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Deduction of an invariant-mass spectrum M(�π) for �(1405) with mixed T�π←K− p and T�π←�π

from Hemingway’s data on the �+(1660) → �(1405) + π+ → (�π)I=0 + π+ processes
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We formulated the �(1405) (abbreviated as �∗) → (�π )0 invariant-mass spectra produced in the K− + p →
�+(1660) + π−, followed by �+(1660) → �(1405) + π+ → �π + π+, processes at p(K−) = 4.2 GeV/c, in
which both the incident channel for a quasibound K−p state and its decay process to (�π )0 were taken into account
realistically. We calculated M(�π ) spectral shapes using mixed transition matrices, T21 = T�π←K−p and T22 =
T�π←�π , for various theoretical models involving �∗. The asymmetric spectra were compared to old experimental
data of Hemingway, and it was found that the mixing of the two channels, written as (1 − f ) T21 + f T22, gave
a better result than considering the individual channels, yielding f = 0.376+0.021

−0.019, M(�∗) = 1406.6+3.4
−3.3 MeV/c2

and � = 70 ± 2 MeV, nearly consistent with the 2014 PDG values.
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I. INTRODUCTION

Historically, in 1959 Dalitz and Tuan [1] predicted the
existence of a strange quasibound state of K− + p → � + π
with I = 0 in their analysis of experimental K̄N scattering
data. In 1961 its experimental evidence was found from
the mass spectrum, M[(�π )0], in the reaction K− + p →
(�π )0 + π+π− at pK− = 1.15 GeV/c [2]. The resonant state
of �(1405) with J = 1/2,I = 0,S = −1, called �(1405), is
located below the K̄N threshold, and decays to �π . After
half a century, this state has been certified as a four-star
state in Particle Data Group data [3]. According to Dalitz
and Deloff [4], from an M-matrix fit to experimental data of
Hemingway [5], the mass and width of this resonance were
obtained to be M = 1406.5 ± 4.0 MeV/c2 and � = 50 ±
2 MeV. It is interpreted as a quasibound state of K̄N coupled
with continuum state of �π . The 27-MeV binding energy
of K− + p indicates a strongly attractive K̄N interaction,
and a series of deep and dense K̄ nuclear systems were
predicted based on the K−p-�π coupled-channel calculations
[6–11]. In the mean time, chiral dynamics theories suggested
two poles [12,13] in the coupled K̄N − �π scheme, to
which counter arguments were given [14]. In the double-pole
hypothesis the K̄N attraction mainly arises from the upper
pole lying around 1420 MeV/c2 or higher, and thus becomes
much weaker, and may thus contribute only to shallow K̄
bound states. The question as to whether the K−p bound state
is deep or shallow is of great importance from the viewpoints
of kaon condensation [15,16], but still remains controversial.
Experiments of Braun et al. at CERN [17] and of Zychor
et al. at COSY [18] provided some interesting data, but they
are statistically poor. More recently, Esmaili et al. [19,20]
analyzed old bubble-chamber data of stopped-K− on 4He [21]
with a resonant capture process, and found the best-fit value
to be M = 1405.5+1.4

−1.0. Hassanvand et al. [22] analyzed recent
data of HADES on p + p → p + K+ + �(1405) [23], and
subsequently deduced M = 1405+11

−9 MeV/c2 and � = 62 ±
10 MeV. Now, the new PDG values [24] have been revised

to be M = 1405.1+1.3
−1.0 and � = 50.5 ± 2.0, upon adopting the

consequences of these analyses. Concerning the most basic K̄
bound state, K−pp predicted in [7,11], experimental evidence
for deeply bound states has been obtained by FINUDA [25],
DISTO [26], and J-PARC E27 [27].

In the present paper we provide a theoretical formulation to
analyze the old experimental data of Hemingway at CERN in
the reaction K−p → �+(1660) + π− → �(1405) + π+ +
π− → (�π )I=0 + π+ + π− processes at 4.2 GeV/c. The
intermediate resonance state �+(1660) was well selected in the
initial reaction channel of K− + p → �+(1660) + π−. These
date have been analyzed by many theoreticians, but ended
with unsatisfactory consequences. One of the reasons might be
because they did not examine the nature of the transitions from
�+(1660) in terms of both K− + p → � + π (expressed
by T21 = T�π←K−p) and � + π → � + π (expressed by
T22 = T�π←�π ). There were uncertainties in the selection
between T21 and T22, and the data were often fitted by only T22.
Also, fitting was made for a Breit-Wigner shape, which is not
justified because the resonance zone exceeds the kinematically
allowed limits [22,28].

