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Hanbury-Brown–Twiss interferometry is a technique which yields effective widths (i.e., “HBT radii”) of
homogeneity regions in the fireballs produced in heavy ion collisions. Because the initial conditions of these
collisions are stochastically fluctuating, the measured HBT radii also exhibit variation on an event-by-event basis.
However, HBT measurements have, to date, been performed only on an ensemble-averaged basis, due to inherent
limitations of finite particle statistics. In this paper, we show that experimental measurements to date are best
characterized theoretically as weighted averages of the event-by-event HBT radii, and we propose a new method
for extracting experimentally both the arithmetic mean and the variance of the event-by-event distribution of HBT
radii. We demonstrate the extraction of the mean and variance of this distribution for a particular ensemble of
numerically generated events, and offer some ideas to extend and generalize the method to enable measurement
of higher moments of the HBT distribution as well.
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I. INTRODUCTION

HBT interferometry relies on two-particle momentum
correlations to extract information about the spatiotemporal
structure of the emitting source in heavy-ion collisions. The
technique depends on the detection of pairs of identical
particles (e.g., pions or kaons), whose quantum statistical
correlations convey important information about the mean
relative separation between the points at which the particles
were emitted during the freeze-out process. Ideally, one would
be able to do this on an event-by-event basis: if any given
collision yielded a sufficiently large number of the desired
particles in the final state, this would allow a measurement of
the HBT radii, the effective widths of the homogeneity regions
in the fireball, event by event. Unfortunately, after the total
particle multiplicity (on the order of a few 1000 per event) is
binned according to particle species, pT , and emission angle,
not enough pairs remain for a statistically meaningful, fully
three-dimensional analysis of the correlation function.

Consequently, experimentalists typically combine large
numbers (�106) of events in order to boost the pair statistics,
thereby increasing the precision of the resulting HBT measure-
ments. The collection of events is referred to as the ensemble,
and the two-particle correlation function (from which the HBT
radii are experimentally extracted) thus contains a nontrivial
combination of the correlation functions of all of the events
in the ensemble. A meaningful comparison with theoretical
models therefore requires, at least in principle, a corresponding
ensemble averaging on the theoretical side.

The process of ensemble averaging has historically been
accounted for at the level of the initial state of the fireball.
In its crudest form, the ensemble of fluctuating events is
replaced by a single averaged event whose final state is
computed by hydrodynamically evolving a single averaged
initial profile. With the recent availability of resources to
evolve large numbers of collisions with fluctuating initial
conditions event by event, the ensemble averaging procedure
has been shifted to the emission function. By performing an
ensemble average directly over emission functions constructed
from the freeze-out surfaces of each event in the ensemble,

the two-particle correlation function can be related to the
Fourier transform of the ensemble-averaged emission func-
tion. However, since the experimental correlation function is
constructed after the final state particles have been emitted
from the freeze-out surfaces of each respective event, it is more
accurate to perform the ensemble-averaging procedure at the
level of the correlation function itself. This induces corrections
to the HBT radii extracted from the correlation function
which is constructed from the ensemble-averaged emission
function, and these corrections are sensitive to event-by-event
fluctuations encoded in the structure of the freeze-out surface.
Only this last procedure invokes a distribution of correlation
functions and thus a distribution of HBT radii which can
be characterized by a mean, a variance, and possible higher
moments. In this paper we will analyze which moment of this
distribution is represented by the experimentally measured
HBT radii, and what additional measurements could be made
to access other moments of the HBT radii distribution.

Numerical studies such as [1] have shown that the mean
HBT radii extracted from a fluctuating set of correlation
functions are almost indistinguishable from the radii char-
acterizing the single correlation function obtained from an
ensemble-averaged emission function. On the other hand,
recent event-by-event simulations [2] indicate that the HBT
radii extracted from individual events1 may fluctuate with
a typical range of 10–15% (in the squared HBT radii) for
central collisions and that, if these fluctuations are both present
in actual heavy-ion collisions and experimentally accessible,
their scale could provide valuable sensitivity, e.g., to different
functional forms of the T dependence in η/s. In this paper, we
propose a method for extracting the scale of these fluctuations
experimentally. A more thorough exploration of our method’s
theoretical implications is deferred to another work.

1This is possible in theory since the correlation function does not
need to be sampled with a finite number of particles but can be
calculated with infinite precision.
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The layout of the remainder of this paper is as follows. In
Sec. II, we introduce the formalism underlying both event-
by-event and ensemble-averaged HBT analyses which retain
the correlation function’s intrinsic dependence on the pair
emission angle, and distinguish several different, commonly
used methods for theoretically computing the ensemble-
averaged HBT radii which are measured experimentally. We
argue that each of these methods traces qualitatively, but
not with quantitative precision, the arithmetic mean of the
event-by-event distribution of the HBT radii. In Sec. III, we
discuss analogous results for HBT analyses in which the
dependence on the pair emission angle is averaged over,
and show how this simplification affects the differences
between the various methods of ensemble averaging. The
best theoretical representation of the experimentally employed
ensemble averaging process identifies the measured HBT
radii as weighted averages of the event-by-event radii. We
discuss these weights. With this in mind, we show in Sec. V
how to estimate the first moment (i.e., the mean) of an
event-by-event distribution in terms of linear combinations
of such weighted averages. Although we focus in this paper
on the HBT radii, the methods we introduce are quite general
and applicable to any event-by-event observables. In Secs. VI
and VII, we show how to access higher moments of the event-
by-event distribution by performing repeated averages over
subensembles and measuring their fluctuations; in Sec. VI,
we concentrate on estimating the variance, while Sec. VII
addresses higher moments. Finally, in Sec. VIII, we present
a proof-of-principle demonstration of our method and discuss
some subtleties relevant for its experimental implementation.
A detailed derivation of our method (for estimating the
variance) is provided in Appendix A.

II. AZIMUTHALLY SENSITIVE HBT INTERFEROMETRY
FOR FLUCTUATING SOURCES

In this section we discuss HBT interferometry that is
fully differential in the pair momentum �K , in particular its
azimuthal angle �K around the beam direction. This is known
as “azimuthally sensitive HBT interferometry” [3,4]. In Sec. III
we will modify the treatment for azimuthally averaged (i.e.,
�K -integrated) measurements.

A. Azimuthally sensitive interferometry for a single
fluctuating event

HBT interferometry is founded on the concept of the two-
particle correlation function, defined for a single event by

C( �p1, �p2) ≡
Ep1Ep2

d6N
d3p1d3p2(

Ep1
d3N
d3p1

)(
Ep2

d3N
d3p2

) . (1)

Here, �p1 and �p2 represent the 3-momenta of identical particles
(e.g., pions) which have been emitted from the fireball. The
correlation function (1) may be interpreted as the probability of
simultaneously measuring two particles with momenta �p1 and
�p2 in a single event, divided by the probability of measuring
the same two particles (with the same momenta) independently
in two separate but identical events. Correlations among the

particles in the emitted pair manifest themselves as deviations
of C( �p1, �p2) from unity. The connection of C( �p1, �p2) with the
size of the effective emission region (“homogeneity region”)
from which the pairs are emitted is provided by the following
connection [5] with the single-particle Wigner density (or
“emission function”) of the fireball, S(x,K):2

C(�q, �K) ≈ 1 ±
∣∣∣∣
∫

d4x S(x,K)eiq·x∫
d4x S(x,K)

∣∣∣∣
2

, (2)

where we have introduced the notation qμ ≡ p
μ
1 − p

μ
2 , Kμ ≡

(pμ
1 + p

μ
2 )/2. Equation (2) holds in the absence of final state

interactions between the emitted particles and for “chaotic”
sources that emit the two particles independently from each
other. The approximation indicated by the ≈ sign refers to
the replacement of �p1, �p2 by �K in the denominator (the
so-called “smoothness approximation” [5]). If the pairs of
identical particles used in the construction of the numerator
and denominator of Eq. (1) are bosons (as we consider
in this paper), the correlation function itself experiences
an enhancement near �q = 0; this enhancement is usually
described by a functional form which is Gaussian in the
components of the relative momentum �q:

Cfit(�q, �K) ≡ 1 + λ( �K) exp

⎛
⎝−

∑
i,j=o,s,l

R2
ij ( �K)qiqj

⎞
⎠. (3)

This Gaussian parametrization is exact for emission functions
with a Gaussian spatial structure and is usually adequate for
non-Gaussian sources whose deviations from Gaussian struc-
ture are generated by additional length scales characterizing
the source that are very different from the source radii. Here,
λ( �K) (the “intercept parameter”) encodes information about
long-lived resonances which decay well outside the reaction
zone of the fireball, and is used to account for the resulting
empirical reduction in the peak value of C at �q = 0 [5,6]. We
neglect the contributions from resonances and set λ( �K) = 1.
The sum in the exponent ranges over the coordinates of the
widely used osl system, where l (the “longitudinal” direction)
coincides with the beam direction, o (the “outward” direction)
points in the same direction as �KT , the average pair momentum
projected onto the transverse plane, and s (the “sideward”
direction) points perpendicular to both of these. In terms of
these coordinates, Eq. (3) defines the HBT radius parameters
R2

ij ( �K), whose diagonal components may be interpreted as
the squares of the effective widths of the emission regions
within the fireball responsible for producing particle pairs with
average momentum �K .

