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Laser-nucleus interactions: The quasi-adiabatic regime
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The interaction between nuclei and a strong zeptosecond laser pulse with coherent MeV photons is investigated
theoretically. We provide a first semiquantitative study of the quasi-adiabatic regime where the photon absorption
rate is comparable to the nuclear equilibration rate. In that regime, multiple photon absorption leads to the
formation of a compound nucleus in the so-far unexplored regime of excitation energies several hundred MeV
above the yrast line. The temporal dynamics of the process is investigated by means of a set of master equations
that account for dipole absorption, stimulated dipole emission, neutron decay, and induced fission in a chain
of nuclei. That set is solved numerically by means of state-of-the-art matrix exponential methods also used in
nuclear fuel burn-up and radioactivity transport calculations. Our quantitative estimates predict the excitation
path and range of nuclei reached by neutron decay and provide relevant information for the layout of future
experiments.
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I. INTRODUCTION

Recent experimental developments in laser physics promise
to open the new field of laser-induced nuclear reactions in
a domain of excitation energies that has not been explored
so far. Efforts are under way [1] to generate a multi-MeV
zeptosecond pulsed laser beam at the Nuclear Physics Pillar of
the Extreme Light Infrastructure (ELI) now under construction
in Romania [2] and at the International Center on Zetta-
Exawatt Science and Technology (IZEST) [3]. Furthermore,
theoretical proposals for the generation of coherent gamma-ray
frequency combs at ELI have also been put forward [4]. How
will an intense laser pulse interact with a medium-weight or
heavy target nucleus? The nucleus is a strongly bound system.
Therefore, the laser-nucleus interaction is weak in comparison
to the laser-atom one. A reaction that differs significantly
from the standard photon-induced nuclear reaction is expected
to occur only if the photons in the laser pulse are coherent.
Only then does the effective dipole width attain values in the
MeV range, making it comparable with other characteristic
nuclear energy scales. In this paper we accordingly consider
the interaction of a strong coherent zeptosecond laser pulse
with a medium-weight or heavy nucleus with mass number
A. The pulse contains N = 103–104 coherent photons, the
energy EL per photon is several MeV, and the duration of
the pulse is �/σ where σ is of the order of several 10 keV
so that �/σ ≈ 10−20 s. Relevant questions then are: (i) How
does the interaction of this laser pulse differ from laser-matter
interaction in other areas of physics [5]? (ii) Which are the
reactions that we expect to occur? The answers are obviously
interesting in their own right and relevant for the layout of
future experiments.

In the present paper we provide a partial answer to these
questions by addressing the quasi-adiabatic regime of the
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laser-nucleus interaction. In that regime, the process of photon
absorption and that of nuclear relaxation are governed by
similar time scales. The paper follows the study of the
perturbative regime by one of the authors [6] where the
absorption process is much slower than nuclear relaxation. We
hope to be able to address the sudden regime (characterized by
the converse situation) in a future paper. A brief summary of
first qualitative results for the quasi-adiabatic regime has been
published in Ref. [7].

Our approach is based on the master equation describing the
excitation and relaxation of the nucleus under the influence of
the external field provided by the laser. Multiple absorption
of coherent photons leads to nuclear excitation far above
yrast. Setting up the master equation requires, therefore,
the knowledge of the A-particle level density ρA at high
excitation energies and for large particle numbers A, expressed
in terms of the single-particle level density ρ1. That is a
challenging problem because, near its maximum and for
A � 100, ρA is several tens of orders of magnitude larger
than ρ1. An important preparatory step in our work has been
the construction of a reliable approximation for ρA in terms of
ρ1 [8,9].

Use of the master equation renders possible the semi-
quantitative study of the competition between photon ab-
sorption, stimulated photon emission, photon-induced nucleon
emission, neutron evaporation, and induced fission. In the
absence of particle emission and fission, photon absorption
would saturate at an excitation energy where the widths for
absorption and for stimulated emission become equal. That
is the case at the energy where the level density ρA reaches
its maximum. Neutron evaporation takes over at an energy
below the saturation point. The combination of repeated
neutron emission and continued dipole absorption by the
daughter nuclei then produces proton-rich nuclei far from
the valley of stability. Although the induced fission width is
small in comparison to all other widths, fission eventually
terminates the reaction chain unless the laser pulse comes to
an end beforehand. In the latter case, laser-nucleus interaction
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experiments promise to shed light on nuclei at excitation
energies far above yrast and far from stability.