We show in Fig. 1 the level scheme of the decay of
�+(1660) into a K−p quasibound state embedded in the
continuum of (� + π )I=0. There are two possible diagrams
(a) and (b), which correspond to T21 and T22, respectively.
Regarding the formation process, it is not obvious which of T21

or T22 is responsible for the Hemingway process that undergoes
through �+(1660). We thus set up arbitrarily mixed transition
matrices, T21 + T22, for any kind of the K̄N interaction model
so as to find the best fit with the experimental data without
any prejudice. In addition, it is vitally important to take care
of the broad distribution of the �(1405) resonance, whose
mass ranges between M(�) + M(π ) = 1330 MeV/c2 and
M(K−) + M(p) = 1430 MeV/c2. Under these conditions the
resonance shape can never be of a symmetric Breit-Wigner
type, but should be very much skewed. Here, we follow our
former treatments [22].
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FIG. 1. (Color online) Diagrams for the �+(1660) → π+ +
�∗ → π+ + (�π )0 reaction for (a) the process through T�π←K−p

(T21) and (b) the process through T�π←�π (T22) channels.
(c) Schematic picture of the coupled-channel model in which the
K−p quasibound state is treated as a Feshbach resonance, including
two channels, K̄N and �π .

II. FORMULATION

A coupled-channel treatment of �(1405) employed in this
paper is described in [22,28]. We use a set of separable
potential with a Yukawa-type form factor,

〈�k′
i |vij |�kj 〉 = g(�k′

i) Uij g(�kj ), (1)

g(�k) = �2

�2 + �k2
, � = mBc

h
, (2)

with � being a range parameter, depending on the mass of
exchanged boson (mB), and

Uij = 1

π2

�
2

2
√

μiμj

1

�
sij , (3)

where i(j ) stands for the K̄N channel, 1, or the �π channel,
2, and μi (μj ) is the reduced mass of channel i(j ), and sij

′s
are nondimensional strength parameters. We obtain s11 and s12

from the M and � values of an arbitrarily chosen K−p state

to be used to calculate the �π invariant masses. It means that,
in our model, the strength parameters depend on the binding
energy and the width of �(1405) state as explained in detail
in Ref. [28]. In our coupled-channel model presented here, it
is obvious that the properly determined two parameters, s11

and s12, for any value of s22, can represent the resonance pole
without loss of generality. Here, we adopt s22 = −0.7, which
gives U22/U11 = 4/3 for �(1405) as in a “chiral” model, and
� = 3.9 fm−1.

As described in Ref. [19] in detail, we treat the K−p
quasibound state as a Feshbach resonance, and the coupled-
channel transition matrix,

〈�k′
i |tij |�kj 〉 = g(�k′

i) Tij g(�kj ), (4)

satisfies the following matrix equation:

Tij = Uij +
∑
i=l

UilGlTlj , (5)

with a loop function Gl :

Gl = 2μl

�2

∫
d �qg(�q)

1

k2
l − q2 + iε0

g(�q). (6)

The solution is given in a matrix form by

T = [1 − UG]−1U (7)

with

(UG)lj = −slj

√μj

μl

�2

(� − ikj )2
, (8)

and kj is a relative momentum in channel j .
The transition matrix elements in this framework are T11,

T12, T21, and T22, which constitute the experimentally observ-
able quantities below the K̄ + N threshold, (−1/π )Im(T11),
|T21|2k2 and |T22|2k2, where k2 is the �π relative momentum.
The first term corresponds to the K̄N missing-mass spectrum
and is proportional to the imaginary part of the scattering
amplitude given in Fig. 15 of Hyodo-Weise [13]. The second
term with g2(k2)g2(k1) is a �π invariant mass from the
conversion process, K̄N → �π (called in this paper as “T21

invariant mass”) which coincides with the K̄N missing-mass
spectrum in the mass region below the K̄ + N threshold
through the following formula, as has been derived from an
optical relation [19]:

ImT11 = |T21|2 Im(G2). (9)

