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The baryon-strangeness correlation in the hadronization of quark matter is studied within the quark combination
mechanism. We calculate the correlation coefficient CBS = −3(〈BS〉 − 〈B〉〈S〉)/(〈S2〉 − 〈S〉2) of initial hadrons
produced from the deconfined free quark system with C

(q)
BS = 1. The competition of the production of baryons

against that of mesons is the key dynamics that is most relevant to the change of baryon-strangeness correlation
during system hadronization. Results of quark combination under the Poisson statistics agree with the statistical
model predictions for a hadron resonance gas at vanishing chemical potential but differ from those at relatively
large chemical potentials. Results beyond Poisson statistics are also obtained and are compared with calculations
of lattice QCD in the quark-hadron phase boundary. We predict the dependence of the CBS of the hadron system
on the baryon chemical potential and strangeness. These predictions are expected to be tested by future lattice
QCD calculations at nonzero chemical potentials and/or by the Beam Energy Scan experiment of the STAR
Collaboration at RHIC.
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I. INTRODUCTION

The baryon-strangeness correlation is an effective diagnos-
tic tool for the relevant degrees of freedom of the hot nuclear
matter produced in relativistic heavy-ion collisions [1]. It has
been extensively investigated by various phenomenological
models of high-energy collisions [2–7] and first-principles
calculations in lattice QCD [8–10]. The correlation is usually
quantified by [1]

CBS ≡ −3
〈BS〉 − 〈B〉〈S〉

〈S2〉 − 〈S〉2
= −3

〈BS〉
〈S2〉 . (1)

Here, angle brackets denote the event or ensemble average.
In the second step, strangeness neutrality 〈S〉 = 0 is ap-
plied to relativistic heavy-ion collisions. For a deconfined
system consisting of free quarks and antiquarks, C

(q)
BS = 1

because strangeness is carried only by the strange (anti)quarks
which carry the baryon number in strict proportion to their
strangeness with the coefficient −1/3, i.e., Bs = − 1

3Ss . In
contrast, the relation between baryon number and strangeness
in a hadron system is multiple, e.g., baryon number 1 for a
strange baryon but 0 for a strange meson. CBS of the hadron
system is usually smaller than 1 (at low baryon number density)
due to the fact that most strange quarks, at hadronization,
will come into mesons instead of baryons, which unlocks the
intimate baryon-strangeness correlation existing previously
in quarks. Statistical model estimation of CBS for a hadron
resonance gas at zero baryon number density is about 0.66 [1].
Calculations of lattice QCD show that the CBS of the strongly
interacting system at temperature above the phase transition
temperature Tc tends to 1, while near and below Tc the system
CBS decreases rapidly [8,9].

Hadronization refers to the process of the formation
of hadrons out of quarks and/or gluons, accompanied
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by the change of the correlation between baryon num-
ber and strangeness. Phenomenological models describing
the hadronization should reproduce this change of baryon-
strangeness correlation due to the transformation of the degrees
of freedom in the system. Quark combination is one of
the effective mechanisms for the hadronization of the hot
quark matter produced in relativistic heavy-ion collisions
and has explained many experimental phenomena in heavy-
ion collisions at SPS, RHIC, and recently LHC; see, e.g.,
Refs. [11–16]. The change of baryon-strangeness correlation
during quark combination hadronization is intuitive. A strange
quark (antiquark) combines with a light antiquark (quark)
to form a strange meson, which completely destroys the
original baryon-strangeness correlation carried by the strange
(anti)quark, i.e., B(sq̄) = 0 × S(sq̄), but inherits the strangeness
losslessly. Occasionally, a strange quark combines with a
strange antiquark to form a hidden-strange meson, which
inherits nothing from original quarks. On the contrary, in the
baryon formation a strange quark combines with two light
quarks to form a baryon, which alters the baryon-strangeness
correlation coefficient B(sqq) = −S(sqq). The combination of
two strange quarks with one light quark also alters the
correlation coefficient B(ssq) = − 1

2S(ssq). Obviously, the CBS

of the system depends on the relative proportion of the
produced baryons to mesons.

In this paper, we study the change of system CBS caused
by quark combination hadronization. We discuss in details
how the dynamics of baryon-meson production competition
at hadronization dominates the CBS of hadron system. In
addition, we study the dependence of CBS on the strangeness
content and the baryon number density of the system, which is
related to the hot quark system produced in relativistic heavy-
ion collisions at different collisional energies. We compare our
results with the calculations of lattice QCD [8,9] and the pre-
diction of the statistical model for a hadron resonance gas [1].

The paper is organized as follows. In Sec. II, we present a
working model in the quark combination mechanism (QCM)
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for the yields of hadrons. In Sec. III, using the model we
explain the experimental data of the mid-rapidity yields of
strange hadrons that are most relevant to CBS calculations in
central Pb+Pb collisions at

√
sNN = 2.76 TeV. In Sec. IV,

we calculate the CBS of the hadron system in which two
assumptions are made for initially produced hadrons. One
assumption is that different kinds of hadrons are uncorrelated,
which can be expected in the case in which the quark system
existing previously is made up of free quarks and antiquarks
(C(q)

BS = 1). We only consider this kind of quark system in this
paper since the effects of hadronization on system CBS are
already addressed properly. The other assumption is Poisson
statistics for yield fluctuations of hadrons. In Sec. V, we present
a different approach of calculating CBS which is beyond
Poisson statistics and can also reflect intuitively the essence
of baryon-strangeness correlation. Summary is finally given in
Sec. VI.

II. A WORKING MODEL OF HADRON YIELDS

In this section, we present a working model of the yields
of hadrons that are produced from the deconfined quark phase
after hadronization in the framework of quark combination
mechanism, for the facility of the subsequent correlation
studies. As discussed in the introduction, baryon-strangeness
correlation C

(h)
BS is strongly dependent on the relative pro-

duction of baryons to mesons, which requires our model to
well address this point. Therefore, we introduce the working
model according to the following strategy: (1) Give the global
properties for the global production of all mesons, all baryons,
and all antibaryons, in which the production competition of
baryons against mesons is properly addressed. (2) On the basis
of (1), give the yield formulas of various identified hadrons.