A qualitative description of the expected processes and a
definition of the quasi-adiabatic regime are given in Sec. II.
The master equation and the transition rates are introduced
in Sec. III. This section also contains a semiquantitative
estimate of the energies and time scales involved in the photon-
absorption, neutron-evaporation, and fission processes. Nu-
merical results follow in Sec. IV and the paper concludes with
a discussion in Sec. V.

II. GENERAL CONSIDERATIONS

Nuclei are bound by the strong interaction. As a conse-
quence, even the interaction of the strong laser pulse defined
in the Introduction with a nucleus is much less violent than
the interaction of a medium-intensity optical laser pulse with
an atom. We substantiate that statement with the help of the
Keldysh parameter [10] γ = √

2mIω/(eE) used in atomic
physics. Here, m and e are mass and charge of the electron,
respectively, I is the field-free ionization potential, and ω
and E are the frequency and electric field strength, respec-
tively, of the laser pulse. The Keldysh parameter determines
the dominant interaction mechanism in atoms. For γ < 1
tunneling ionization dominates while for γ � 1 the process
is governed by multiphoton ionization. A small value of γ
corresponds in the optical regime to an electric field strength
E ≈ 109 eV/cm of the laser. Such a field distorts the Coulomb
potential of the atom so strongly that electrons are set free.
The nuclear equivalent of the Keldysh parameter is obtained
by replacing m by the nucleon mass (m → 2000m), ω by the
photon energy (ω → 106ω), and I by the binding energy of
the last nucleon (I → 107I ). These substitutions increase the
value of γ by a factor 1011. To return γ to a value less than
unity, the field strength would have to increase by that same
factor 1011, i.e., E would have to be of the order 1020 eV/cm.
This value roughly corresponds to the ratio of the binding
energy of the last nucleon and the nuclear radius and, thus, to
a distortion of the nuclear potential that roughly corresponds
to the above-mentioned distortion of the Coulomb potential in
atoms. In comparison with a standard laser, the photon energy
in our laser pulse is increased by six orders of magnitude.
Such an increase falls short by a wide margin of the necessary
increase of E by eleven orders of magnitude. Therefore, the
laser-nucleus interaction is governed by a value γ � 1 of the
Keldysh parameter. That confirms our initial statement that
even a strong laser pulse perturbs the nucleus only fairly
weakly. In what follows we actually focus on sequential
absorption of single photons within one pulse, i.e., on even
weaker electric field strengths than required for simultaneous
multiphoton absorption. In contrast to atomic physics, in nuclei
an additional time scale plays an important role, namely the
nuclear relaxation time (see below). In the quasi-adiabatic
regime that time scale is comparable with the time scale for
absorption of a single photon. Single-photon absorption and
nuclear relaxation occur therefore more or less simultaneously.

For photons in the MeV range, the product of photon wave
number k and nuclear radius R obeys kR � 1. Therefore,
we consider only dipole processes even though quadrupole

excitation is important for some nuclei at small excitation
energies [11]. For N � 1 coherent photons in the laser pulse,
dipole excitation is governed by the effective dipole width
N�dip. Here �dip is the standard nuclear dipole width and
is in the keV range. The amplification factor N applies in the
semiclassical limit: For N coherent photons the matrix element
for absorption of a single photon is proportional to

√
N , and the

rate is proportional to N . After absorption of N0 photons the
rate becomes proportional to (N − N0). For N � N0 we may
simply use N − N0 ≈ N . For N�dip we use values around
5 MeV. Coherence is vital in bringing the effective dipole
width up to values that are comparable with other characteristic
nuclear energy scales defined below. Without coherence, the
probability for the processes investigated in this paper would
be dramatically reduced. In the course of the reaction, up to
N0 ≈ 5 × 102 photons may be absorbed.