One prescription for computing the HBT radii from
theoretical (hydrodynamical) models on an event-by-event
basis relies on the Cooper-Frye formula [7] to define the
eventwise emission function, and then uses (2) to define the
corresponding correlation function. This correlation function
can then be fit using (3) to obtain the R2

ij for that event as

2The “+” sign corresponds to using bosons to construct the
correlator, whereas the “−” corresponds to using fermions.
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fit parameters. Explicitly, in the Cooper-Frye algorithm the
emission function is defined as follows:

S(x,p) = 1

(2π )3

∫
�

p · d3σ (y) δ4(x−y) f (y,p), (4)

f (x,p) = f0(x,p) + δf (x,p)

= 1

e(p·u−μ)/T −1
+ pμpνπμν

2T 2(e+P)
f0(1+f0). (5)

Here, δf is the first-order viscous correction to the local
equilibrium distribution function f0 [8,9], and we assume a
quadratic dependence on p. πμν(x) is the viscous pressure
tensor, uμ(x) is the flow velocity profile along the freeze-out
surface, and μ, Tdec, e, andP are the chemical potential, decou-
pling temperature, energy density, and pressure, respectively,
which, for the hydrodynamical simulations used in this work,
will all be taken as constant along the freeze-out surface by
construction. � represents the freeze-out hypersurface over
which the integration is performed, and d3σμ(x) is the outward
pointing normal vector at the point x on this surface.

This prescription for generating R2
ij from theoretical models

for comparison with experimental data is computationally
intensive: to construct the correlation function for a given event
according to (2) requires multidimensional integrations over
the freeze-out surface of the event in question [where S(x,K)
itself, in general, requires a similar integration if computed
according the Cooper-Frye prescription (4) and (5)]; these
integrations, moreover, must be performed for a sufficiently
large number of points in �q and �K that the fit to (3) can
be carried out with acceptable accuracy and still yield useful
results for comparison with experiment. To do all of this
for a large ensemble of events consequently places stringent
demands on available computational resources.

Much of this numerical expense can be avoided by adopting
the following often-used approximation. By assuming that
the emission function (and, consequently, the corresponding
correlation function) for each event can be described exactly
as a Gaussian in x (correspondingly q), the fit of (2) to (3)
becomes an identity, and the R2

ij may be read off directly in
terms of integrals over the emission functions of the ensemble
of events [5,6]:

R2
ij ( �K) = 〈(x̃i − βi t̃)(x̃j − βj t̃)〉S, (6)

where x̃μ = xμ − 〈xμ〉S , �β = �K/EK , and

〈f (x)〉S ≡
∫

d4x f (x) S(x,K)∫
d4x S(x,K)

. (7)

Although still computationally intensive, the project of per-
forming event-by-event HBT analyses has been cast into
a much more tractable form by the use of (6) and (7),
which drastically reduce the number of required calculations
for computing the R2

ij from theoretical models. Although
for realistic (i.e., hydrodynamic) model sources there exist
well-documented discrepancies between the “Gaussian fit”
method and “source variances” method, these discrepancies
will not affect the qualitative results that we discuss in this
paper, which will be based on Eqs. (6) and (7).

B. Azimuthally sensitive interferometry for ensembles
of fluctuating events

While theoretically well defined on an event-by-event basis,
single-event HBT interferometry is in general not practically
possible, as explained in the Introduction. For this reason,
experimentalists typically modify the definition of the corre-
lation function to include in the numerator and denominator
of (1) pairs of pions from multiple events; the collection of all
events combined in this way is known as the ensemble, and
the corresponding definition of the correlation function is

Cavg( �p1, �p2) ≡
〈
Ep1Ep2

d6N
d3p1d3p2

〉
ev〈

Ep1
d3N
d3p1

〉
ev

〈
Ep2

d3N
d3p2

〉
ev

, (8)

where the 〈· · · 〉ev notation is shorthand for

〈X〉ev ≡ 1

Nev

Nev∑
i=1

Xi, (9)

i.e., an arithmetic average of the quantity X over all events in
the ensemble. In the construction of the correlator according
to Eq. (8), it is important to align the events according to some
direction defined by the individual event; for example, the nth
order flow angle �n of charged hadrons. This will result in an
azimuthal dependence of the HBT radii relative to that flow
angle �n. In Appendix B, we show that the radii extracted
from a Gaussian fit of (8), which we label by R2

〈ij〉, can be
related to the event-by-event HBT radii by

R2
〈ij〉( �K) =

〈
N2( �K)R2

ij ( �K)
〉
ev

〈N2( �K)〉ev

, (10)

where N ( �K) ≡ EK (d3N/d3K) is the Lorentz-invariant
yield of the particles of interest (in our case, pions) with
momentum �K . Theoretically, there are many different ways to
generalize (1) to ensembles containing multiple events. In the
rest of this subsection, we discuss several of these alternatives.

1. Ensemble-averaged initial conditions:
Single-shot hydrodynamics

One method for extracting from hydrodynamic codes a
correlation function containing averaged information from
multiple events involves ensemble-averaging (possibly after
proper alignment if the events are deformed) the initial entropy
(or energy) densities of all events in the transverse plane, and
using the resulting averaged density profile as a set of initial
conditions for hydrodynamics. At the end of the hydrodynamic
evolution, Eq. (3) relates the emission function constructed on
the freeze-out surface for this averaged density profile to a
correlation function [by (2)] which is effectively insensitive
to the existence of event-by-event fluctuations. We refer to
this method as “single-shot hydrodynamics,” and we refer to
the emission function (respectively correlation function) so
constructed as Sssh (respectively Cssh), and denote the HBT
radii extracted with this method by R2

īj
. Explicitly, we may

write (using the shortcut discussed above)

R2
īj

( �K) = 〈(x̃i − βi t̃)(x̃j − βj t̃)〉ssh, (11)

where 〈· · · 〉ssh is defined with Sssh as the weight function.
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2. Ensemble-averaged emission function

Another common way of computing an ensemble-averaged
correlation function consists of averaging the emission func-
tions after the event-by-event hydrodynamic evolution of
many events with fluctuating initial conditions. In particular,
we define S̄(x,K) ≡ 〈S(x,K)〉ev and, in analogy with (2),
introduce

C̄(�q, �K) ≡ 1 +
∣∣∣∣
∫

d4x S̄(x,K)eiq·x∫
d4x S̄(x,K)

∣∣∣∣
2

. (12)

These definitions of S̄ and C̄ (and the corresponding radii,
which we denote R̄2

ij ) have an advantage over the correspond-
ing “single-shot hydrodynamics” definitions that we discussed
above, in that the quantum fluctuations in the initial state are
allowed to modify the hydrodynamic evolution event by event
before being averaged over at the end. Since the hydrodynamic
evolution is nonlinear, S̄(x,K) �= Sssh(x,K). In this work, we
will refer to this method as the “average emission function”
method, and define

R̄2
ij ( �K) = 〈(x̃i−βi t̃)(x̃j−βj t̃)〉S̄ . (13)

3. Ensemble-averaged correlation function

Of the available theoretical techniques for treating the
ensemble-averaging process, the “single-shot hydrodynamics”
and “average emission function” methods have historically
enjoyed the greatest popularity. However, as Eq. (8) shows,
the way to correctly reproduce the experimental process
of performing the ensemble average is by first Fourier
transforming the emission function and then averaging over
events:

Cavg( �p1, �p2) ≡ 〈C〉ev(�q, �K)

≡ 1 +
〈∣∣ ∫ d4x S(x,K)eiq·x∣∣2〉

ev∣∣ ∫ d4x S̄(x,K)
∣∣2

= C̄(�q, �K)+
〈∣∣ ∫ d4x δS(x,K)eiq·x∣∣2〉

ev∣∣ ∫ d4x S̄(x,K)
∣∣2 , (14)

where δS(x,K) ≡ S(x,K) − S̄(x,K). Using the shortcut (6)
we can then write the corresponding HBT radii R2

〈ij〉 extracted

from a Gaussian fit of 〈C〉ev(�q, �K) as follows [see Eq. (10)]:

R2
〈ij〉( �K) = 1

〈N2〉ev
〈N2〈(x̃i−βi t̃)(x̃j−βj t̃)〉S〉ev, (15)

where we suppressed the �K dependence on the righthand
side. We refer to this way of computing the HBT radii as
the “average correlation function” method. As an additional
check on this result, we note that if we neglect event-by-event
fluctuations entirely by setting δS(x,K) = 0, then S(x,K) =
S̄(x,K), the final term in Eq. (14) vanishes, and (15) reduces
to (13), as expected. The correct theoretical definition of the
ensemble-averaged HBT radii may therefore be thought of as a
simple (weighted) average of the HBT radii for each fluctuating
event, each scaled by a factor which accounts explicitly for
final-state multiplicity fluctuations, bin by bin in �K , from event
to event.