In previous work [17], we have studied the properties of
the global production of all mesons, baryons, and antibaryons,
and obtained their yield formulas utilizing only the basic ideas
of QCM. We start from a deconfined system consisting of
Nq constituent quarks and Nq̄ antiquarks. Here, the gluon
contribution to the system on the threshold of hadronization
is replaced by quark-antiquark pairs. After hadronization, the
system changes the basic degrees of the freedom to become
the hadronic system and produces on average B(Nq,Nq̄)
baryons, B̄(Nq,Nq̄) antibaryons, and M(Nq,Nq̄) mesons. Four
properties of hadron production from general principles are
used to constrain the behavior of their yield formulas.

(1) Charge conjugation symmetry of the hadron yields,

B(Nq,Nq̄) = B̄(Nq̄,Nq),

M(Nq,Nq̄) = M(Nq̄,Nq).
(2)

(2) Unitarity of the hadronization, i.e., production of
mesons, baryons, and antibaryons, should exhaust all quarks
and antiquarks of the system existing previously,

M(Nq,Nq̄) + 3B(Nq,Nq̄) = Nq,

M(Nq,Nq̄) + 3B̄(Nq,Nq̄) = Nq̄.
(3)

(3) Boundary condition, i.e.,

B̄ = 0, B = Nq

3
, M = 0 if Nq̄ = 0,

(4)

B̄ = Nq̄

3
,B = 0, M = 0 if Nq = 0.

(4) Linear response of meson and baryon yields to quark
antiquark numbers,

M(λNq,λNq̄) = λM(Nq,Nq̄),

B(λNq,λNq̄) = λB(Nq,Nq̄),

B̄(λNq,λNq̄) = λB̄(Nq,Nq̄).

(5)

Using these properties, we obtained in Ref. [17] the yield
formulas of baryons, antibaryons, and mesons,

M(x,z) = x

2

{
1 − z

(1 + z)a + (1 − z)a

(1 + z)a − (1 − z)a

}
,

B(x,z) = x z

3

(1 + z)a

(1 + z)a − (1 − z)a
, (6)

B̄(x,z) = x z

3

(1 − z)a

(1 + z)a − (1 − z)a
.

Here, we have rewritten x = Nq + Nq̄ which characterizes the
bulk property of the system related to the system size or energy
and rewritten z = (Nq − Nq̄)/x which depicts the asymmetry
between quarks and antiquarks in the system (|z| � 1) and is
a measurement of the baryon number density of the system.

The production competition of baryons against mesons is
often quantified by the yield ratios RB/M (z) = B(x,z)/M(x,z)
and RB̄/M (z) = B̄(x,z)/M(x,z), which are the function of
only z. The factor a in Eq. (6) represents the degree of the
baryon-meson competition by the relation a = 1

3RB/M (0) + 1.
Studies in Ref. [16] show that RB/M (0) of value about 1/12,
i.e., a ≈ 5, can well describe yield ratios of various baryons to
mesons in heavy-ion collisions at LHC energy. We note that
such a competition as well as yield formulas Eq. (6) can be
properly addressed by a phenomenological combination rule
in the quark combination model developed by the Shandong
group (SDQCM) [14]. In addition, using vested RB/M (0),
we have successfully explained the yield ratios of various
antihadrons to hadrons at the nonzero z region in relativistic
heavy-ion collisions [16–18], i.e., the data of these yield ratios
at different collision energies and at different rapidities. We
emphasis that through the dependence of C

(h)
BS on the factor a

or RB/M (0) we can address the effects of hadronization on the
baryon-strangeness correlation of the system.

To study C
(h)
BS , we have to obtain the yield formulas of

identified hadrons. Given the total yield of baryons, that of
antibaryons, and that of mesons, the inclusive/averaged yields
of identified hadrons Mi(q1q̄2), Bj (q1q2q3) are calculated by
their individual production weights,

NMi
= PMi

M(x,z) = CMi
Pq1q̄2,MM(x,z), (7)

NBj
= PBj

B(x,z) = CBj
Pq1q2q3,BB(x,z). (8)

Here, Pq1q̄2,M denotes the probability that, as a meson is known
to be produced, the flavor content of this meson is q1q̄2. CMi
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further denotes the branch ratio of this meson with given flavor
composition q1q̄2 to a specific meson state Mi . CMi

Pq1q̄2,M

thus gives the emerging probability of a specific meson, PMi
,

when a meson is known to be formed. Similarly, Pq1q2q3,B

denotes the probability that, as a baryon is known to produced,
the flavor content of this baryon is q1q2q3, and CBj

denotes
the branch ratio of this baryon with given flavor composition
q1q2q3 to a specific baryon state Bj , and CBj

Pq1q2q3,B thus
gives the emerging probability of a specific baryon, PBj

, when
a baryon is known to be formed. A similar formula holds for
antibaryons.