A further distinguishing feature of nuclei is that the
nucleon-nucleon force is basically attractive, and that nuclei
are self-bound. Nuclear properties are understood in terms of
the shell-model potential (the mean field) plus the remaining
“residual” nucleon-nucleon interaction. Because of the latter,
distinct modes of nuclear excitation have the tendency to mix
with the numerous other nuclear modes that are near the same
excitation energy: the nucleus equilibrates. That property is
absent in atoms. It qualitatively changes the treatment of the
multistep photon absorption process. The time scale �/�sp for
equilibration is expressed in terms of the spreading width �sp,
a manifestation of the residual interaction. The value of �sp is
known for low-lying modes with excitation energies of up to
ten or twenty MeV where �sp is of order �sp ≈ 5 MeV [12].

The ratio N�dip/�sp relates the speed of dipole absorption
with that of nuclear relaxation and, therefore, defines three
regimes of the laser-nucleus interaction. (i) In the perturbative
regime N�dip � �sp, single excitation of the collective dipole
resonance in nuclei dominates. That regime has been investi-
gated in Ref. [6]. Consequences for future experiments were
theoretically explored in Ref. [13]. It was shown that if excited
above neutron threshold, the time dependence of the nuclear
decay is nonexponential, both in the neutron and in the gamma
decay channels. (ii) In the sudden regime N�dip � �sp the
residual nucleon-nucleon interaction is irrelevant. Nucleons
are excited independently of each other and are emitted from
the common average shell-model potential. The potential
readjusts after nucleon emission. If the duration time �/σ of
the laser pulse is sufficiently large, the nucleus evaporates.
The sudden regime is so far unexplored. (iii) The quasi-
adiabatic regime N�dip ≈ �sp forms the topic of this paper.
The nucleus (almost) attains statistical equilibrium between
any two subsequent photon absorption processes.

A quasi-adiabatic process occurs when the energy EL per
photon is less than or comparable with the nucleon binding
energy EB of around 8 MeV. Then absorption of a single
photon does not lead to nucleon emission. Rather, the exci-
tation energy is shared (almost) instantaneously with several
or many other nucleons. The nucleus equilibrates. Another
photon is absorbed, and the process repeats itself. Consecutive
absorption of N0 � 1 photons leads to high excitation energies
N0EL of the (almost) equilibrated compound nucleus. The
excitation process terminates either with the laser pulse or
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when all nuclei have fissioned. For the duration time �/σ
of the laser pulse, significant emission of particles sets in
only after several or even many photons have been absorbed.
Precompound reactions show that the condition EL � EB is
not absolutely necessary [14]. If equilibration is sufficiently
fast, a quasi-adiabatic process will occur also for EL > EB .

With the nucleus close to equilibrium at all times, photon
absorption leads to compound-nucleus formation at very high
energies. That situation is distinctly different from Coulomb
excitation [15] or nuclear excitation by inelastic electron
scattering [16]. In both these processes, modes of excitation
very far from the equilibrated compound nucleus are formed
at some excitation energy E. Such modes decay by particle
emission and/or equilibration. If reached at all, the compound
nucleus is formed at a much lower excitation energy than E.

The equilibration mechanism being absent in atoms, our
theoretical description differs from the strong-field approx-
imation in atomic physics [17,18] and is related to the
theory of precompound reactions [19]. As mentioned in the
Introduction, we describe the process in terms of a set of time-
dependent master equations. In addition to dipole absorption,
we take stimulated dipole emission, neutron evaporation,
and fission into account. Induced particle emission is briefly
addressed in Sec. V.

We simplify the treatment in two respects. (i) We disre-
gard spin altogether. (ii) We assume that after each photon
absorption process, the nucleus attains full equilibrium. Both
approximations simplify our treatment considerably. Without
approximation (i), the number of master equations would be
multiplied by the number of spin values considered. Without
approximation (ii), the same would happen with regard to the
number of configurations needed to describe equilibration at
fixed excitation energy. While both approximations can easily
be removed, the resulting increased complexity of the approach
does not seem justified at this early stage of investigation and
in view of the complete lack of experimental data.