4. Direct ensemble average

A more direct route skips the construction of the correlation
function entirely, and simply averages the radii (6), computed
from S(x,K) event by event, directly:

〈
R2

ij

〉
ev( �K) ≡ 1

Nev

Nev∑
i=1

(
R2

ij

)(k)
( �K), (16)

where (R2
ij )

(k)
denotes the HBT radii of the kth fluctuating

event. [Of course, this could also be done if the radii (R2
ij )

(k)

were extracted from a Gaussian fit to the correlation function
for event k using Eq. (3) with the corresponding emission
function S(k)(x,K). Here, however, (R2

ij )
(k)

will be computed
via the shortcut (6), with S replaced by S(k).] This “direct
ensemble average” is clearly equivalent to the arithmetic mean
of the event-by-event radii, without the additional multiplicity
weight in Eq. (10). Hereafter, we will drop the subscript “ev”
in the interest of notational simplicity, whenever doing so is
unambiguous.

III. AZIMUTHALLY AVERAGED HBT
INTERFEROMETRY FOR FLUCTUATING SOURCES

A. Azimuthally averaged HBT interferometry for a single event

Azimuthally sensitive HBT interferometry relies funda-
mentally on the construction of the two-particle correlation
function given in Eq. (1). Again we first study the situation
for a single event. Taking (1) as a starting point, there are at
least two distinct ways of obtaining azimuthally averaged HBT
radii. The first is to construct the full azimuthally dependent
correlation function, obtaining the azimuthally sensitive HBT
radii by fitting (1) to the form (3), and then average explicitly
over the residual dependence on �K :

R2
ij,0(KT ) ≡ 1

2π

∫ π

−π

d�KR2
ij (KT ,�K )

≡ 〈
R2

ij (KT ,�K )
〉
�K

. (17)

The second way to obtain azimuthally averaged HBT radii
is to perform the average at the level of the correlation
function (1) before fitting HBT radii to it, instead of averaging
the HBT radii after fitting the correlation function event by
event. Since the correlator is constructed as the ratio of two
experimental quantities which are measured on a bin-by-bin
basis, binning only on KT without binning on �K avoids
reducing the number of available particle pairs per bin by a
factor of the number of bins in �K . Theoretically, a correlator
constructed in this way should be written as the ratio of
the �K -averaged two-particle cross section divided by an
uncorrelated background which is constructed by taking a
product of the corresponding �K -averaged single-particle
spectra:

〈C〉�K
( �p1, �p2) =

〈
Ep1Ep2

d6N
d3p1d3p2

〉
�K〈(

Ep1
d3N
d3p1

)〉
�K

〈(
Ep2

d3N
d3p2

)〉
�K

. (18)
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In terms of the emission function S(x,K), this correlator may
be written as

〈C〉�K
(�q, �K) ≈

〈∣∣ ∫ d4xS(x,K)
∣∣2〉

�K∣∣〈 ∫ d4xS(x,K)
〉
�K

∣∣2
×
(

1 +
〈∣∣ ∫ d4xeiq·xS(x,K)

∣∣2〉
�K〈∣∣ ∫ d4xS(x,K)

∣∣2〉
�K

)
. (19)

As before, we consider fitting this expression to the form (3)
and extracting the R2

ij as fit parameters which depend only
on KT . However, since the factor inside the parentheses in
Eq. (19) tends to 2 in the limit that q → 0, we must include
an overall factor when fitting the correlator:

〈C〉�K
(�q, �K) ≡ C0

⎡
⎣1+ exp

⎛
⎝−

∑
i,j=o,s,l

qiqjR
2
ij (KT )

⎞
⎠
⎤
⎦,

(20)

where

C0 ≡ 〈N2(KT ,�K )〉�K

〈N (KT ,�K )〉2
�K

, (21)

with N (KT ,�K ) ≡ ∫
d4x S(x,K) as before. The azimuthally

averaged R2
ij (KT ) are proportional to the curvature of the

correlator at the origin, and one can show that this leads (with
the functional dependence of S(x,K) suppressed) to

R2
ij (KT ) =

〈 ∫
d4x (xi−βit)(xj−βj t)S

〉
�K〈 ∫

d4x S
〉
�K

−
〈 ∫

d4x (xi−βit)S
〉
�K

〈 ∫
d4x (xj−βj t)S

〉
�K〈 ∫

d4xS
〉2
�K

=
〈
N2(KT ,�K )R2

ij (KT ,�K )
〉
�K

〈N2(KT ,�K )〉�K

. (22)

For Gaussian sources with azimuthally symmetric particle
emission, the definition (22) is equivalent to (17), i.e.,
R2

ij (KT ) = R2
ij,0(KT ), since the factor N2(KT ,�K ) is �K

independent and thus drops out from the ratio in Eq. (22).
For events with a significant azimuthal asymmetry in pair pro-
duction, however, these two methods of azimuthal averaging
can yield substantially different results.

Note that the prefactor outside the parentheses in Eq. (19)
is independent of q and thus also modulates the correlation
function at |�q| → ∞. It does not affect the extraction of the
HBT radii if, as is often done in experiment, the correlation
function is normalized by hand to 1 at |�q| → ∞.

B. Azimuthally averaged HBT interferometry for ensembles
of fluctuating events

1. Azimuthally averaged HBT radii R2
i j,0(KT )

In the previous subsection, we introduced two different
ways of defining the azimuthally averaged HBT radii for a
single event. Analogously, for an ensemble of events, there
are two different ways to average over the �K dependence

of each of the ensemble averaging methods defined in
Eqs. (11), (13), (15), and (16). We can either first perform
an azimuthally sensitive HBT analysis, extract the �K -
independent HBT radii, and average these over �K , or perform
the �K average already at the level of constructing the
correlator [see Eq. (18)] and then extract �K -independent radii
from the azimuthally averaged correlator. The first procedure
requires higher event statistics, and is therefore experimentally
more difficult. Still, it is of conceptual interest and will
thus be studied in this subsection. The second method is
experimentally preferred and will be discussed in the following
subsection. The “direct ensemble average” of the azimuthally
averaged HBT radii (17) is given by〈

R2
ij,0

〉 ≡ 〈
R2

ij,0(KT )
〉
ev ≡ 〈〈

R2
ij (KT ,�K )

〉
ev

〉
�K

. (23)

Since the azimuthal average commutes with the arithmetic
average over events, 〈R2

ij 〉 is also the �K average of the
ensemble-averaged azimuthally symmetric radius (16). Sim-
ilarly constructed azimuthal averages of Eqs. (11), (13),
and (15) define their �K -independent parts, with

R2
〈ij〉,0( �K) ≡ 〈

R2
〈ij〉( �K)

〉
�K

, (24)

R2
īj ,0( �K) ≡ 〈

R2
īj

( �K)
〉
�K

, (25)

and

R̄2
ij,0( �K) ≡ 〈

R̄2
ij ( �K)

〉
�K

. (26)

2. HBT radii R2
i j (KT ) from azimuthally averaged correlators

In the same way that our treatment of azimuthally sensitive
correlation functions in Sec. II admitted several different
strategies for generalizing to ensemble-averaged correlators,
the correlator (18) possesses several analogous ensemble-
averaged generalizations.

We define the “direct ensemble average” of the azimuthally
averaged HBT radii by〈

R2
ij

〉 ≡ 〈
R2

ij (KT )
〉
ev

≡
〈〈

N2(KT ,�K )R2
ij (KT ,�K )

〉
�K

〈N2(KT ,�K )〉�K

〉
ev

(27)

in accordance with (22). In the cases of the “single-shot
hydrodynamics” and “averaged emission function” methods,
both approaches can be characterized by a single emission
function (either Sssh or S̄), and therefore imply the following
ensemble averaged generalizations of (22):

R2
īj

(KT ) ≡
〈
N2

ssh(KT ,�K )R2
īj

(KT ,�K )
〉
�K〈

N2
ssh(KT ,�K )

〉
�K

(28)

and

R̄2
ij (KT ) ≡

〈〈N (KT ,�K )〉2
evR̄

2
ij (KT ,�K )

〉
�K〈〈N (KT ,�K )〉2

ev

〉
�K

, (29)

where Nssh(KT ,�K ) and 〈N〉ev(KT ,�K ) are defined in an
obvious way.

An equally straightforward, but slightly more tedious
derivation shows that the “average correlation function”
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FIG. 1. (Color online) The radius parameters extracted according
to the four ensemble averaging methods described in Eqs. (23)–(26)
(left column), as well as their percentage deviation from the direct
ensemble average 〈R2

ij,0(KT )〉ev (right column), as functions of KT .
The shaded bands represent the standard uncertainty of the direct
ensemble average resulting from event-by-event fluctuations.

method discussed in Sec. II B 3, which simulates the procedure
applied in experimental analyses [10–12], can be adapted to
the azimuthally averaged case by defining

R2
〈ij〉(KT ) =

〈〈
N2(KT ,�K )R2

ij (KT ,�K )
〉
ev

〉
�K

〈〈N2(KT ,�K )〉ev〉�K

,

=
〈
R2

ij (KT )〈N2(KT ,�K )〉�K

〉
ev

〈〈N2(KT ,�K )〉�K
〉ev

. (30)

Note that event-by-event fluctuations of the spectrum
N (KT ,�K ) only enter in this last method which reproduces
the experimental procedure.