The probability Pq1q̄2,M is posteriorly evaluated by the
proportion of q1q̄2 pairs in all quark-antiquark pairs in the
system, Pq1q̄2,M = Nq1q̄2/Nqq̄ , by considering the fact that
every quark/antiquark has both the probability of entering into
a meson and the probability of entering a baryon/antibaryon.
Here, Nq = ∑

i Nqi
and Nq̄ = ∑

i Nq̄i
are total number of

quarks and antiquarks in the system, respectively. We have
Nq1q̄2 = Nq1Nq̄2 and Nqq̄ = NqNq̄ . Similarly, the probability
Pq1q2q3,B is evaluated by the proportion of q1q2q3 com-
binations to all three-quark combinations in the system,
Pq1q2q3,B = NiterNq1q2q3/Nqqq . Nq1q2q3 is the number of q1q2q3

combinations which satisfies Nq1q2q3 = Nq1Nq2Nq3 for q1 �=
q2 �= q3, Nq1q2q3 = Nq1 (Nq1 − 1)Nq3 for q1 = q2 �= q3, and
Nq1q2q3 = Nq1 (Nq1 − 1)(Nq1 − 2) for q1 = q2 = q3. Nqqq =
Nq(Nq − 1)(Nq − 2) is the number of all qqq combinations
in the system. In the large quark number limit we can apply
Nqqq ≈ N3

q and Nq1q2q3 ≈ Nq1Nq2Nq3 always. Niter stands for
the number of possible iterations of q1q2q3, which is 1, 3, and
6 for the cases of three identical flavors, two different flavors,
and three different flavors, respectively.

CMj
and/or CBj

denote the branch ratio of a given flavor
composition (e.g., us̄) to a specific hadron state (e.g., K+)
under the condition that they are known to form a hadron. In
the case in which the ground state JP = 0− and 1− mesons
and JP = 1

2
+

and 3
2

+
baryons are considered only, we have,

for mesons,

CMj
=

{
1/(1 + RV/P ) for JP = 0− mesons,
RV/P /(1 + RV/P ) for JP = 1− mesons,

where RV/P represents the ratio of the JP = 1− vector mesons
to the JP = 0− pseudoscalar mesons of the same flavor
composition; and for baryons,

CBj
=

{
RO/D/(1 + RO/D) for JP = (1/2)+ baryons,
1/(1 + RO/D) for JP = (3/2)+ baryons,

except that C� = C�0 = 2RO/D/(1 + 2RO/D), C�∗0 =
1/(1 + 2RO/D), C�++ = C�− = C�− = 1. Here, RO/D stands
for the ratio of the JP = (1/2)+ octet to the JP = (3/2)+
decuplet baryons of the same flavor composition. The two
parameters RV/P and RO/D can be determined using the data
from different high-energy reactions [14,19], and they are
taken to be 3 and 2 in this paper, respectively.

III. YIELDS OF STRANGE HADRONS AT LHC

With the above working model, we can conveniently predict
yields of various identified hadrons. As an illustration, we now
explain the experimental data of mid-rapidity yields of strange

hadrons K , �, �, and �− in Pb+Pb collisions at
√

sNN =
2.76 TeV. These hadrons are most relevant to CBS calculation.

As applying yield formulas in Sec. II to the finite rapidity
window in heavy-ion collisions, we note that Eqs. (2), (4),
and (5) still hold generally and Eq. (3) also approximately
holds with good numerical accuracy due to the locality of
the hadronization, and therefore no conceptual issues exist
for our mid-rapidity predictions. In addition, our formulas in
Sec. II give the averaged yields of hadrons at the given quark
system with the fixed quark numbers while the experimental
data of hadronic yields are event-averaged quantities. The
produced quark system in heavy-ion collisions at a given
collision energy is varied in size event-by-event and thus
the number of quarks and that of antiquarks should follow
a certain distribution around the averaged quark number 〈Nqi

〉
and antiquark numbers 〈Nq̄i

〉 (where i = u,d,s considered in
this paper). Our final predictions of hadron yields should be
the average over this distribution. In general such averages
depend on the precise form of the distribution. Here, we
approximate these averages by taking the corresponding values
of the quantities at the event averages 〈Nqi

〉 and 〈Nq̄i
〉, i.e.,

〈
NMi

〉 = CMi
P q1q̄2,MM(〈x〉,〈z〉), (9)

〈
NBj

〉 = CBj
P q1q2q3,BB(〈x〉,〈z〉), (10)

where 〈x〉 = 〈Nq〉 + 〈Nq̄〉, 〈x〉〈z〉 = 〈Nq〉 − 〈Nq̄〉, and P is
also calculated with the event-averaged quark numbers. Such
approximation can be expected in considering that properties
Eqs. (2)–(5) in our derivation of hadron yields are also
apparently satisfied even for the event-averaged quantities.

For convenience, we use factors λs = 〈Ns̄〉/〈Nū〉 =
〈Ns̄〉/〈Nd̄〉 and associated λ′

s = 〈Ns〉/〈Nu〉 = 〈Ns〉/〈Nd〉 to
denote the suppression of strange antiquarks relative to light
antiquarks and that of strange quarks to light quarks, respec-
tively, and simply the yield formulas of hadrons. Here, isospin
symmetry between (anti-)up-quarks and (anti-)down-quarks is
applied.

Considering the decay contribution from the short-lived
resonances, we obtain the yields of final-state hadrons

〈
N

(f )
hj

〉 = 〈
Nhj

〉 + ∑
k

Br(hk → hj )
〈
Nhk

〉
, (11)

where we use the superscript (f ) to denote the results for the
final hadrons to differentiate them from those for the directly
produced hadrons. The data of the decay branch ratios are
taken from the Particle Data Group [20].

With λs = λ′
s at LHC (〈z〉 = 0 approximation), we obtain

yields of these strange hadrons in the final state:

〈
N

(f )
K+

〉 = 〈NK+〉 + 〈NK∗+〉Br(K∗+ → K+)

+〈NK∗0〉Br(K∗0 → K+)

=
(

1 + 0.493
RV/P

1 + RV/P

λs

)
λs

(2 + λs)2
M(〈x〉,0), (12)

〈
N

(f )
�

〉 = 〈N�〉 + 〈N�0〉Br(�0 → �)

+〈N�∗+〉Br(�∗+ → �)

044913-3



FENG-LAN SHAO, JUN SONG, AND RUI-QIN WANG PHYSICAL REVIEW C 92, 044913 (2015)

+〈N�∗0〉Br(�∗0 → �) + 〈N�∗−〉Br(�∗− → �)

= 7.736λs

(2 + λs)3
B(〈x〉,0), (13)

N
(f )
�− = 〈N�−〉 + 〈N�∗−〉Br(�∗− → �−)

+〈N�∗0〉Br(�∗0 → �−)

= 3
λ2

s

(2 + λs)3
B(〈x〉,0), (14)

〈
N

(f )
�−

〉 = 〈N�−〉 = λ3
s

(2 + λs)3
B(〈x〉,0). (15)

Here, we have only taken into account the strong and electric-
magnetic (S&EM) decays of short-lived resonances.