To justify approximation (i), we calculate analytically in
the Appendix the distribution of nuclear spin values after N0

photons have been absorbed by dipole transitions by a nucleus
with ground state spin zero. This is done for N0 � 1. The
distribution peaks at spin J = √

N0 and falls off very rapidly
for larger values of J . Exact numerical results not based on the
approximation N0 � 1 confirm this result; see Fig. 1. Even for
a maximum number N0 = 2 × 102 of absorbed photons, the
nuclear spin does not significantly exceed 30 or so. This fact
justifies our neglect of spin.

Approximation (ii) implies that in the master equation we
need not distinguish (as done in precompound reactions) the
formation of n-particle n-hole states. Instead we work with
the full set of equilibrated states at each excitation energy. To
discuss the error made in approximation (ii), we observe that
for a nonequilibrated system the mean number of n-particle
n-hole pairs at fixed excitation energy is smaller than for the
equilibrated system. That has two consequences. First, the
number of states accessible for further dipole excitation is
larger (because the exclusion principle blocks fewer states).
Second, the mean excitation energy per particle or hole is
larger, too. Therefore, neutron decay is more likely than in
the equilibrated case (the number of available decay channels
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FIG. 1. (Color online) Distribution of total spin values of the
compound nucleus for several values of the number N0 of absorbed
photons.

is increased). Both errors work in the same direction, leading
within our approximation to an overestimate of the overall du-
ration time of the excitation process. The resulting uncertainty
can be compensated by varying the relative strength of photon
excitation and neutron decay in the calculations.

III. MASTER EQUATION

A. Basic approach

With A the mass number of the target nucleus, we consider
a chain of (n + 1) nuclei with mass numbers A − i where
i = 0,1,2, . . . ,n, with an arbitrary cutoff at i = n. In nuclei
with even mass number A, the states with spin zero at excitation
energy between (k − 1/2)EL and (k + 1/2)EL are grouped
together and are jointly referred to as states (i,k). Here EL

is the photon energy and k = 1,2, . . .. The group of states
with excitation energies in the interval 0 � E � (1/2)EL is
labeled (i,0). The number of such states is determined by
the level density ρ(A,E) of states with spin zero. For odd
A we proceed analogously. For simplicity and in order to
avoid the introduction of additional parameters we neglect
the even-odd staggering of the ground-state energies as well
as the spin-cutoff factor, and approximate the level density
of spin 1/2 states by interpolating between the values for
the two neighboring even A nuclei. In other words, we use
the expression for ρ(A,E) valid for even A and given in
Ref. [9] indiscriminately for both even and odd A. We construct
the time-dependent master equation for the total occupation
probability P (i,k,t) of these states as function of time t . The
equation takes into account dipole excitation by the coherent
laser pulse, stimulated dipole emission by the same pulse, both
for every nucleus in the chain, and neutron decay populating
nucleus A − i − 1 at the expense of nucleus A − i. It is
assumed that, within each group k of states in nucleus A − i,
the occupation probability is equilibrated at all times and, thus,
proportional to the total level density ρ(i,k) for that group.
That assumption is characteristic of the quasi-adiabatic regime.
Neglecting the emission of charged particles we confine
ourselves to a chain of nuclei with equal proton numbers.
Likewise we do not take account of particle loss due to
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direct photon excitation of particles into continuum states. We
address the ensuing limitations and possible corrections below.

For the duration time 1/σ of the laser pulse, the states (i,k)
are fed by coherent dipole excitation of the states (i,k − 1)
and by stimulated dipole emission of the states (i,k + 1),
and they are depleted by dipole absorption exciting the
states (i,k + 1) and by stimulated dipole emission to the

states (i,k − 1). Using Fermi’s golden rule we write the rates
feeding the states (i,k) as W 2

k′kρ(i,k) with k′ = k ± 1. Here
W 2

kk′ = W 2
k′k is the square of the transition matrix element.