IV. COMPARISON OF THEORETICAL ENSEMBLE
AVERAGING PROCEDURES

In general, each of the ensemble averaging methods
discussed above yields different results. While experimentally
only the “averaged correlation function” method is available,
leading to the two possible ways (24) and (30) to measure
the HBT radii, the “single-shot hydrodynamics” [Eqs. (25)
and (28)] and “ensemble-averaged emission function” meth-
ods [Eqs. (26) and (29)] can be used in theoretical studies
and offer significant numerical advantages. It is therefore of
interest to evaluate the significance of the differences between
the different ensemble-averaging prescriptions. We begin by
comparing in Fig. 1 the HBT radii 〈R2

ij,0〉, R2
〈ij〉,0, R̄2

ij,0 and R2
īj ,0

[defined in Sec. III B 1, Eqs. (23)–(26)] for each of the four
prescriptions, applied to a typical hydrodynamic analysis using
the IEBE-VISHNU package [13]. Here, we consider 200 A GeV
Au+Au collisions at 0–10% centrality, using the MC-Glauber

FIG. 2. (Color online) Similar to Fig. 1, but using the defini-
tions (27)–(30) for the azimuthally and ensemble-averaged HBT radii.

model with p + p multiplicity fluctuations to compute the
fluctuating initial entropy density profiles in the transverse
plane, evolving them with boost-invariant hydrodynamics
(with η/s = 0, i.e., assuming ideal fluid behavior) to simulate
the evolution of the fireball.3 We use Nev = 5000 which
is large enough such that the observed variance of the
HBT radii is dominated by event-by-event fluctuations, and
fluctuations from finite sampling statistics can be neglected.
We terminate the hydrodynamical evolution along a freeze-out
surface of constant temperature Tdec = 120 MeV and use the
Cooper-Frye algorithm to compute the charged particle yields.
Additional details of our analysis, as well as a more systematic
discussion of the effects of shear viscosity on HBT analyses,
are described in Ref. [2]. Figure 1 shows that single-shot hydro-
dynamics, R2

īj ,0 (red dash-dotted line), leads to the least reliable
theoretical estimates for the directly ensemble-averaged HBT
radii 〈R2

ij,0〉. This reflects the strongly nonlinear hydrodynamic
response to event-by-event fluctuations in the initial density
profile which single-shot hydrodynamics does not capture.
Both the “average emission function” R̄2

ij,0 (blue dashed
line) and “average correlation function” R2

〈ij〉,0 (green dotted
line) methods yield results that are in much better agreement
with the direct ensemble average 〈R2

ij,0〉ev (black solid line),
although they also tend to deviate from it at KT > 1 GeV.

In Fig. 2 we show what happens to these four types of
azimuthally and ensemble-averaged radii if the azimuthal

3Taking η/s �= 0 tends to suppress the effects of event-by-event
fluctuations, leading to much smaller discrepancies between the
various methods of ensemble averaging [2]. The corresponding
discrepancies amongst the radii derived from ideal hydrodynamics
(shown in the figures) therefore represent an upper limit on the extent
to which the different methods of ensemble averaging may disagree
with one another for arbitrary values of η/s.
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average is not performed at the end of the HBT analysis on the
level of the HBT radii, but instead on the level of constructing
the correlation function, before extracting the HBT radii, as
discussed in Sec. III B 2, Eqs. (27)–(30). We focus our attention
on the black solid and green dotted curves, representing
the algebraic mean and experimentally determined average
radii, 〈R2

ij 〉 and R2
〈ij〉, respectively. We see that using the

appropriate prescription for �K averaging that applies to each
method significantly improves the agreement between the
experimentally accessible HBT radii R2

〈ij〉 and the theoretically
interesting algebraic means 〈R2

ij 〉, especially at large KT , when
compared to the radii defined via Eqs. (27)–(30) that were
shown in Fig. 1.

After this discussion of the first moment (i.e., the mean) of
the event-by-event distribution of HBT radii, we now proceed
to a discussion of the moments of this distribution.

V. ESTIMATING THE DIRECT ENSEMBLE AVERAGE
OF THE HBT RADII

In the preceding sections, we saw that the ensemble of
events is characterized by an event-by-event distribution of
HBT radii R2

ij , and that the experimentally extracted ensemble-
averaged HBT radii track, but do not exactly reproduce, the
mean value of this distribution. In this section, we describe
a way of experimentally estimating this mean (i.e., the
direct ensemble average 〈R2

ij 〉), using only the experimentally
accessible weighted sample averages from this distribution.
We present this method as for a general observable O that can
be defined on an event-by-event basis, although in this paper
we will eventually restrict its application to the HBT radii. We
will refer to this method as “mean estimation.”

For a general physical observable O that is defined on
an event-by-event basis and fluctuates from event to event,
we distinguish between two types of distributions: (i) the
underlying physical probability distribution P(O) which,
for continuous O, is in general a continuous function, and
(ii) the discrete distribution Pn(O) that describes the distribu-
tion of values O1, . . . ,On obtained in n measurements of the
observable O. As n → ∞, the discrete distribution Pn(O),
properly normalized, approaches the physical distribution
P(O). We will refer to Pn(O) as the “measured distribution
of O” or the “ensemble distribution of O” in our ensemble of
n measured events, while P(O) will be called the “true” or
“physical” distribution of O.

For an arbitrary distribution Q(O), we also define for later
use the associated distribution Q̄n(O) as the distribution of
sample means of observable O of size n sampled from a
physical distribution Q(O). Thus, the distribution of sample
means of size n from the true physical distribution P(O)
above is denoted by P̄n(O). For a measured distribution
PN (O) of size N we denote the analogous distribution of
sample means of size n < N by P̄N,n(O). For sufficiently large
ensembles (i.e., as N → ∞), P̄N,n(O) converges to P̄n(O), in
the same way that PN (O) converges to P(O). Our goal will
be to estimate moments of the ensemble distribution PN (O)
[and thereby, the physical distribution P(O)] by studying the
statistical moments of P̄N,n(O) in repeated sets of samplings
of size n, in the limit of sufficiently large N .

We now show how to estimate the direct ensemble average
〈O〉 of an observable O. We reiterate that this quantity, in the
context of HBT interferometry, cannot be directly measured
experimentally, since single heavy-ion collisions yield total
multiplicities which are too small for extracting meaningful
estimates of the radii event by event. The fundamental
observables available from experimental HBT analyses are
therefore only multiplicity-weighted averages of the HBT radii
as defined in Eq. (10). We thus consider weighted averages of
the observable O of the form

〈wO〉N ≡
N∑

k=1

w
(N)
k Ok, (31)

where k is an index running over all N events, and the weights
are subject to the following normalization condition:

N∑
k=1

w
(N)
k = 1. (32)

For instance, Eq. (10) may be obtained by taking N = Nev,
O = R2

ij ( �K), and w
(Nev)
k = N2

k ( �K)/
∑Nev

k=1 N2
k ( �K). We now

show how to construct estimates for the moments of the
event-by-event distribution P(O) in terms of expressions of
the form (31).

In order to estimate the direct ensemble average

〈O〉 = lim
N→∞

1

N

N∑
k=1

Ok (33)

of O in terms of the weighted average 〈wO〉N in Eq. (31)
we must find a way to correct for the weights w

(N)
k that are

an unavoidable part of the experimental measurement. For
the purpose of this paper we will assume that the weights
w

(N)
k are measurable event by event (such as the multiplicity

weights above). We will also assume that for every value w
of the weight our measured sample contains many events with
weights w

(N)
k close to w.

As a first step, let us sort the events by increasing weight
w

(N)
k . Next, we create nb bins and fill each bin with the same

number n = N/nb in order of increasing weight w(N)
k . We label

these bins by (�), � = 1, . . . ,nb. For each bin (�) we construct
the weighted average

〈wO〉(�)
n ≡

∑
k∈(�)

w
(n)
k Ok (34)

with the modified weights

w
(n)
k ≡ w

(N)
k∑

k∈(�) w
(N)
k

. (35)

〈wO〉(�)
n is a weighted average of the type that can be measured

experimentally [such as the HBT radii (10)]. If the number n
of events in each bin is large enough, this weighted average
will be known with good statistical precision, i.e., it will
closely approximate the corresponding weighted average of
the underlying physical distribution P(O). If n, while being
large, is much smaller than the total number of events N ,
the monotonically increasing modified weights w

(n)
k will not
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show much variation4 within each bin (�) and will all have
approximately the same magnitude 1/n:

w
(n)
k ≈ 1

n
= nb

N
(36)

We can now arithmetically average the weighted bin averages
to find

1

nb

nb∑
�=1

〈wO〉(�)
n = 1

nb

nb∑
�=1

∑
k∈(�)

w
(n)
k Ok

≈ 1

nb

nb∑
�=1

∑
k∈(�)

nb

N
Ok = 1

N

N∑
k=1

Ok ≡ 〈O〉N .