Absolute yields of these hadrons are dependent on the total
quark number 〈x〉 of the system by M(〈x〉,0) = 2〈x〉/5 and
B(〈x〉,0) = 〈x〉/30 with fixed RB/M (0) = 1/12. To eliminate
this 〈x〉 dependence, we consider the relative production
of these hadrons to pions, i.e., the yield ratios of these
hadrons to pions, which finally rely only on the strangeness
of the system, besides the baryon-meson competition in
hadronization. Since the decay contributions to pion are
complex, we here give directly the numerical result of the
yield of π+, i.e., 〈N (f )

π+ 〉 = 0.213〈x〉 under S&EM decays,
instead of the detailed compositions such as Eqs. (12)–(15).
In Fig. 1, we use Eqs. (12)–(15) to explain the experimental
data of the mid-rapidity yield ratios K+/π+, �/π+, �−/π+,
and �−/π+ in central Pb+Pb collisions at

√
sNN = 2.76

TeV [36–38]. To incorporate the change of λs at different
collision centralities, a varied strangeness λs(Npart) = (0.43 ±
0.02)/(1 + 10.5N−1.3

part ) is used. We can see that the hierarchy
properties in yields of these strange hadrons and their Npart

dependence can be systematically described by our formulas
Eqs. (12)–(15). Here, we would like to emphasize that the
yield difference between K and those hyperons is mainly
due to the baryon-meson competition at hadronization while
the hierarchy structures among �, �−, and �− are mainly
strangeness relevant.

Applying our yield formulas to other hadrons at LHC and
those at RHIC energies with nonzero baryon number densities,
we also find a good agreement with available experimental
data. This is not surprise. In fact, QCM has already shown
its effectiveness in explaining the data of hadronic yields
and longitudinal rapidity distributions in relativistic heavy-ion
collisions at different collisional energies [14,16,21–25]. The
related low-pT issues of QCM such as entropy conservation
and pion production have been properly addressed [13,21,26–
30]. There are also many successful applications of QCM
in correlation studies, e.g., multihadron yield correlations
[16–18,22,23,31], baryon-meson correlated emission [32,33],
and the charge balance function [34,35].

IV. CBS OF HADRONS UNDER POISSON FLUCTUATIONS

For initial hadrons produced by the hadronization of
deconfined quark systems, the baryon number of the system is
B = ∑

α Qα,BNα and the strangeness S = ∑
α Qα,SNα , where

the species α has baryon number Qα,B and strangeness Qα,S .

partN
0 50 100 150 200 250 300 350 400

ha
dr

on
-t

o-
pi

on
 r

at
io

s
4−10

3−10

2−10

1−10

FIG. 1. (Color online) Yield ratios K+/π+, �/π+, �−/π+, and
�−/π+ at mid-rapidity as a function of nuclear participants Npart

in central Pb+Pb collisions at
√

sNN = 2.76 TeV. Symbols are
experimental data from Refs. [36–38]. Shadow regions are our results
with an Npart-dependent strangeness λs(Npart) = (0.43 ± 0.02)/(1 +
10.5N−1.3

part ).

By definition Eq. (1), the CBS of hadrons is

C
(h)
BS = −3

∑
α,β Qα,BQβ,SCαβ∑
α,β Qα,SQβ,SCαβ

, (16)

where the covariance Cαβ = 〈NαNβ〉 − 〈Nα〉〈Nβ〉 describes
the correlation between hadron α and hadron β. A general
calculation of Cαβ in QCM is still unavailable in the current
progress of hadronization phenomenology since there still
are many unsolved dynamics in hadronization due to its
nonperturbative feature. In all “on market” combination
models, there are a few that can give the calculation of Cαβ

with their own specific model details or assumptions. Such
specific calculations are not the purpose of this paper since we
intend to analyze the hadronization effects in a general and
transparent way. Here, we consider a simple case in which
after hadronization different kinds of produced hadrons are
uncorrelated, i.e., Cαβ = δαβσ 2

α . This can be expected if the
quark system existing previously is made up of free quarks
and antiquarks (i.e., C(q)

BS = 1). We note that, above Tc, the CBS

of strongly interacting system calculated by lattice QCD [9]
indeed tends to 1 and the off-diagonal flavor susceptibilities
also tend to be relatively small. We only consider this kind of
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quark system in this paper because the effects of hadronization
on system CBS are already addressed clearly.

In this section, we first calculate the CBS of the initial
hadron system, assuming the Poisson statistics σ 2

α ≈ 〈Nα〉
for the yield distribution of identified hadrons. Now we
have

C
(h)
BS = −3

〈BS〉
〈S2〉 ≈ −3

∑
α Qα,BQα,S〈Nα〉∑

α Q2
α,S〈Nα〉 . (17)

With Eqs. (9) and (10), we are ready to calculate CBS of
hadrons via Eq. (17),

〈BS〉 = −{〈N�〉 + 〈N�±,0〉 + 〈N�∗±,0〉}
− 2{〈N�0,−〉 + 〈N�∗0,−〉} − 3〈N�−〉 − antihyperons

= −12λ′
s + 12λ′2

s + 3λ′3
s

(2 + λ′
s)