Neutron decay depletes the states (i,k) at the rate �N (i,k).
Neutron decay of the states (i − 1,k′) in the nucleus with
mass number A + 1 − i feeds the states (i,k) with the rate
�N (i − 1,k′ → k). The master equation reads

Ṗ (i,k,t) = �(1/σ − t)
{
ρ(i,k)

[
W 2

kk−1P (i,k − 1,t) + W 2
kk+1P (i,k + 1,t)

] − P (i,k,t)
[
W 2

kk−1ρ(i,k − 1)

+W 2
kk+1ρ(i,k + 1)

]} +
∑
k′

�N (i − 1,k′ → k)P (i − 1,k′,t) − �N (i,k)P (i,k,t). (1)

Here, � = 1 and we have defined P (−1,k,t) = 0. The dot
denotes the time derivative, and � is the Heaviside function.
The initial condition is P (i,k,0) = δi0δk0. We require that
neutron emission does not take place from the nucleus with
mass number A − n and put �N (n,k) = 0 for all k so that
nucleus (A − n) serves as a dump for the overall probability
flow. For i = 0,1, . . . ,n − 1 we have

�N (i,k) =
∑
k′

�N (i,k → k′). (2)

Then Eq. (1) implies
∑

i,k Ṗ (i,k,t) = 0, and the master
equation conserves total occupation probability.

Induced fission is taken into account by introducing a
diagonal loss term −�f (i,k)P (i,k,t) in Eq. (1). Here �f (i,k)
is the width for induced fission from state (i,k). Fission leads
to a depletion of the total occupation probability. We do not
keep track of the fission products. Therefore, fission eventually
terminates the laser-nucleus reaction. In the absence of induced
fission and neutron decay [i.e., for �N (i,k) = �f (i,k) = 0 for
all (i,k)], probability is conserved within the target nucleus,∑

k Ṗ (0,k,t) = 0. For σ → 0 (infinitely sharp laser energy
with the laser pulse lasting forever) and �N (i,k) = 0 for all
(i,k), the target nucleus equilibrates, asymptotically (t → ∞)
reaching the equilibrium distribution Peq(0,k) ∝ ρ(i,k) for all
k values below and around the saturation energy.

B. Transition rates

The transition rates have been defined, calculated, and
discussed in Ref. [7]. We present these rates here for the sake
of completeness. Because of the approximations explained
below in the calculation of the level density, particular values
of the transition rates might differ from the ones presented
in Ref. [7]. Since � = 1 we use the expressions “width” and
“rate” interchangeably.

1. Dipole transitions

With �dip the standard nuclear dipole absorption width
and N the number of coherent photons in the laser pulse,
the effective dipole width for the ground state is given by
N�dip. That expression holds for N � 1 in the semiclassical
approximation. With �dip in the keV range and N ≈ 103 or
104, the effective dipole width is of the order of several MeV.
The value of N�dip serves as an input parameter for our

calculation. Photon absorption of an equilibrated compound
nucleus at excitation energy E is then governed by the effective
absorption rate (N�)eff(E) = N�dip ρacc(E)/ρacc(Eg). Here
ρacc(E) is the density of accessible states and Eg is the energy
of the ground state. The expression for (N�)eff(E) is valid as
long as the number N0 of absorbed photons is small compared
to N . That is the case for the calculations presented below. We
equate (N�)eff(kEL) [the rate for population of the states (i,k)
by dipole absorption of the states (i,k − 1)] with W 2

k(k−1)ρ(i,k)
in Eq. (1). The stimulated dipole emission width for the inverse
transition (i,k) → (i,k − 1) is then given by detailed balance
as (N�)st(kEL) = N�eff(kEL) ρ(i,k − 1)/ρ(i,k). In this way,
all dipole rates in Eq. (1) are determined. With ρ(i,E) the
level density of nucleus (A − i) at excitation energy E, we
approximate the density of states (i,k) as ρ(i,k) = ρ(i,kEL).