Therefore the observation of a T21 invariant-mass spectrum
is just the observation of the imaginary part of the scattering
amplitude given in [13]. The third term with g4(k2) is a
�π invariant-mass spectrum from the scattering process,
�π → �π (called in this paper as “T22 invariant mass”). Two
observables of K̄N − �π coupled channels [as mentioned
above T11 channel is associated with T21 by Eq. (9)] calculated
by Hyodo and Weise’s chiral two-channel model [13] and
also in the framework of �(1405) ansatz of Akaishi and
Yamazaki [6] represented in Fig. 1 (upper) of Esmaili’s
paper [20]. This figure shows that the two curves of the
chiral model have peaks at different positions (1420 and
1405 MeV/c2) but Akaishi and Yamazaki’s T21 and T22
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invariant mass spectra have peaks near 1405 MeV/c2. Within
this theory the peak positions can be varied. The main purpose
of this paper is to determine the peak position of these two
channels by comparing with experimental observables.

The level scheme for �+(1660) → �∗ + π+ → (�π )0 +
π+ is shown in Fig. 1. It proceeds to either the K− + p
channel forming the �∗ resonance, then decaying to �π ,
which corresponds to the diagram (a) (T21). Another process
is to emit � + π , which forms �∗, then decaying to � + π , as
represented by T22 in (b). Therefore there are two “incident
channels” to bring �(1405) state: one is K− + p and the
other is � + π . This picture was also shown by Geng and
Oset [29] in a different framework. In the mechanism given in
the present paper, the resonance state �∗ is a Feshbach state, in
which a quasibound K−p state is embedded in the continuum
of �π .

The theoretical framework for calculating the decay rate of
�(1405) to (�π )0 was given in detail in [14,28]. To calculate
the decay rate function, we take into account the emitted �
and π particles realistically, following the generalized optical
formalism in Feshbach theory [30]. The decay function,
G(x) with x = M�π being the invariant mass, is not simply
a Lorentzian but is skewed because the kinetic freedom of
the decay particles is limited. The general form of G(x) is
given as

G(x) = 2(2π )5

(�c)2

E�Eπ

E� + Eπ

Re[k] |〈k | t |k0〉|2, (10)

where k0 and k are the relative momenta in the initial and final
states written as

�k0 = c
√

λ(x,mK,Mp)

2�x
(11)

and

�k = c
√

λ(x,mπ,M�)

2�x
(12)

with

λ(x,m1,m2) = (x + m1 + m2)(x + m1 − m2)

× (x − m1 + m2)(x − m1 − m2). (13)

The kinematical variables in the c.m. framework of the
decay process of T21 and T22 channels are given in Fig. 2 of
Ref. [22].

In this way the decay rate of �(1405) → � + π process via
two so-called “incident channels” K− + p → �(1405) and
� + π → �(1405) as shown in Fig. 1(a) and (b) is obtained.
Equation (10) with Eqs. (1) and (2) is completed and the
invariant mass spectra of T21 and T22 channels calculated using
Eq. (4). As we show in Fig. 3(c) in our previous work [22],
these spectra do not depend on the incident energy of the
Hemingway experiment, E(K−) = 4.2 GeV, in the laboratory
and for all values of E(K−) the shape of the spectrum does not
change. G(x) is a unique function of x = M�π (invariant mass)
associated with mi (mass of K−, p, �, and π particles) and is
bounded by the lower end (Ml = M� + Mπ = 1328 MeV/c2)
and the upper end (Mu = Mp + MK− = 1432 MeV/c2).

It should be noted here that by changing the width of the
spectrum, the position of the peak in G(x) moves, and is

different from the position of the pole (M = 1405 MeV/c2). In
the next section we present the G(x) function as S(x; M,�) to
obtain the χ2 value. S(x; M,�) spectrum has a peak and a width
in the region of the experimental data (1330–1430 MeV/c2).
We first consider the binding energy and the width of the pole
as two free parameters and calculate the spectrum. Then we
compare these theoretical curves to the experimental data using
a χ2 test which gives us the degree of fitting as to how well our
model actually reflects the data. In Sec. III we discuss some
results of current model and compare them to Hemingway’s
experimental data.

