]. The exact results in pf valence space were obtained by
the code ANTOINE [1]. The basis dimension in the m-scheme
for Jz=0 is 1.1 × 109. In Fig. 1(a) the DMRG ground state
energy for 56Ni is shown as a function of 1/M . For small
M values a downward curvature governs the behavior of the
scaling function (indicated by the dotted lines); while for
large enough M values, an inflection point is reached and an
upward curvature becomes apparent. Our lowest variational
energy obtained with M = 4096 states is E

(Ni)
GS (M = 4096) =

−78.451 MeV, thus the error compared to the exact value,
Eexact = −78.465 MeV, is 1.4 × 10−2 MeV.

Using the fit function defined above we have estimated
the ground state energy in the M → ∞ limit as E

(Ni)
GS (M →

∞) = −78.463(4) MeV. The deviation from the exact ground
state energy is in the order of a few keV’s. Therefore, using
entropy based optimized DMRG methodology we could solve
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FIG. 1. (Color online) DMRG ground state energy for 56Ni and
64Ge in the pf shell and 64Ge in the pf + g9/2 valence space as
functions of 1/M; diamonds (DMRG), crosses (exact diagonaliza-
tion), circle (MCSM). The solid lines are the fits that produce our
extrapolated value, while the dotted lines joining the points not used
in the fit are just to guide the eye.
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the previous 400 keV discrepancy in the ground state energy
of 56Ni reported in Ref. [11].

Next we study 64Ge in the pf valence space for which
we have used the GXPF1A interaction [34,35]. The DMRG
results for the pf valence space are displayed in Fig. 1(b).
Our lowest variational energy obtained with M = 4096 states
is E

(Ge)
GS (M = 4096) = −304.163 MeV which extrapolates to

E
(Ge)
GS (M → ∞) = −304.182(3) MeV while the exact energy

obtained with the code ANTOINE is Eexact = −304.183 MeV.
Therefore, the error is again in the keV range.

Being confident with the results obtained in the pf shell,
we proceed to explore the ability of DMRG to describe
accurately the structure of nuclei in valence spaces that
exceed the limits of an exact diagonalization. With this in
mind, we study 64Ge in the extended space pf + g9/2
(dimension in m-scheme 1.7 × 1014) which was already
considered using moment methods [35] and the MCSM [4,36].
In this case the GXPF1A interaction has to be completed
with the matrix elements between the pf -shell orbits and
the g9/2 obtained in a standard G-matrix calculation. [37]
In addition, the spurious center of mass contamination is
treated with Lawson’s ansatz [38]. Within this extended
valence space we found a significantly slower convergence
rate as a function of M as can be seen in Fig. 1(c). Even
using up to M = 3072 block states the inflection could
not be reached, thus the upward curvature did not become
apparent yet. Therefore, the estimated energy using our fit
function overshoots the reference MCSM energy (EMCSM =
−306.066) MeV and can provide only a lower bound which we
found to be E

(Ge)
GS (M → ∞) = −307.4 MeV. An upper bound

can be estimated using a second-order polynomial fit giving
E

(Ge)
GS (M → ∞) = −305.5 MeV. The extrapolated MCSM

reference energy lies within the two bounds given above.
Due to the slow scaling of the energy as a function of 1/M,
significantly more block states are needed to provide a reliable
extrapolation.

Besides optimization procedures the entanglement analysis
is also very important to obtain physical information encoded
in the wave functions [16,28,30,39]. The single-orbital entropy
and two-orbital mutual information obtained with DMRG for
64Ge are shown in Fig. 2 for an ordering with protons situated
on the left side and neutrons on the right side of the chain. For
clearness of the physical picture we have selected the spherical
Hartree-Fock ordering of the single-particle orbits instead of
the optimal ordering used in the DBSS procedure.

The single-orbital entropy profiles reflect the strong con-
figuration mixing in the wave function. The magnetic states
belonging to the same orbital have the same entropy within the
numerical accuracy. The small differences in the single-orbital
entropy within a given j -shell are due to the fact that, even
though in the present application we have controlled the
number of protons and neutrons and the Jz quantum number,
we do not enforce total angular momentum conservation. Such
differences get smaller with lowering the accuracy threshold
or increasing the number of block states leading to a better
conserved J 2 value. Alternatively it could be possible to
incorporate angular momentum conservation in the code along
the lines of Refs. [7–10]. The entropies of the p1/2 and p3/2
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FIG. 2. (Color online) Single-site entropy (a) and mutual infor-
mation (b) obtained with DMRG for 64Ge in the pf + g9/2 shell. The
mutual information matrix elements are shown on a ladder topology
with time-reversed pairs in the rungs. Circles and diamonds label
proton and neutron orbitals, respectively, and sites are denoted by
l,j,m with +m outside the ladder and −m inside.

orbitals are very close to the upper limit ln 2 = 0.693 which
corresponds to the maximally mixed state. Orbitals with the
largest entropies contribute the most to the correlation energy,
thus their accurate treatment is mandatory. As expected, the
entropy profiles show that the p1/2, p3/2, and f 5/2 orbits
play a dominant role in the physics of the system, whereas
the presence of the f 7/2 orbit is non-negligible and that of
the g9/2 is minor. Notice that these three highly entangled
orbits close a pseudo-SU(3) symmetry which enhances the
quadrupole-quadrupole correlations, as will be apparent in the
mutual information diagram.