The level densities ρ(A,E) are calculated using the expres-
sions for the total level density of spin-zero states in nucleus
A as a function of excitation energy E derived in Ref. [9] as
functions of the single-particle level density ρ1(ε). A realistic
linear or quadratic energy dependence of ρ1 is considered,

ρ
(1)
1 (ε) = 2A

F 2
ε, ρ

(2)
1 (ε) = 3A

F 3
ε2. (3)

Here V with 0 � ε � V defines the range of the single-particle
spectrum, and F is the Fermi energy. The single-particle
energies εi with i = 1,2, . . . are obtained from the condition
i = ∫ εi

0 dε′ ρ1(ε′). The expressions (3) are approximately valid
for A = 100 and A = 200, respectively. We have chosen
V = 45 MeV and F = 37 MeV and keep these values
constant throughout the neutron decay chain. These values also
determine the chosen number of total bound single-particle
states [9], namely 148 for A = 100 and 360 for A = 200,
respectively.

When the number of nucleons is large, the method [9] fails
to work at small excitation energies. In this region we use
the Bethe formula [20]. This is done for the first 65 MeV of
the excitation energy for the case of medium-weight nuclei
(A = 100) and the first 200 MeV for heavy nuclei (A = 200),
i.e., for approximately 10% of the total relevant spectrum.
For the density ρacc(E) of accessible states we have used the
Fermi-gas model described in Ref. [9] and the same choices
of ρ1 as in Eq. (3).

Figures 2 and 3 give the widths for effective dipole
absorption, stimulated dipole emission, neutron emission and
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FIG. 2. (Color online) Widths for effective dipole absorption
(solid red line), stimulated dipole emission (long-dashed green line)
(both for N�dip = 5 MeV), band for neutron emission (short-dashed
dark blue lines), and band for induced fission (dashed-dotted light
blue lines) versus excitation energy E for A = 100 (148 bound
single-particle states). The two neutron decay widths are calculated
from the Weisskopf estimate [T (E) = 1] and by taking for the
transmission coefficients uniformly the value T (E) = 1/2. The two
fission widths are obtained using the values �ω1 = 2 and 4 MeV.

the induced fission rates for medium-weight (A = 100) and
heavy (A = 200) nuclei, respectively. Calculation of the latter
two rates is explained below. Figures 2 and 3 show that for both
medium-weight (A = 100) and heavy nuclei (A = 200), the
effective dipole absorption width (N�)eff(E) decreases slowly
with increasing excitation energy E. Over a range of 1000 MeV
the decrease amounts typically to a factor of 2. The stimulated
dipole emission width (N�)st(E), also shown in Figs. 2 and 3,
starts out at small excitation energy from a value much below
that of (N�)eff(E) and increases monotonically with E. It
becomes equal to (N�)eff(E) at the maximum Emax of the level
density ρ(k). Significant dipole excitation above the energy
Emax is not possible because stimulated emission outweighs
here absorption, (N�)st(E) > (N�)eff(E) for E > Emax. For
the two choices of ρ1 in Eq. (3) we have Emax = 533 MeV and
Emax = 1200 MeV, respectively.
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FIG. 3. (Color online) Same widths as in Fig. 2 for A = 200 (360
bound single-particle states).

We have tacitly assumed that the spreading width �sp retains
the value of ≈5 MeV found at low excitation energy also at
the much higher excitation energies relevant for our paper.
As is the case for (N�)eff(E), the energy dependence of
the spreading width is determined by the relevant density of
accessible states. As shown for (N�)eff(E) in Figs. 2 and 3,
that density changes only moderately with excitation energy.
That fact validates our assumption.

2. Neutron decay

For the neutron decay rates we use the Weisskopf estimate

�N (i,k) = 1

2πρ(i,k)

∫ (k+1/2)EL−BN (i)

0
dE′ ρ(i + 1,E′),

(4)

�N (i,k → k′) = 1

2πρ(i,k)

∫ (k′+1/2)EL

(k′−1/2)EL

dE′ ρ(i + 1,E′).