III. FITTING RESULTS

The 11 points of Hemingway’s data, (Ni ± σi) for i =
1, . . . ,n, cover a mass spread from M = 1330 MeV/c2

(�π threshold) to M = 1430 MeV/c2 (K−p threshold) [5].
Previously, these data were fitted by a Breit-Wigner function,
K-matrix calculation, and another model, namely, an extended
cloudy bag model, as given in Ref. [5]. The Breit-Wigner
function makes a poor fit to the data, yielding a mass and width
of �(1405) as 1391 ± 1 MeV/c2 and 32 ± 1 MeV, while the
K-matrix method results in 1411.4 ± 2.0 MeV/c2 and 79.6
MeV for its mass and width [4].

The main purpose of the present paper is to fit the
experimental data to our theoretical curves given in the
preceding section so that the best fit with the least χ2 value
can be deduced. The theoretical spectral curve, S(x; M,�), is a
function of the invariant-mass (x = M�π ) with the mass (M)
and the width (�) of the �∗ resonance as parameters. Then,
χ2 will be defined as

χ2(M,�) =
∑ (

Ni − S(xi ; M,�)

σi

)2

, (14)

where Ni are the experimental data, σi are the errors of the
data.

Using the χ2 method, the best possible fit has been obtained
between the spectrum shape of the �π invariant mass, given
from the T21 (K−p → �π ) and T22 (�π → �π ) channels
and Hemingway’s experimental data. For this work we faced a
two-dimensional plane consisting of the mass of �∗ (M) and its
width (�), so that by varying each of these parameters χ2 val-
ues could be obtained. Our purpose in this section is to describe
how we obtained a pair of (M�∗ ,�) that give the minimum χ2.

We first overview how the theoretical S(M,�) curves be-
have in comparison with the experimental data in Fig. 2, where
calculated curves are shown together with the experimental
data. The upper (or lower) two frames, specified with (a) [or
(c)] and (b) [or (d)] in the figure, give curves for the T21(or T22)
channel with assumed masses of M = 1405 MeV/c2 (left)
and 1420 MeV/c2 (right), both with five different curves
corresponding to assumed values of � = 30, 40, 50, 60,
and 70 MeV. The experimental data reveal a broad bump
at around 1400–1420 MeV/c2 with a long lower tail. A
very characteristic feature of the theoretical curves is their
asymmetric and skewed shapes, which can be understood in
terms of the broad resonance located in the limited mass range.
When � is small, the curve shows a distinct peak at around the
assumed mass, M , but the lower tail part cannot be accounted
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FIG. 2. (Color online) Spectra of the |T21| channel [(a),(b)] and the |T22| channel [(c),(d)] for a fixed M�∗ of 1405 [(a),(c)] and 1420 [(b),(d)]
MeV/c2 and for � values from 30 to 70 MeV by 10 MeV steps. The experimental values of Hemingway [5] are shown by closed circles with
error bars. The χ 2 values from fitting to each curve are shown.

for. On the other hand, when � becomes large, the lower
tail component increases too much. At around � ∼ 50 MeV
a very crude agreement is attained, but the χ2 value is still
large at around 50 compared with the expected χ2 value of
nDF = n − 3 ≈ 8.

Figure 2 shows typical T21 and T22 spectra with two
assumed masses, M = 1405 and 1420 MeV/c2. The very
broad character of the curves does not seem to allow good
agreement with the experimental data at all. These figures show
K̄N threshold effects on the �π invariant mass spectrum,
|t21|2k2 and |t22|2k2. When the width is sufficiently narrow, the
spectrum is almost symmetric with a peak close to the assumed
pole position [22]. When the width becomes wide, the peak
position is lowered from the pole position, and spectrum shape
changes to a skewed one; this is the K̄N threshold effect on
the spectrum. Although the M value is assumed to be constant,
the peak position shifts upon changing the � value. In the case
of a fixed �, as we change the M value, the peak position
shifts slightly from the pole position (compare the right frame
of Fig. 2 to the left one).

Because of the poor agreements between the experiment
and theory using T21 and T22 alone, one might give up any
fitting, but we now attempt to consider the case of mixed T21

and T22 transitions. This means that the shape of the spectrum
is not produced from the T21 or T22 channel alone, but a mixture
of both channels with different contributions is considered as
follows:

Tmixed = (1 − f ) T21 + f T22 (15)

with f being a complex constant parameter. The percentages
of T21 and T22 are |1 − f |2/(|1 − f |2 + |f |2) and |f |2/(|1 −
f |2 + |f |2), respectively.