3
B(〈x〉,

〈z〉) − 12λs + 12λ2
s + 3λ3

s

(2 + λs)3
B̄(〈x〉,〈z〉) (18)

and

〈S2〉 = {〈N�〉 + 〈N�±,0〉 + 〈N�∗±,0〉} + 4{〈N�0,−〉 + 〈N�∗0,−〉} + 9〈N�−〉 + antihyperons + {〈K±〉 + 〈K∗±〉 + 〈K0〉
+ 〈K∗0〉 + 〈K̄0〉 + 〈K̄∗0〉}

= 12λ′
s + 24λ′2

s + 9λ′3
s

(2 + λ′
s)

3
B(〈x〉,〈z〉) + 12λs + 24λ2

s + 9λ3
s

(2 + λs)3
B̄(〈x〉,〈z〉) + 2λs + 2λ′

s

(2 + λs)(2 + λ′
s)

M(〈x〉,〈z〉). (19)

We note that the above correlations are independent of the parameters RO/D and RV/P and thus they are unaffected by S&EM
decays. Substituting them into Eq. (17), we obtain

C
(h)
BS = 3

3λ′
s

2+λ′
s
RB/M (〈z〉) + 3λs

2+λs
RB̄/M (〈z〉)

3λ′
s (3λ′

s+2)
(2+λ′

s )2 RB/M (〈z〉) + 3λs (3λs+2)
(2+λs )2 RB̄/M (〈z〉) + 2λ′

s+2λs

(2+λ′
s )(2+λs )

, (20)

which gives the dependence of C
(h)
BS on baryon-meson compe-

tition factor RB/M (0), strangeness λs , and the baryon number
density of the system.

We first consider the situation of zero baryon number
density 〈z〉 = 0 to study the dependence of C

(h)
BS on RB/M (0)

and λs . With λ′
s = λs and RB/M (0) = RB̄/M (0), we get

C
(h)
BS = 3

(2 + λs)RB/M (0)

(3λs + 2)RB/M (0) + 2/3
. (21)

Figure 2(a) shows the dependence of C
(h)
BS on the strangeness

λs , as the RB/M (0) is taken to 1/12. One can see that
C

(h)
BS is insensitive to the change of the strangeness; i.e.,

C
(h)
BS only increases about 5% as λs increases from 0.3 (the

rough value in pp reactions) to 0.7 (almost maximum value
occurred in heavy-ion collisions). In addition, we see that
C

(h)
BS of the initial hadron system is obviously smaller than

1 (the value of the ideal quark system) because the produced
strange mesons significantly outnumber the strange baryons
in the current baryon-meson competition RB/M (0) = 1/12.
Figure 2(b) shows the dependence of C

(h)
BS on baryon-meson

competition factor RB/M (0), as the strangeness λs is taken to
the saturated value 0.43 in relativistic heavy-ion collisions.
Here, the saturated λs is extracted from the fit of yields of
strange hadrons in Sec. III and in our previous work [16], and
we note that this value is consistent with calculations of lattice
QCD in the quark-hadron phase boundary [8,39]. Clearly, we
see that the increase of RB/M (0) will enhance the yields of
baryons against mesons and the C

(h)
BS increases rapidly. With

preferred values RB/M (0) = 1/12 and λs = 0.43, C(h)
BS is about

0.65, much smaller than C
(q)
BS = 1. To reach the unit correlation

for hadrons, an extremely high baryon-meson competition
factor RB/M (0) ≈ 1/5 is needed, which is completely unable
to reproduce yields of strange mesons and baryons.

sλ
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

B
S

C

0.62

0.64

0.66

0.68

0.7
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(0) = 1/12B/M R

(0)B/MR
0.04 0.06 0.08 0.1 0.12 0.14 0.16

B
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C

0.4

0.6

0.8

1

(b)

 = 0.43sλ

FIG. 2. (Color online) (a) Dependence of C
(h)
BS on strangeness

suppression factor λs ; (b) on baryon-meson competition factor
RB/M (0).
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(0)=1/12B/MR

FIG. 3. (Color online) The dependence of C
(h)
BS on the chemical

potential μB of the system. The lines with filled squares, down-
triangles, up-triangles, and open circles are our results at both varied
λs and Th, at constant λs = 0.43, at constant Th = 0.169 GeV, and
at both constant λs = 0.43 and Th = 0.169 GeV, respectively. The
solid line with open cross symbols is our results using the chemical
freeze-out temperature. They are compared with the prediction of
statistical model for hadron resonance gas [1], the dashed line with
stars.

Subsequently, we study the dependence of C
(h)
BS on the

baryon number density of the system. In previous discussions,
we use the quark-antiquark asymmetry 〈z〉 to characterize the
baryon number density of the system. To compare our results
with existing predictions of statistical models, we alternatively
use the chemical potential μB which relates 〈z〉 via

〈z〉 =
2 sinh

(
μB

3Th

)
2 cosh

(
μB

3Th

) + λs exp
( − μB

3Th

) , (22)

under the assumption of the Boltzmann distribution for ther-
malized quarks and antiquarks. Here, strangeness neutrality
Ns = Ns̄ is applied. Th is the temperature of the quark system
at hadronization.

Figure 3 shows our predictions of the C
(h)
BS of initial hadrons

as a function of μB . Here, we have taken into account the fact
that both Th and λs are varied with the μB for the hot quark
matter produced in relativistic heavy-ion collisions. For the μB

dependence of Th, we apply the calculation of lattice QCD by
Endrődi et al. [40] for strange deconfinement temperature, i.e.,
Th(μB) = T0(1 − 0.0089μ2

B/T 2
0 ) with T0 being 0.169 GeV,

the transition temperature at μB = 0. For the μB dependence
of λs , we use our previous extractions at mid-rapidity in
heavy-ion collisions at different collision energies [14,25],
i.e., λs = (0.43, 0.43, 0.44, 0.44, 0.48, 0.5, 0.57, 0.8, 0.7)
as

√
sNN = (2760, 200, 130, 62.4, 17.3, 12.3, 8.7, 7.6, 6.3)

GeV, and convert the energy dependence into μB dependence
by the formula

√
sNN = (1.308 GeV/μB − 1)/0.273 GeV in

Refs. [41,42]. The solid line with filled square symbols is
our result. We also calculate C

(h)
BS at fixed λs = 0.43 (dotted

line with down-triangles), at fixed Th = 0.169 GeV (dashed

line with up-triangles), and at both fixed Th = 0.169 GeV and
fixed λs = 0.43 (dashed line with open circles).