Here BN (i) is the neutron binding energy of nucleus (A − i).
In the second of Eqs. (4) the lower bound is zero for k′ = 0, and
k′ is bounded by k′EL � kEL − BN (i). Eqs. (4) are consistent
with Eq. (2). We simplify the calculations by assuming that
BN (i) = BN = 8 MeV for all i = 0,1,2, . . . ,n for the short
nuclear chains considered. We thereby neglect the odd-even
staggering of binding energies and level densities. These run
in parallel and, therefore, largely compensate each other in the
neutron decay widths. For both choices for the single-particle
level density ρ1 in Eq. (3), Figs. 2 and 3 show that �N (k)
rises steeply with excitation energy. While much smaller than
(N�)eff for small excitation energies, �N (k) becomes equal
to (N�)eff at E = EN and exceeds (N�)eff for E > EN . For
the two choices of ρ1 and T (E) = 1 we have EN ≈ 435 MeV
and EN ≈ 1080 MeV, respectively. Both values are smaller
than the corresponding values of Emax, Emax = 533 MeV and
Emax = 1200 MeV. We note that the crossing energies EN are
here larger than the ones presented in Ref. [7], i.e., the neutron
rates grow more slowly with excitation energy in the present
case. That difference results from our treatment of the Fermi
energy F . In Ref. [7], the Fermi energy changes with mass
number A whereas in the present work we consider F fixed.
That is in accordance with the fixed value of BN (i) = BN =
V − F = 8 MeV. The difference Emax − EN is sufficiently
large in both cases and for both A = 100 and A = 200 to be
physically significant, in spite of the inherent uncertainties of
the calculation of level densities at high excitation energies.
We conclude that neutron evaporation is the limiting factor in
nuclear excitation by dipole absorption (provided that fission
and proton decay can be neglected).

In Eq. (4) we have not taken account of the transmission
coefficients T (E), i.e., the probability of formation of a resid-
ual nucleus at excitation energy E under neutron emission.
These obey 0 � T (E) � 1 and should multiply the integrands
in Eqs. (4). Neutron decay is dominated by s-wave neutrons.
Here and except for the slowest neutrons the transmission
coefficients are of order unity [21]. We test the influence of
that approximation (which overestimates the neutron widths)
by multiplying all neutron widths by a common factor 1/2. The
pairs of dark blue dashed lines in Figs. 2 and 3 show the band

044619-5
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of neutron widths for T (E) in the interval 1/2 � T (E) � 1.
For T (E) = 1/2, EN is closer to Emax.

3. Fission

According to the Bohr-Wheeler formula [22] modified by
friction [23], the maximum width for induced fission (reached
at friction constant β = 0) depends on excitation energy E
essentially as

�f (i,E) = [�ω1/(2π )] exp{−Ef /T }. (5)

Here, Ef is the height of the fission barrier, ω1 is the frequency
of the inverted harmonic oscillator that osculates the fission
barrier at its maximum, and T is the nuclear temperature.
With T −1 = (d/dE) ln ρ(i,E), the fission width increases very
slowly with E. That is shown in Figs. 2 and 3 where we
present the calculated fission rates for �ω1 = 4 and 2 MeV
and for Ef = 10 MeV (4 MeV), respectively. The two values
of Ef correspond to A = 100 (A = 200), respectively, the
fission barrier being lower for heavy nuclei. We see that while
perhaps competitive with (N�)eff at low excitation energy and
for very heavy nuclei, the fission width at higher excitation
energy is never competitive with dipole absorption or neutron
decay, see Ref. [7]. We must keep in mind, however, that
for a sufficiently long laser pulse the processes described by
the master equation (1) are ultimately terminated by fission.
The induced fission width for E = 200 MeV for a medium-
weight nucleus, for instance, corresponds to a half-life of
approximately 5 zs. As shown in the following section by
our numerical results, fission is therefore terminating the
laser-nucleus reaction after several tens of zs.

Actually, little is known about the dependence of ω1 and Ef

on E for excitation energies in the range of several 100 MeV
above yrast. We expect Ef to decrease with temperature and,
more significantly, as ever more neutrons are evaporated. That
will speed up the fission process. We have not attempted
to estimate the dependence of Ef on temperature and mass
number. Such an estimate would require different techniques
and is beyond the scope of this paper.