(37)
The approximation in the second line above becomes exact as
N,nb → ∞. The ensemble average 〈O〉N is the mean of the
ensemble distribution PN (O) mentioned above. For large N it
approaches the true mean 〈O〉 of the observable:

lim
N→∞

〈O〉N = lim
N,nb→∞

1

nb

nb∑
�=1

〈wO〉(�)
n = 〈O〉. (38)

In Sec. VIII we will show numerical results for a toy example
where taking nb � 10 in Eq. (37) is sufficient to obtain an
estimate of 〈O〉N with statistical error of less than 1%.

VI. EXTRACTING THE SCALE OF FLUCTUATIONS
IN THE HBT RADII

A. Estimating the variance

We now proceed to show how to estimate the variance of
the event-by-event distribution of an observable O.5

The variance of the ensemble distribution of O is defined
by6

σ 2
O,N ≡ Var[PN (O)] ≡ 1

N − 1

N∑
i=k

(O2
k − 〈O〉2

N

)
, (39)

4If one of the bins happens to contain events from a stretch in
the ordered list where w

(n)
k rises abruptly, and thus the condition

of small variation of the weights inside that bin is violated, this
bin may be thrown away. In essence, the method described in this
section corresponds to binning the total ensemble of events into bins
with approximately the same weight (multiplicity) such that within
the bin weight (multiplicity) fluctuations can be neglected, and then
averaging the bin averages over all bins. If total statistics in the
ensemble is sufficient, this last average over weight bins need not
be performed, and this would allow us in our case to study whether
events with different multiplicities have different mean HBT radii.

5Note that our use of the term “variance estimation” in this paper
differs from its more common usage in the field of statistics to refer to
the general set of techniques for gauging the precision of estimators
derived from sample data. Although based on similar principles, the
method of variance estimation presented here bears only a superficial
resemblance to this set of techniques. For further discussion see, for
instance, [14].

6The factor of 1/(N−1) is used in this expression in place of 1/N

in order to render it an unbiased estimator [15] of the variance of the
physical distribution of O.

where 〈O〉N is the ensemble mean of O defined in Eq. (37).
The variance of the physical distribution of O is then related
to σ 2

O,N by

σ 2
O = lim

N→∞
σ 2
O,N . (40)

To estimate σ 2
O,N , we assume a very large ensemble of

N events and consider the process of randomly splitting this
ensemble into nb bins of n ≡ N/nb events each, computing
the subensemble average 〈O〉n of O for each bin. For many
different repetitions of this process, the entire collection
of subensemble averages obtained yields the distribution of
sample averages of O over subensembles of size n from
an ensemble containing N events, introduced in Sec. V and
denoted by P̄N,n(O). The central limit theorem guarantees that
the variance of P̄N,n(O) is proportional to the variance of the
ensemble distribution of O, PN (O):

Var[P̄N,n(O)] ∝ Var[PN (O)]. (41)

In the limit N → ∞, the proportionality factor is simply 1/n;
for finite N , an additional finite population correction factor
must be included (see Sec. VII).

To formulate an explicit estimate for the variance of the
ensemble distribution of O, let M be the total number of times
the ensemble of size N is split into nb bins of size n, and let
〈O〉k,� represent the subensemble average of O in the �th bin
of the kth binning iteration (we suppress the dependence of
〈O〉k,� on the bin size n to reduce clutter). Then we can show
(see Appendix A) that

σ 2
O,N,est ≡ N

Mnb(nb − 1)

M∑
k=1

nb∑
�=1

(〈O〉2
k,� − 〈O〉2

N

)
(42)

is a variance estimator that converges to σ 2
O,N as M approaches

the maximal number of different binnings Mmax(N,nb) defined
in Eq. (A2). According to Eq. (40), σ 2

O,N itself converges to
the variance σ 2

O of the underlying physical distribution P(O)
as N → ∞. Again, we suppress the dependence of σ 2

O,N,est on
nb and M for clarity. For the particular case of O ≡ R2

ij (and
defining σ 2

ij ≡ σ 2
R2

ij

), we have

σ 2
ij,N,est ≡ N

Mnb(nb − 1)

M∑
k=1

nb∑
�=1

(〈
R2

ij

〉2
k,�

− 〈
R2

ij

〉2
N

)
. (43)

Each subensemble average 〈O〉k,� may be estimated by
subdividing the corresponding bin of size n into ñb = n/ñ
sub-bins of size ñ and employing the method of mean
estimation presented in the previous section. Thus, we are
able to estimate the variance (or, equivalently, the second
central moment) of the ensemble distribution of an observable
O by computing the distribution of sub-ensemble averages
(i.e., first moments) from the same distribution. Furthermore,
the equivalence between σ 2

O,N,est and σ 2
O,N holds exactly in

the limit M → Mmax(N,nb). However, even for moderate N ,
Mmax = N !/(n!)nb is huge. For example, N = 10 and nb = 5
yields Mmax ∼ 105; for N = 100 and nb = 2, Mmax ∼ 1029. So
in practice the limit M → Mmax is out of reach. Fortunately,
we will see that σ 2

O,N,est ≈ σ 2
O,N to a very good approximation,

even for M  Mmax.
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Rather than summing over all possible distinct ways of
sorting N events into nb bins, one can thus evaluate (42)
by summing only over a sufficiently large number M of
subdivisions such that σ 2

O,N,est converges to a fixed value
within a given tolerance. In this way, the process of evaluating
the right-hand side of (42) can be performed cumulatively.
Furthermore, each iteration of the sorting and bin-averaging
procedures can be performed independently of all the others,
implying that our method can be easily parallelized for
numerical computation.

B. Constructing the covariance matrix

The method discussed in Sec. VI A is readily extended to in-
corporate event-by-event fluctuations of multiple observables,
and the correlations between them. These correlations may be
quantified by the covariance matrix between the observables
of interest, and each element of this matrix may be estimated
using a straightforward generalization of (42):

Cov(O1,O2)N,est

≡ N

nb(nb − 1)M

M∑
k=1

nb∑
l=1

(〈O1〉k,l−〈O1〉N )(〈O2〉k,l−〈O2〉N ).

(44)

For O1 ≡ R2
ij and O2 ≡ R2

i ′j ′ , this expression becomes

Cov
(
R2

ij ,R
2
i ′j ′
)
N,est

≡ N

nb(nb − 1)M

M∑
k=1

nb∑
l=1

(〈
R2

ij

〉
k,l

−〈R2
ij

〉
N

)
×(〈R2

i ′j ′
〉
k,l

−〈R2
i ′j ′
〉
N

)
. (45)

For the most general case in three dimensions, this leads to a
6 × 6 covariance matrix for the full set of R2

ij . When i ′ = i

and j ′ = j , this expression reduces to a simple generalization
of (42) to three dimensions.7

VII. GENERALIZATION TO HIGHER MOMENTS

We can generalize the combination of the methods in-
troduced in Secs. V and VI to permit the extraction of
higher moments of P(O). This method, which we refer to as
“higher moment estimation,” assumes the ability to estimate
or calculate the direct ensemble average, and therefore relies
on the method of mean estimation already discussed. We first
recast our estimate for the variance (43) in terms of the second

7For the discussions and derivations presented so far, we have
written our results in terms of fluctuating radii R2

ij . Often in the
literature, however, the reported quantities are not simply R2

ij but Rij ,
so that one has a choice whether to report properties of a distribution
of the squared radii or the radii themselves. In this paper we will
adopt the former approach: the results we present are the moments of
the event-by-event distribution of the fluctuating R2

ij .

central moment of PN (O):8

M2,N ≡ 1

N

N∑
k=1

(Ok − 〈O〉N )2 =
(

N−1

N

)
σ 2
O,N

≈
(

n(N−1)

N−n

)⎛⎝ 1

nbM

M∑
j=1

nb∑
k=1

(〈O〉j,k−〈O〉N )2

⎞
⎠

≡ M2,N,est. (46)

Here, we have introduced the notation Mk , k � 2, for the kth
central moment of the measuredO distributionPN (O), defined
by

Mk,N ≡ 1

N

N∑
k=1

(Ok − 〈O〉N )k. (47)

The right-hand side of the (46) consists of two factors: the
first is a correction factor which accounts for the finite number
of events N in the ensemble, while the second factor is the
second central moment of the distribution of bin averages of
size n ≡ N/nb, sampled from the ensemble. 〈O〉j,k is a random
variable o distributed according to the distribution P̄N,n defined
in Sec. V. Defining additionally M1,N ≡ 〈O〉N , we can thus
write

M2,N =
(

n(N−1)

N−n

)
〈(o − M1,N )2〉N,n, (48)

where 〈· · · 〉N,n denotes the expectation value with respect to
the distribution P̄N,n.