For this purpose, various combinations of the two channels
were taken into account, and the shape of the spectra was
plotted again. The situation is very complicated, since the
vector addition of the complex functions T21 and T22 behaves in
very strange ways. We show all the fitted curves with smoothly
varying parameter values in the Appendix of a preprint version
of this paper [31].
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FIG. 3. (Color online) (Upper) χ 2 versus f and (lower) M and
� versus f . The best fit corresponds to f = 0.376+0.021

−0.019, M =
1406.6+3.4

−3.3 MeV/c2, � = 70 ± 2 MeV, with χ 2 = 3.3 being shown
by the vertical dotted line.

Changing in f alters the contribution of different channels,
and the shape of the spectra is modified, where a shift of
the peak position occurs. Once more, the best-fit process was
iterated by varying f smoothly. In fact, we were in a four-
dimensional presentation of the M − � − f − χ2 parameters,
where the minimum χ2 occurs only at one point; when f
comes close to a number of 0.376, which is equivalent to
27% of T22 and 73% of T21 contributions, the best result was
obtained.

Increasing the f values causes a change in the shape of the
spectrum, and makes the fit worse. In Fig. 3 we plot χ2 versus
f (upper) and M versus f (lower). The parabolic behavior of
the upper figure shows a minimum value of 3.3 for χ2.

Different complex numbers were checked for f , but
real numbers produced a better outcome. This significant
shape of the spectrum is illustrated in Fig. 4 (lower), where
Hemingway’s data, our theoretical curve according to the best-
fit parameters, and two curves of Hyodo-Weise’s T -matrix
calculation for T21 and T22 channels are combined together.
This figure indicates that the spectra of the “chiral-weak”
theory of Hyodo-Weise [13] yield χ2 = 326 for the T21 channel
and χ2 = 80 for the T22 channel, neither of which is in
agreement with the experimental data. To make better sense of
these results, the confidence level (CL) contours of M versus
� are depicted at three levels of confidence (68%, 95%, and
99.9%) in Fig. 4 (upper). The most probable values, which
correspond to the 1σ uncertainty, are

f = 0.376+0.021
−0.019, (16)

M = 1406.6+3.4
−3.3 MeV/c2, (17)

� = 70 ± 2 MeV (18)

with χ2
MIN = 3.3.

The PDG 2014 values of M and � with their error bars are
also shown in the figure.

FIG. 4. (Color online) (Upper) Likelihood contour mapping of
M�π vs �, where the best-fit values are obtained in a three-
dimensional fitting of the Hemingway data with (M,�,f ). The results
are: M = 1406.6+3.4

−3.3 MeV/c2, � = 70 ± 2 MeV, f = 0.376+0.021
−0.019,

and χ 2 = 3.3. The contour curves are given for typical values of
likelihood of 68, 95, and 99.9 percent. (Lower) (solid curve) The
best-fit M spectrum in our mixed T21 and T22 channel procedure. The
present result is compared with individual |T21|2k and |T22|2k curves
of Hyodo and Weise [13]. The obtained mass from the present work
is shown by the vertical dashed line.

IV. CONCLUDING REMARKS

The invariant-mass spectra of the �(1405) → �π process
in the decay of �+(1660) produced in the K− + p reaction
at 4.2 GeV were theoretically calculated and compared to
experimental data of Hemingway, which covers a range from
the � + π threshold (1330 MeV/c2) to the K− + p threshold
(1430 MeV/c2). Each spectrum shows a broad and skewed
peak, reflecting both the �∗ pole and the lower and upper
thresholds. The two different T�π←K̄N (T21) and T�π←�π (T22)
channels were taken into account, but neither of them showed
good fits to the experimental spectrum. Then, a combination
of the two channels was attempted, and significantly better fits
were obtained with a χ2 minimum of 3.3. Finally, we obtained
the best-fit values presented in Eqs. (16)–(18).
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This result shows that the M value obtained from the
Hemingway data is in good agreement with those from other
old experimental data, summarized in Particle Data Group
2014, which further justifies the �∗ ansatz for deeply bound K̄
nuclei, based on the strongly attractive K̄N interaction [6–10].
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