A striking behavior of C
(h)
BS of initial hadrons is that it

increases with the increasing μB and in the large-μB region
(μB � 0.3 GeV) it surpasses the unity and become higher at
larger μB . This is in sharp contrary to the free quark system
existing previously where the correlation coefficient remains
strictly unity at all temperatures and chemical potentials. This
is because as the μB increases, the relative production of
baryons to mesons, i.e., RB/M (z) in our approach, becomes
large, and then the weight of this item in the CBS formula
Eq. (20) increases and thus CBS increases correspondingly.
Comparing the result of CBS at fixed Th with those with varied
Th, we see that the change (decrease) of Th at large chemical
potential increases the CBS of the system by several percent.
Comparing the result of CBS at fixed λs with those with varied
λs , we find that the change of the strangeness also slightly
influences the CBS of the system.

We also compare our results with the early prediction
of Koch et al. [1] (the dotted line with star symbols in
Fig. 3) for a hadron resonance gas in the statistical treatment,
considering that (1) the chemical freeze-out temperature
in the statistical hadronization model is close to (or can
be) the hadronization temperature in relativistic heavy-ion
collisions due to the very rapid longitudinal and transverse
expansion in the late stage of system evolution [43,44], and
(2) Poisson fluctuation is the common feature in statistical
model. A μB-dependent chemical freeze-out temperature,
Tchemical(μB) ≈ 0.17 − 0.13μ2

B − 0.05μ4
B in Ref. [45], is used

in their prediction, which falls obviously below the transition
temperature we used above at intermediate and large μB .
For comparison, we also calculate the CBS of initial hadrons
using their chemical freeze-out temperature and the result is
presented in Fig. 3 as the solid line with open cross symbols.
We find that our result is close to the prediction of the statistical
model at small μB but at the intermediate and large μB

region our result is about 15%–20% larger than that of the
statistical model. We note that recently Becattini et al. [46]
have reconstructed the original hadro-chemical equilibrium
temperature after considering the effects of the final hadron
expansion phase and the results have closely followed the
phase transition boundary line predicted by lattice QCD [40].

V. CBS OF HADRONS BEYOND POISSON STATISTICS

In the above calculations of C
(h)
BS , Poisson statistics for

hadronic yields is applied as an open approximation. In this
section, we calculate the C

(h)
BS of the initial hadron system

by another approach which is independent of the Poisson
statistics assumption and also reflects intuitively the essence
of the baryon-strangeness correlation.

To probe the intrinsic correlation between the baryon
number and strangeness for a hadron system, we suppose that
the system has a change by stochastically emitting a small
amount of strange hadrons and then the system strangeness
changes δS(h) and the baryon number also changes δB(h).
Regarding the baryon number of the system B(h) as a function
of the strangeness S(h), the change of baryon number due to
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FIG. 4. (Color online) Schematic picture for the ideal quark
phase and the hadron phase in B-S plane.

the perturbation of strangeness can be calculated by

δB(h) =
(

∂B(h)
s

∂S(h)

)
δS(h) + O((δS(h))2), (23)

where B(h)
s is the baryon number carried by strange hadrons.

To second-order fluctuation of strangeness we get

C
(h)
BS = −3

〈δB(h)δS(h)〉
〈δS(h)2〉 ≈ −3

∂B(h)
s

∂S(h)

∣∣∣∣
〈Nh〉

. (24)

The partial derivative is evaluated at the event average values
of hadron yields 〈Nh〉. Note that here we do not consider the
correlations between light and strange hadrons induced by the
interactions among hadrons; i.e., we consider an ideal hadron
gas system after hadronization.

The same philosophy can be applied to the quark system
before hadronization. Considering that the quark system is
made up of free quarks and antiquarks with three flavors, the
strangeness of the system S(q) = −(Ns − Ns̄) and the baryon
number carried by these strange quarks and antiquarks B

(q)
s =

1
3 (Ns − Ns̄), and we get C

(q)
BS = 1 exactly. The difference of

CBS between quarks and initial hadrons can be illustrated by
the different slopes of two phases in the B − S plane, as shown
in our schematic Fig. 4. The cross point between two phases
stands for the hadronization that changes the basic degrees of
freedom of the system and also stands for the global charge
conservations during hadronization.

With yield formulas Eqs. (7) and (8), we have

B(h)
s = N� + N�±,0 + N�∗±,0 + N�0,− + N�∗0,− + N�− − antihyperons

= 6Nuds + 3Nuus + 3Ndds + 3Nuss + 3Ndss + Nsss

Nqqq

B(x,z) − 6Nūd̄s̄ + 3Nūūs̄ + 3Nd̄d̄s̄ + 3Nūs̄s̄ + 3Nd̄s̄s̄ + Ns̄s̄s̄

Nq̄q̄q̄

B̄(x,z),

(25)

and the strangeness of initial hadrons S(h) = ∑
α Qα,SNα = −(Ns − Ns̄) because all strange quarks and antiquarks are combined

into hadrons after hadronization. Then, we have

C
(h)
BS = 3 ×

{
24 B(1,〈z〉)

(2 + λ′
s)

3(1 + 〈z〉) + 24 B̄(1,〈z〉)
(2 + λs)3(1 − 〈z〉) + 12λ′

s + 6λ′2
s + 6λ′3

s

(2 + λ′
s)

3
(1 + 〈z〉)a−1

× [(1 − 〈z〉)a−1(〈z〉2 − 2a〈z〉 − 1) + (1 + 〈z〉)a+1]

3[(1 + 〈z〉)a − (1 − 〈z〉)a]2

+ 12λs + 6λ2
s + 6λ3

s

(2 + λs)3
(1 − 〈z〉)a−1 [(1 + 〈z〉)a−1(〈z〉2 + 2a〈z〉 − 1) + (1 − 〈z〉)a+1]

3[(1 + 〈z〉)a − (1 − 〈z〉)a]2

}
(26)

for the initial hadron system. This result shows a complex
dependence on baryon-meson competition factor RB/M (0) by
the factor a = 1

3RB/M (0) + 1, strangeness λs , and baryon number
density of the system z.