The extension to higher order moments can be found in
textbooks (e.g., [16]). For the third- and fourth order moments
(related to the skewness and the kurtosis) one finds

〈(o − M1,N )3〉N,n = (N−n)(N−2n)

n2(N−1)(N−2)
M3,N (49)

〈(o − M1,N )4〉N,n = N−n

n3(N−1)(N−2)(N−3)

× [
(N2−6nN+N+6n2)M4,N

+ 3N (n−1)(N−n−1) M2
2,N

]
, (50)

which can be solved for M3,N and M4,N . Using our earlier
notation we can thus write our estimates for the moments
M3,N and M4,N as

M3,N,est =
(

n2(N−1)(N−2)

(N−n)(N−2n)

)

×
(

1

nbM

M∑
k=1

nb∑
�=1

(〈O〉k,�−〈O〉N )3

)
(51)

8For a smooth distribution, such as the true HBT distribution
underlying all HBT measurements, the variance is identically equal
to the second central moment. For the ensemble of measured events,
however, the sample size N is large but finite, and the variance differs
from the second central moment by a factor of ( N−1

N
) [15].
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M4,N,est = 1

N2−6nN+N+6n2

[(
n3(N−1)(N−2)(N−3)

N−n

)

×
(

1

nbM

M∑
k=1

nb∑
�=1

(〈O〉k,�−〈O〉N )4

)

− 3N (n−1)(N−n−1)

(
n(N−1)

N−n

)2

×
(

1

nbM

M∑
k=1

nb∑
�=1

(〈O〉k,�−〈O〉N )2

)2]
. (52)

In terms of the central moments of a given distribution, we
can also define its skewness and excess kurtosis:

β3,N ≡ M3,N

M
3/2
2,N

, (53)

β4,N − 3 ≡ M4,N

M2
2,N

− 3. (54)

We will find these definitions useful when we demonstrate the
validity of our method below. Equations (53) and (54) may also
be used to obtain β3,N,est and β4,N,est − 3, with each occurrence
of Mk,N replaced by Mk,N,est as defined above.

VIII. RESULTS AND DISCUSSION

A. Estimating the arithmetic mean

In this section we present several proof-of-principle demon-
strations of the various methods discussed in this paper. In
the present subsection, we illustrate the method presented
in Sec. V to estimate the arithmetic average from particular
linear combinations of weighted subaverages. In Sec. VIII B,
we discuss our method for estimating higher moments of
a distribution by fleshing out the sampling distribution of
the arithmetic average for the same distribution. Finally, in
Sec. VIII C, we combine these two methods and use them
in a more realistic scenario to estimate the relative width of
event-by-event fluctuations in the HBT radii from a sample
of hydrodynamically evolved fireballs with fluctuating initial
conditions.

We now illustrate our procedure for estimating the arith-
metic average from weighted subaverages. To do this, we
consider a joint binormal distribution of two random variables,
which we label X (the observable of interest) and w (the
unnormalized weight attached to each measurement):

P (μX,μw,σX,σw,ρ; X,w)

≡
exp

[− 1
1−ρ2

( (w−μw)2

2σ 2
w

+ (X−μX)2

2σ 2
X

− ρ(w−μw)(X−μX)
σwσX

)]
2π
√

1 − ρ2σXσw

. (55)

We treat these two variables as governed by a joint distribution
with a nontrivial covariance matrix.

For specificity, we take the following set of parameters:

μX ≡ 10, μw ≡ 7, (56)

σX ≡ 3, σw ≡ 1/5, (57)

ρ ≡ 0.0,0.2,0.4,0.6,0.8,0.999, (58)

FIG. 3. (Color online) The estimated mean 〈X〉N,est, compared
with the exact mean 〈X〉N , as a function of ñb and ρ. We see that
decreasing the strength of the correlation ρ leads to a reduction
in the overall relative difference between 〈X〉N,est and 〈X〉N , since
total decorrelation requires that the weighted average factorizes and
reduces to the arithmetic mean. We note additionally that, for ñb � 10,
our method of estimating the arithmetic mean is accurate to better than
1%, even with nearly total correlation between the wi and the Xi .

The last variable, ρ, controls the correlation between the
stochastic variables X and w.

We sample from this distribution N = 10 000 observation-
weight pairs (Xi,wi). Using the procedure discussed in Sec. V,
we repeatedly distribute these N events randomly into ñb bins
of size ñ = N/ñb and estimate the arithmetic mean 〈X〉N from
Eq. (37). The results are plotted in Fig. 3 as a function of the
number of bins ñb, for several different values of the correlation
coefficient ρ. We compute 〈X〉N,est from the left-hand side of
Eq. (37) and compare it with the exact mean 〈X〉N of the N
sampled values.

Figure 3 demonstrates clearly that for ñb ∼ 10 we can
approximate the arithmetic average 〈X〉N to better than 1%,
as noted earlier. All curves eventually drop to zero when
ñb = N = 10 000, since this corresponds to placing each
event in its own bin, so that the left-hand side of (37)
reduces to the arithmetic average 〈X〉N . In between, i.e., for
10 < ñb < 10 000, we note that the plotted ratio starts to vary
irregularly as a function of nb once it reaches a level around
10−4, reflecting the fundamental granularity of the measured
sample of N “events” as explained below.

In Sec. III, we noted that bins which contained abruptly
changing weights after ordering should be discarded; here,
however, we have included all bins for the sake of simplicity,
regardless of how significantly the weights vary within a bin.
Figure 3 demonstrates that this choice does not impede our
ability to reliably estimate the mean 〈X〉N .

In the particular case of ρ = 0 and N → ∞ (keeping ñb

finite), each weighted bin average 〈wO〉� on the left-hand
side of (37) factorizes into a product of the average weight and
average observable in each bin. Each weighted bin average thus
reduces to the corresponding arithmetic bin average, causing
the normalized difference between 〈X〉N,est and 〈X〉N , which is
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plotted in Fig. 3, to vanish. The fact that in Fig. 3 the curve for
ρ = 0 does not collapse identically to zero can be understood
as the result of event-by-event fluctuations of the event weights
about their average values in each bin. The presence of these
fluctuations imposes a lower bound on the error in our method
of mean estimation which in Fig. 3 is of order 10−4. We have
found empirically that this lower bound on the error scales
approximately as O(1/

√
Nñb). The accuracy of the method

therefore increases as the number of events in the ensemble
N and the number of bins ñb employed in the method are
increased.

B. Estimating higher moments

To demonstrate the robustness of our method for extracting
the arithmetic mean and using it to estimate higher moments
of a distribution, we take a random sample of N = 10 000
observations from a skew normal distribution characterized by
the following probability density function:

P (μ,σ,α; X) ≡ 1√
2πσ

e
− (X−μ)2

2σ2

[
1 + erf

(
α(X − μ)√

2σ

)]
,

(59)

where μ is a location parameter related to the mean of the
distribution, σ characterizes the width of the distribution, α
controls the skewness of the distribution, and

erf(z) ≡ 2√
π

∫ z

0
dt e−t2

. (60)

For α = 0, μ and σ correspond to the mean and standard
deviation of P , respectively. In order to illustrate the generality
of our result, our choice of parameters is somewhat arbitrary
and entirely without physical motivation: we take μ = 17,
σ = 3, and α = 10. The properties of this distribution are, for
our choice of parameters,

μtrue ≡
∫ ∞

−∞
dx xP (μ,σ,α; x)

= μ + ασ

√
2

π (1 + α2)
≈ 19.3818, (61)

σ 2
true ≡

∫ ∞

−∞
dx (x − μ)2P (μ,σ,α; x)

= σ 2

(
1 − 2α2

π (1 + α2)

)
≈ 3.32715, (62)

β3,true ≡ M3,true

σ 3
true

=
√

2(4 − π )α3

(π + (π − 2)α2)3/2
≈ 0.955557, (63)

β4,true − 3 ≡ M4,true

σ 4
true

− 3

= 8(π − 3)α4

(π + (π − 2)α2)2
≈ 0.823244. (64)

FIG. 4. (Color online) The estimated variance σ 2
N,est, compared

with the exact variance σ 2
N , for N = 10 000, as a function of nb

and M.

The corresponding statistics for our specific measured sample
of N = 10 000 events were

〈X〉N ≡ 19.3588, (65)

σ 2
N ≡ 3.22043, (66)

β3,N ≡ 0.966647, (67)

β4,N − 3 ≡ 1.00149. (68)

Using the methods defined by (42), (46), and (51)–(54) to
estimate these sample statistics, for different values of nb

and M , we can plot the convergence of these estimates
to the exact values as functions of increasing nb, for M ∈
{100,1000,10000}. This is shown in Figs. 4–6.