The two-orbital mutual information shows how orbitals are
correlated with each other. The rungs of the ladder display
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the degree of entanglement between time reversed states
of like particles. The fact that the mutual information is
approximately equal for the p1/2, p3/2, and f 5/2 orbits,
and independent of their jz projections, is consistent with the
presence of a strong T=1 proton-proton and neutron-neutron
pairing coherence. The same coherence, though significantly
less intense, is seen in the f 7/2 and the g9/2. Proton-neutron
T=1 pairing correlations could also be seen between time
reversed and charge conjugated states for the p1/2, p3/2,
and f 5/2 orbits. We could also see significant entanglement
between proton-neutron maximally aligned states for the
p3/2 and f 5/2 orbits, which could be related to J = 2jz

pairing and/or quadrupole-quadrupole in the T=0 channel.
Similarly, quadrupole correlations can be observed inside the
ladder (proton-proton and neutron-neutron) as well as those
connecting opposite sites (proton-neutron) of the ladder for
the p1/2, p3/2, and f 5/2 orbits.

Let us consider now the excitation energies of the 2+ states.
It is worth remarking that even in the case when the ground
state energy could not be determined with the desired accuracy,
the energy difference between two states can be obtained more
accurately due to cancellation of errors by targeting the two
lowest lying eigenstates simultaneously. The exact value of
the 2+ excitation energy for 28Si can be reproduced with
M = 1024 block states. For 56Ni, using fixed M = 2048 block
states, we obtain �E = 5.218 MeV to be compared with the
exact value 5.125 MeV, with an absolute error of 93 keV. For
64Ge in the pf shell we get �E = 0.922 MeV compared
with the exact value 0.906 MeV, the absolute error being
now 16 keV. Using the fitting procedure to extrapolate the 2+
excitation energies to M = ∞ we obtain 5.121(3) and 0.907(2)
MeV for 56Ni and 64Ge. Indeed the agreement is excellent.

When the pf + g9/2 valence space is considered we found
a slower convergence rate as a function of 1/M due to the more
complex entanglement structure in the system. Figures 3(a) and
3(b) show the 2+ excitation energies of 64Ge as a function of
1/M for the pf shell and pf + g9/2 shell, respectively. The
solid lines represent the fitted values. In the latter case the exact
solution is not available, thus the extrapolated MCSM energies
[36], �E = 0.919 (without reordering) or �E = 0.890 (with
reordering), can be taken as benchmark references and are
indicated by the blue diamond symbol. Our extrapolated
excitation energy �E = 0.90(2) is in good agreement with
the MCSM result.

In this work we have demonstrated that the DMRG method
including various novel optimization algorithms based on
quantum information theory can be applied efficiently to
nuclear structure calculations for medium-mass nuclei in
extended valence spaces with dimensions exceeding the limits
of an exact diagonalization. The DMRG results for the ground
state energy of 64Ge in the pf + g9/2 valence space could
be further improved in order to obtain a reliable estimate for
the truncation-free limit. However, the excitation energy of
the first 2+ is in excellent agreement with MCSM benchmark
results. By calculating the single-orbital and two-orbital mu-
tual information we have determined the correlation structure
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FIG. 3. (Color online) Energy gaps between the 0 and 2+ states
for 64Ge with pf (a) and pf + g9/2 (b) valence space as a function
of 1/M; circles (DMRG), cross (exact diagonalization), diamond
(MCSM). The solid lines are our fits.

among the orbitals. These entanglement graphs, based on
recent developments in QC applications [20], constitute a novel
and highly precise tool to picture wave-function correlation
properties. The analysis of these entanglement graphs suggests
new alternatives for efficient truncation methods that can be
developed on general grounds. A straightforward extension of
the DMRG algorithm could be the use of local tensors with
�i of dimension q = 4, but unlike the QC implementations,
the states to include in this tensor should be time-reversed
pairs in order to optimize the treatment of nuclear pairing
correlations. As a final remark, the use of tree-tensor network
state (TTNS), which is a recent development in quantum
information theory [40–42], could tackle the problem of
having equal single entropy values for each orbital group that
makes inefficient a sequential treatment of these states within
an ordered chain. Within this scheme, several orbitals with
equally large entropy values could form the central shells of
the TTNS network. These new developments could certainly
open the field of medium to heavy nuclei to highly precise
spectroscopic calculations.
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