In the case of baryon number density z = 0, we have λ′
s =

λs and B(1,0) = B̄(1,0) = 1/6a and simplify Eq. (26),

C
(h)
BS = 1 + 8

6RB/M (0) − 1

(2 + λs)3[1 + 3RB/M (0)]
. (27)

Figure 5(a) shows the dependence of C
(h)
BS on the strangeness

λs , as the RB/M (0) is taken to 1/12. We see that C
(h)
BS of

initial hadrons in the current approach is also insensitive to
the strangeness of the system, but the result is about 20%
larger than the previous prediction in Fig. 2(a) in Poisson

fluctuation. Figure 5(b) shows the dependence of CBS on the
baryon-meson competition factor RB/M (0). We see that C

(h)
BS is

strongly dependent on the RB/M (0), which is also qualitatively
consistent with the result in Fig. 2(b).

The qualitative consistency between Fig. 5 and Fig. 2 can be
naturally understood via the definition CBS = −3〈BS〉/〈S2〉.
Because both the numerator 〈BS〉 and denominator 〈S2〉 are
dependent on the strangeness mainly by the single-strange
hadrons, the strangeness dependence is partially offset in their
ratio and we observe a weak dependence of C

(h)
BS on λs . On

the other hand, since the numerator 〈BS〉 receives larger
contributions from multistrange baryons than the denominator
〈S2〉 which is always dominated by single-strange mesons, we
would observe a slightly increase of C

(h)
BS with the increasing λs .

In addition, the increase of RB/M (0) enhances the production
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FIG. 5. (Color online) The dependence of C
(h)
BS on strangeness

suppression factor λs (a) and on baryon-meson competition factor
RB/M (0) (b).

weights of (strange) baryons against mesons and contributes
largely to the numerator 〈BS〉 and we observe a rapid increase
of C

(h)
BS with the increasing RB/M (0).

With the preferred parameter values RB/M (0) = 1/12 and
λs = 0.43, our calculated C

(h)
BS by Eq. (27) is 0.777 at vanishing

quark-antiquark asymmetry. In Fig. 6, we compare this result
(the dashed line) with calculations of lattice QCD [9,10]
at μB = 0 in the quark-hadron phase boundary. The cross
point between the result of the microscopic QCM and lattice
QCD calculations at finite temperature locates a characteristic

T[MeV]
140 145 150 155 160 165 170 175 180 185 190

B
S

C

0.5

0.6

0.7

0.8

0.9

1

crossover region

 by QCM
BS

(h)
C

Lattice QCD in Ref. [9]

Lattice QCD in Ref. [10]

FIG. 6. (Color online) Comparison of hadronic CBS calculated
by QCM with lattice QCD calculations in the quark-hadron phase
boundary [9,10].

temperature of hadron production at hadronization. The
validity of QCM can be tested by comparing this characteristic
temperature with other theory or model results. We see that
the cross point is located at 162 MeV with small uncertainty
about 0.2 MeV constrained by the latest data of the HotQCD
Collaboration [10] and a relatively large uncertainty about
2 MeV constrained by the data of the Wuppertal-Budapest
Lattice QCD Collaboration [9].

This temperature can be comparable with the chemical
freeze-out temperature Tch in the statistical hadronization
model because (1) Tch is close to (or can be) the hadroniza-
tion temperature in relativistic heavy-ion collisions due to
very rapid longitudinal and transverse expansion in system
evolution [43,44] and (2) our model parameters are chosen
by comparing with experimental hadronic yields. Therefore,
162 MeV is our estimation of Tch for strange hadrons at
μB = 0. This value is within the range of current Tch estimation
(∼140−170 MeV) [46–56]. We note that Tch extracted from
strange hadrons is usually above 160 MeV [36,38,48], closer
to our estimation.

Comparing this temperature with the strangeness decon-
finement temperature calculated in lattice QCD, we also
find consistency. This is compatible with the discovery of
Ref. [57] that strangeness deconfinement sets in around the
chiral crossover temperature Tc = 154 ± 9 MeV. For our result
hitting the upper boundary of the Tc region, it may be related
with the flavor hierarchy in the deconfinement transition
suggested by Ref. [58] which shows a subtle difference of
about 15 MeV in light and strange sectors.

We further give our final prediction of C
(h)
BS at nonzero

chemical potential μB . The results are shown in Fig. 7. Here,
the transformation of variable z to μB is by Eq. (22) and
the μB dependence of λs is the same as that in Sec. IV. For
the μB dependence of hadronization temperature Th, we also

[GeV]
B

μ
0 0.1 0.2 0.3 0.4 0.5 0.6

B
S

C

0

0.5

1

1.5

statistical model

free quark system

=0.162 GeV0QCM T

 0.008 GeV ±=0.162 0QCM T

FIG. 7. (Color online) The dependence of hadronic CBS on the
chemical potential μB of the system. The open squares with solid
line are our results at both varied λs and Th with T0 = 0.162 GeV.
The band area shows the uncertainties due to T0 = 0.162 ± 0.008
GeV. They are compared with the prediction of the statistical
model for a hadron resonance gas [1].
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apply the form Th(μB) = T0(1 − κμ2
B/T 2