All of three figures reveal a consistent trend: by increasing
the number of bins nb and/or the number of binnings M , we
can extract with good accuracy the variance, the skewness
and the excess kurtosis of an event-by-event distribution in the
observable X. Improving the accuracy of this extraction comes
with the numerical expense associated with increasing nb

and/or M , exacerbated by the fact that for increasing nb one is
decreasing the number of events-per-bin n = Nev/nb, resulting
in larger finite-number statistical fluctuations of the bin
averages. For a finite size N of the total ensemble of measured
events, there is therefore a maximal amount of information
about the underlying X distribution that can be extracted
from the data, even in the limit of infinite computational
resources. Experimental HBT analyses typically are based
on event samples of size 106–107 rather than 104. The first
three moments of the HBT radii distributions should thus be
accessible with statistical precision of better than 1%, which
is significantly below the typical systematic uncertainties
associated with HBT measurements that are unrelated to
the method discussed here. At this level of precision, these
three moments may already be able to provide insights into
the nature of the physics lying at the origin of the HBT
radii fluctuations and help to further constrain the material
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FIG. 5. (Color online) The estimated skewness β3,N,est, com-
pared with the exact skewness β3,N of the sampled distribution, as a
function of nb and M.

properties of the quark-gluon plasma created in relativistic
heavy-ion collisions [2].

C. Realistic application

We finally show how the combination of methods demon-
strated in the previous two subsections can be used to obtain
physically interesting results. For the same 5000 hydrody-
namic events considered in Sec. IV, we use an azimuthally
averaged, ensemble-averaged correlation function method (as
introduced in Sec. III B 2) to estimate the coefficient of
variation (or relative width) σij /〈R2

ij 〉 of the event-by-event
radii. The potential theoretical significance of the relative
width in heavy-ion collisions has been recently explored in
Ref. [2]. Since the HBT radii are known theoretically on an

FIG. 6. (Color online) The estimated excess kurtosis β4,N,est − 3,
compared with the exact value β4,N − 3 of the sampled distribution,
as a function of nb and M . For aesthetic purposes, we have omitted
the large fluctuations of the M = 100 (red) curve for nb < 80.

FIG. 7. (Color online) For Nev = 5000 and nb = 2, the left- hand
panels show the estimates for the relative width for R2

s (red), R2
o

(blue), and R2
l (green) for M = 100, while the right hand panels

show the same results for M = 10 000. Similarly, the upper row
shows our estimated results for only ñb = 2, while the bottom row
shows the same results for ñb = 10. The solid lines are the exact
results for the ensemble of 5000 events, while the dashed lines
represent the average estimate we obtain after 100 random iterations
of our method, and the shaded bands indicate the resulting standard
deviation of our estimate.

event-by-event basis, we can compute this quantity exactly
from Eqs. (33) and (39). We now demonstrate how these
exact quantities may be reliably estimated by the combination
of mean estimation and variance estimation that we have
presented above.

In detail, the combined algorithm works in the following
way. We begin with the same ensemble of Nev = 5000 events
that was already used in Sec. IV, and go through M iterations
of binning them into nb bins. For each bin, we estimate the
arithmetic bin average by subdividing each bin into ñb sub-
bins, and using the method presented in Sec. V. Once the
arithmetic average for each of the nb bins is known, we use
the method presented in Sec. VI to estimate the variance σ 2

ij .
We show the results of this combined procedure in Fig. 7.

Since each of the M binning iterations requires a random
partition of Nev events into nb bins, our estimates will tend to
exhibit some variability, particularly if M is small (say, of order
100). To quantify the resulting uncertainty of the estimates
shown in Fig. 7, we compute the estimates 100 different times,
and then compute the mean and variance of these estimates.
The mean estimates are shown as dashed lines in Fig. 7, and
the shaded bands represent the ±1σ variability of our estimate.

For ñb = 2, the mean estimate clearly disagrees with the
exact result for KT � 1 GeV. This bias is reduced by increasing
the number of sub-bins: taking ñb = 10 reduces the bias of our
estimation procedure almost to zero. Similarly, with M = 100,
the variability of our estimation procedure is noticeable, but
for M = 10 000, the widths of the shaded bands are almost
negligible. Thus, we see that increasing the number of sub-bins
ñb (top row vs bottom row) results in the ability to decrease
the bias in our estimate of the exact result, while increasing
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the total number of binning iterations M (left column vs right
column) reduces the overall variability of our estimate. For
nb = 2, ñb = 10 and M = 10 000, the statistical uncertainty
of our estimation procedure effectively disappears, and the
methods presented in this paper provide us with a reliable way
of accessing statistical moments of the ensemble distribution
of the HBT radii.

IX. OUTLOOK

In this paper, we presented a method for extracting from ex-
perimental data properties of the event-by-event distributions
of HBT radii that characterize heavy-ion collisions, by estimat-
ing their central moments. This method allows to overcome
the current restriction of published HBT results to ensembled-
averaged experimental data, and opens a way to experimentally
access valuable information contained in the event-by-event
fluctuations of HBT radii that complements analogous infor-
mation from fluctuations of the momentum spectra and their
associated anisotropic flow coefficients. The proposed method
works for both azimuthally averaged and azimuthally sensitive
HBT analyses. It requires large but (at least for the azimuthally
averaged case) not exorbitant event statistics.

One possible extension of the work presented in this paper
is worthy of mention. We here restricted our attention to HBT
radii that have been averaged azimuthally in one of two ways,
either prior to or after the construction of the correlation
function. To obtain information about the full angular dis-
tribution of the HBT radii our analysis can be extended to
include higher Fourier modes of the azimuthal dependence.
These higher azimuthal modes also fluctuate from event to
event. The moments of their eventwise distributions may
again be estimated, at least in principle, using the techniques
presented in this paper. In practice, however, we anticipate
that a combination of azimuthal sensitivity with the already
statistically expensive methods proposed here will likely place
severe limitations on the amount of information that can be
profitably gleaned from such an analysis. We therefore defer
a more thorough investigation of these challenges to a future
work.

With this work, we promote the area of HBT interferometry
of heavy-ion collisions to a new level that permits the
systematic investigation of the statistical properties of event-
by-event fluctuations of interferometric signatures and thereby
advances this subfield to a similar level of sophistication as
established over the last decade for momentum-space heavy-
ion observables. We expect event-by-event HBT analyses
to bear similarly rich fruit as has been recently harvested
from studying event-by-event fluctuations of multiplicities and
collective flow signatures.
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APPENDIX A: DERIVATION OF THE VARIANCE
ESTIMATOR

In this Appendix, we prove that (42) reduces to (39) when
M is taken to be the total number Mmax(N,nb) of possible
distinct ways to sort N events into nb bins of n ≡ N/nb events
each. To do this, we first expand the right-hand side of (39):

σ 2
O,N = 1

N−1

N∑
i=1

(O2
i − 〈O〉2

N

)

= 1

N−1

⎛
⎝( N∑

i=1

O2
i

)
− 1

N

(
N∑

i=1

Oi

)2
⎞
⎠

= 1

N

N∑
i=1

O2
i − 2

N∑
i=1

N∑
j=i+1

OiOj

N (N−1)
. (A1)

We see that this expression consists of “quadratic terms” (the
first sum) and “cross terms” (the second sum). The maximal
number of independent ways to distribute the total ensemble
of N events into nb bins of size n = N/nb is

Mmax(N,nb) ≡
(

N

n

)(
N−n

n

)
· · ·

(
2n

n

)

= N !

(n!)nb
= N !

[(N/nb)!]nb
. (A2)

For M = Mmax, we may write the right-hand side of (42) as

N

nb(nb−1)Mmax

Mmax∑
j=1

nb∑
k=1

(〈O〉2
j,k−〈O〉2

N

)

= N

Mmax(nb−1)

Mmax∑
j=1

(〈O〉2
j − 〈O〉2

N

)
, (A3)

where

Mmax∑
j=1

〈O〉2
j,1 =

Mmax∑
j=1

〈O〉2
j,2 = · · · =

Mmax∑
j=1

〈O〉2
j,nb

≡
Mmax∑
j=1

〈O〉2
j .

(A4)

This equality holds by definition when Mmax exhausts all
binning possibilities, because the different sums in Eq. (A4)
only differ by permutations of their summands.

Introducing the notation O(j )
k to represent the kth event

observable in the j th iteration,9 we can expand both of the
terms in Eq. (A3) as follows, to bring them into the form (A1).

9Of course, since each iteration can be thought of as a partition into
nb bins of a random permutation of all N events in the ensemble,
the kth event observable in the j th iteration will generally not be the
same as kth event observable of the (j + 1)st iteration.
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Using (A4), the first term in Eq. (A3) becomes

N

Mmax(nb−1)

Mmax∑
j=1

〈O〉2
j

= N

Mmax(nb−1)

Mmax∑
j=1

(
1

n

n∑
k=1

O(j )
k

)2

= N

n2Mmax(nb−1)

Mmax∑
j=1

n∑
k=1

n∑
k′=1

O(j )
k O(j )

k′

= N

n2Mmax(nb−1)

Mmax∑
j=1

[
n∑

k=1

(O(j )
k

)2+2
n∑

k=1

n∑
k′=1

O(j )
k O(j )

k′

]

≡ N

n2Mmax(nb−1)

(
α1

N∑
i=1

O2
k + 2α2

N∑
k=1

N∑
k′=1

OkOk′

)
.