0 ) for the strangeness
deconfinement in Ref. [40]. The temperature T0 at zero μB , as
discussed above, still has a relatively large uncertainty due to
the current precision of lattice QCD calculations and inconclu-
sive chemical freeze-out temperature extracted in relativistic
heavy-ion collisions. We take T0 = 162 ± 8 MeV and the
resulting C

(h)
BS is shown as the band area in Fig. 7. The choice of

center value 162 MeV is based on the above discussions of C
(h)
BS

at μB = 0 and the lower/upper limit 154/170 MeV is available
at the chiral or strangeness phase transition temperature in
lattice QCD [40,59]. For the curvature parameter κ , we take
0.0089 calculated in Ref. [40], considering that this curvature
can be reproduced by the statistical model fitting of hadron
yields in relativistic heavy-ion collisions [46]. We also note that
the newest calculations [60] with some different definitions
and approaches in lattice QCD give a stronger κ = 0.0149
for μb � 300 MeV. In this small-μB region, however, the
increase of κ causes few changes for our prediction of C

(h)
BS . In

summary, the uncertainty of Th shows slight influence on C
(h)
BS

prediction at small μB and weak influence (less than about
5%) at intermediate and high μB .

Comparing our results with the early predictions of the
statistical model [1] (dashed line with stars) for the hadron
resonance gas, we find that our results are about 15% higher
than the predictions of the statistical model in all μB regions.
This leads to a different prediction for the position at which
the CBS of hadrons reaches 1. QCM predicts the position
at μB ≈ 0.29 GeV while the statistical model predicts the
position at μB ≈ 0.4 GeV. Interestingly, it has been shown
recently [10] that by supplementing the hadron list with
additional, experimentally uncharted strange hadrons but
predicted by the quark model and observed in the lattice QCD
spectrum in the conventional statistical model calculations,
the C

(h)
BS can increase to about 0.8 at μB = 0. This is very

close to our result at μB = 0 (within 3% difference). With
the expectation of the same increase magnitude at nonzero
μB , the statistical model predictions will closely follow our
results, yielding the nearly same prediction of C

(h)
BS = 1 at

μB ≈ 0.3 GeV. The Beam Energy Scan program of the STAR
Collaboration can test our model results and the above subtle
effect in the statistical model by precise measurement at
collisional energy 9–12 GeV.

VI. SUMMARY

Hadronization describes the process of the formation of
hadrons out of quarks and/or gluons. In the meantime, the
correlation properties between conservative charges of the
system change also due to the transformation of basic degrees
of freedom of the system. Phenomenological models of
the hadronization should reproduce these changes of charge
correlation properties. In this paper, we have studied the

change of the baryon-strangeness correlation caused by quark
combination hadronization. We found that this correlation is
a good quantity for studying the hadronization because of its
sensitivity to the dynamics of production competition between
baryons and mesons. We calculated the correlation coefficient
CBS = −3(〈BS〉 − 〈B〉〈S〉)/〈S2〉 of initial hadrons produced
from the deconfined free quark system with C

(q)
BS = 1. The

calculated C
(h)
BS of initial hadrons under Poisson fluctuation

is about 0.65 at zero baryon chemical potential, which is
consistent with the prediction of statistical model for the
hadron resonance gas. Beyond Poisson statistics, we calculated
C

(h)
BS of initial hadrons by C

(h)
BS = −3∂B(h)

s /∂S(h). The resulting
C

(h)
BS at zero baryon chemical potential is about 0.777. This

value is consistent with calculations of lattice QCD in the
quark-hadron phase boundary by noticing that our estimation
of the characteristic temperature of hadronization is within
the region of strangeness deconfinement in available lattice
QCD calculations and is also close to the chemical freeze-out
temperature extracted from the yield data of strange hadrons in
relativistic heavy-ion collisions. This suggests that the quark
combination is able to describe the change of conservative
charge correlations at hadronization, revealing certain basic
dynamics of the realistic hadronization process. We also
predicted the correlation coefficient of hadrons at different
baryon chemical potentials and compared them with the
existing calculations of statistical method. These predictions
are expected to be tested by the Beam Energy Scan experiment
of the STAR Collaboration at RHIC and/or by the future lattice
QCD calculations at nonzero chemical potentials.

Finally we would like to comment on the measurement
of CBS directly by the definition Eq. (1) either in realistic
experiments or in model simulations using an event generator.
To measure the CBS in general we usually have to select a finite
accept window, e.g., a mid-rapidity region |y| < 0.5. Selecting
a small window size will increase the Poisson statistical
fluctuations while selecting a large window size will inevitably
involve the global conservation effect of baryon number and
in particular the strangeness. Amending such a finite window
effect is usually complex. These considerations prompt us to
calculate the CBS of the system in Sec. V by the response of
the baryon number of the system with respect to the change
of the system strangeness. This method is less relevant to the
accept window size and thus can closely reflect the intrinsic
baryon-strangeness correlation of the hadron system.
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(1999).
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[29] T. S. Biró and J. Zimányi, Phys. Lett. B 650, 193 (2007).
[30] J. Song, Z. T. Liang, Y. X. Liu, F. L. Shao, and Q. Wang, Phys.

Rev. C 81, 057901 (2010).
[31] R. Q. Wang, J. Song, and F. L. Shao, Phys. Rev. C 91, 014909

(2015).

[32] R. J. Fries, S. A. Bass, and B. Müller, Phys. Rev. Lett. 94, 122301
(2005).

[33] R. J. Fries, Nucl. Phys. A 783, 125 (2007).
[34] A. Bialas, Phys. Lett. B 579, 31 (2004).
[35] J. Song, F. L. Shao, and Z. T. Liang, Phys. Rev. C 86, 064903

(2012).
[36] B. Abelev et al. (ALICE Collaboration), Phys. Rev. C 88, 044910

(2013).
[37] B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 111,

222301 (2013).
[38] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 728, 216

(2014).
[39] S. Mukherjee, Phys. Rev. D 74, 054508 (2006).
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