(A5)

α1 is a degeneracy factor which counts the number of times
any given event falls into the first bin; with our choice of Mmax,
this is just Mmax/nb. Similarly, α2 is a degeneracy factor which
counts the number of iterations for which two different event
both fall into the first bin; it is given by

α2 ≡
(

N−2

n−2

)(
N−n

n

)
· · ·

(
2n

n

)
= Mmaxn(n−1)

N (N−1)
. (A6)

The second term in Eq. (A3) is less subtle:

N

Mmax(nb − 1)

Mmax∑
j=1

〈O〉2
N

= 1

N (nb−1)

N∑
i=1

N∑
j=1

OiOj

= 1

N (nb−1)

N∑
i=1

O2
i + 2

N

N∑
i=1

N∑
j=i+1

OiOj . (A7)

Combining these results, we obtain

N

M(nb−1)

Mmax∑
j=1

(〈O〉2
j−〈O〉2

N

)

=
(

N−n

Nn(nb−1)

) N∑
i=1

O2
i + 2

nb−1

(
n−1

n(N−1)
− 1

N

)

×
N∑

i=1

N∑
j=i+1

OiOj − 1

N

N∑
i=1

O2
i − 2

N

N∑
i=1

N∑
j=i+1

OiOj

= 1

N

N∑
i=1

O2
i − 2

N (N−1)

N∑
i=1

N∑
j=i+1

OiOj , (A8)

which is identical to (A1). This establishes that σ 2
O,N,est

from (42) reduces to σ 2
O,N from (39) when M = Mmax.

APPENDIX B: TWO DERIVATIONS OF R2
〈i j〉

In this Appendix, we present two different ways of un-
derstanding the relationship between the event-by-event HBT
radii and the experimentally measured, ensemble-averaged
radii, R2

〈ij〉. First, we show how the relationship (10) arises
from the combination of (1) and (8). We then show that
precisely the same result holds for the radii extracted from (14)
via the source-variances method, motivating us to treat (14)
as the most physically accurate way of accounting for the
contribution of event-by-event fluctuations to the experimental
correlator (10).

We begin by introducing the convenient shorthand

N
(k)
1,2 ≡ E1E2

d6N (k)

d3p1d3p2
(B1)

and

N
(k)
� ≡ E�

d3N (k)

d3p�

, � = 1,2, (B2)

where k labels a particular event in the ensemble. In this
notation, the correlation function (1) for the kth event is written

C(k) ≡ N
(k)
1,2

N
(k)
1 N

(k)
2

≡ 1 + exp

⎛
⎝−

∑
i,j=o,s,l

R2
ij qiqj

⎞
⎠, (B3)

where we have suppressed the functional momentum de-
pendence for the sake of clarity. On the other hand, the
correlator defined from the ensemble-averaged one-particle
and two-particle spectra is written

〈C〉ev = 〈N1,2〉
〈N1〉〈N2〉

=
1

Nev

∑Nev
k=1 N

(k)
1,2(

1
Nev

∑Nev
k=1 N

(k)
1

)(
1

Nev

∑Nev
k=1 N

(k)
2

)
=

1
Nev

∑Nev
k=1 C(k)N

(k)
1 N

(k)
2(

1
Nev

∑Nev
k=1 N

(k)
1

)(
1

Nev

∑Nev
k=1 N

(k)
2

)
≡ 1

Nev

Nev∑
k=1

wkC
(k), (B4)

where we defined

wk ≡ N2
evN

(k)
1 N

(k)
2(∑Nev

k=1 N
(k)
1

)(∑Nev
k=1 N

(k)
2

) = N
(k)
1 N

(k)
2

N̄2
. (B5)

The last step follows in the smoothness approximation [17] if
we additionally define N̄ ≡ 〈N1〉 = 〈N2〉.
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Although the single event correlators (B3) reflect the
traditionally imposed normalizations

lim
�q→0

C(i)(�q, �K) = 2, lim
�q→∞

C(i)(�q, �K) = 1, (B6)

the ensemble-averaged correlator defined by Eq. (B4) leads to
a different overall normalization:

lim
�q→0

〈C〉ev(�q, �K) = 2
〈N2〉
N̄2

, lim
�q→∞

〈C〉ev(�q, �K) = 〈N2〉
N̄2

.

(B7)
Consequently, we fit (B4) to a Gaussian form with an additional
normalization factor:

〈C〉ev ≡ C0

⎡
⎣1 + exp

⎛
⎝−

∑
i,j=o,s,l

R2
〈ij〉qiqj

⎞
⎠
⎤
⎦, (B8)

where we have to set C0 ≡ 〈N2〉/N̄2 in order to satisfy (B7).
Then, equating (B8) with (B4) and requiring their curvatures
(with respect to q) to be the same as �q → 0 leads immediately
to the expression

〈N2〉
N̄2

R2
〈ij〉 =

〈
N2R2

ij

〉
N̄2

, (B9)

which is simply Eq. (10).
We can derive this same result by a slightly different

treatment. Instead of directly requiring the ensemble-averaged
correlator to satisfy certain normalization constraints, we now
show how to obtain the source-variance HBT radii from the
physical correlation function (14) which correctly incorporates
the complete effects of event-by-event fluctuations. By utiliz-
ing the source-variance method, we choose to approximate
the correlation function as a Gaussian in �q, which means
the corresponding radii may be extracted as above by simply
computing the curvature of the correlator as �q → 0:

R2
〈ij〉 ≡ − 1

2(〈C〉ev − 1)

∂2〈C〉ev

∂qi∂qj

∣∣∣∣
�q→0

. (B10)

Here, the factor of 〈C〉ev − 1 in the denominator of this
expression account for the eventwise multiplicity fluctuations
of N . To see this, consider an ensemble of emission functions
which differ only in overall normalization N :

SN (x,K) ≡ NS0(x,K), (B11)

where S0(x,K) has the same Gaussian form for every event in
the ensemble. If the fluctuations of normalization are governed
by a probability distribution P (N ), then we can write the
ensemble-averaged emission function S̄(x,K) as

S̄(x,K) ≡ 〈SN (x,K)〉ev

= S0(x,K)

(∫
dN P (N ) N

)

= N̄S0(x,K), (B12)

where N̄ is the average normalization for the ensemble. Then,
using Eqs. (12) and (14), it is straightforward to show that

C̄(q,K) = 1 +
∣∣ ∫ d4x eiq·xS0(x,K)

∣∣2∣∣ ∫ d4x S0(x,K)
∣∣2 (B13)

and

〈C〉ev(�q, �K) ≡ 1 +
〈∣∣ ∫ d4x eiq·xSN (x,K)

∣∣2〉
ev∣∣ ∫ d4x S̄(x,K)

∣∣2
= 1 + 〈N2〉ev

N̄2

∣∣ ∫ d4x eiq·xS0(x,K)
∣∣2∣∣ ∫ d4x S0(x,K)

∣∣2
= 1 + 〈N2〉ev

N̄2
(C̄−1). (B14)

This result demonstrates that, although 〈C〉ev and C̄ both
have the same dependence on q and therefore the same
HBT radii, R̄2

ij = R2
〈ij〉, the curvatures of the two correlators

do not agree as �q → 0: rather, they differ by an additional
factor of 〈N2〉ev/N̄

2, which is equal to 〈C〉ev(�q → 0) − 1.
Consequently, we define the radii in terms of the appropriately
normalized curvature of the correlator at the origin.10 Using
Eq. (B10), we can then write

R2
〈ij〉 = − 1

2〈N2〉evNev

Nev∑
k=1

∫
d4xd4x ′ ∂2

∂qi∂qj

× eiq·(x−x ′)Sk(x,K)Sk(x ′,K)

∣∣∣∣
�q→0

= 1

2〈N2〉evNev

Nev∑
k=1

∫
d4x d4x ′Sk(x,K)Sk(x ′,K)

× [(xi−βit) − (x ′
i−βit

′)][(xj−βj t) − (x ′
j−βj t

′)]

= 1

Nev

Nev∑
k=1

N2
k

〈N2〉ev
(〈(xi−βit)(xj−βj t)〉Sk

−〈(xi−βit)〉Sk
〈(xj−βj t)〉Sk

) =
〈
N2R2

ij

〉
ev

〈N2〉ev
, (B15)

where, in the last step, we have simplified our result by
means of Eq. (6). This result is, again, seen to be equivalent
to (10).

This means that a consistent extraction of the ensemble-
averaged HBT radii should account for the fact that more
pairs of identical particles will come from events with
larger total charged multiplicities dN ch/dη, leading to the
HBT radii for these events being more heavily represented
in the final, ensemble-averaged radii. Consequently, the
true average radii are in fact a weighted average over the
event-by-event HBT radii, where the weighting factor of
N2/〈N2〉 represents the fraction of all pion pairs used in
the construction of (8) that come from an event with overall
normalization N .

10Strictly speaking, we should apply the same correction factor to
the first correlator C̄. However, this would prove unnecessary, as it
follows by definition from Eq. (12) that C̄(�q → 0) − 1 = 1.
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