C. Estimates

Before presenting our numerical results we give some
estimates that show roughly what to expect. We estimate
the time dependence of the mean excitation energies and the
range of nuclei reached by the combination of multiple photon
absorption and neutron decay. We recall that the total neutron
decay width �N (E) increases steeply with excitation energy
E while the effective dipole absorption width (N�)eff(EN )
decreases slowly with E. The point EN of intersection of the
two curves depends on (N�)eff(E) only extremely weakly.
For our estimate we therefore use the values EN ≈ 435 MeV
and EN ≈ 1080 MeV given in Sec. III B for all values of
(N�)eff(E) and �N (E) considered below. Since the induced
fission rates are much smaller than the dipole absorption rate,
we neglect fission in this first approximation. Furthermore,
we approximate (N�)eff(E) by N�dip for all values of E.
Beyond the critical energy EN , neutron evaporation dominates
strongly, and it is practically impossible to excite nuclei to
energies larger than EN . Since EN is smaller than the energy

Emax defined by the maximum of the level density, stimulated
photon emission is neglected.

Disregarding neutron evaporation we first determine the
time and the number of photons needed to reach the energy
EN in the target nucleus. We approximate the master equation
for the target nucleus by the set of equations

Ṗ (0,k,t) = −N�dipP (0,k,t) + N�dipP (0,k − 1,t). (6)

The initial condition is P (0,k,0) = δk0. The solution

P (0,k,t) = (N�dipt)k

k!
exp{−N�dipt} (7)

obeys
∑∞

k=0 P (0,k,t) = 1 for all times t . Considering P (0,k,t)
for fixed t as a function of k and using Stirling’s formula,
we find that P (0,k,t) has a maximum at k = kmax = N�dipt

with width
√

kmax. The critical energy EN with k(EN ) = kN =
EN/EL is reached after absorption of N0 = kN ± √

kN pho-
tons. The time needed for the process is tN = EN/(ELN�dip).
For A = 100, EN = 435 MeV, EL = 5 MeV, and N�dip =
5 MeV, which gives N0 = 87 photons and tN = 12 × 10−21 s.
The corresponding figures for A = 200 are EN = 1080 MeV,
EL = 5 MeV, N�dip = 5 MeV, N0 = 216 photons, and tN =
3 × 10−20 s. The laser pulse has the required length tN in
time if σ � 50 keV or σ � 22 keV, respectively. The speed of
the process increases and the number of absorbed photons
decreases as either the photon energy EL or the dipole
absorption width N�dip or both are increased.

As the process described by Eq. (6) carries on, neutron
decay actually depletes P (0,k,t) and feeds P (1,k′,t). Even
though for energies below EN the neutron decay width �N is
much smaller than N�dip, the time needed to reach excitation
energy EN in the target nucleus is sufficiently large that nearly
the entire occupation probability in the target nucleus is lost
to neutron decay on the way. In the daughter nucleus, photon
absorption is described by the same equation (6) save for the
feeding term. Neutron decay is dominated by slow neutrons
and, therefore, implies a loss of excitation energy of about
8 MeV (the binding energy). Therefore, feeding of P (1,k,t)
by neutron decay occurs at k values that are about two units
(assuming a photon energy of around 5 MeV) smaller than
the ones for which the loss in P (0,k,t) occurs. It takes about
two absorbed photons to make up for that energy loss. The
daughter nucleus decays in turn by neutron emission. The
process repeats itself in the second daughter nucleus and so
on. As a result, the maximum of the occupation probability
moves to ever proton-richer nuclei and to ever higher excitation
energies, eventually hovering near or at most one or two k units
below EN .

An overestimate for the time needed to reach the nucleus
with mass number (A − i) at energy EN is obtained by
disregarding neutron decay in the target nucleus at energies
below EN , i.e., by using Eq. (6) up to E = EN , and
by assuming that at E = EN neutron decay takes over
and populates the states (1,kN − 2) in the nucleus (A − 1)
(this scenario is consistent with EL = 5 MeV). These are
dipole-excited twice till the next neutron decay sets in, and
so on. Since at E = EN we have �N (EN ) = N�dip(EN ), the
part of the master equation describing the feeding of the first
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daughter nucleus by neutron decay of the target nucleus reads

Ṗ (1,kN − 2,t) =−N�dipP (1,kN − 2,t) + N�dipP (0,kN ,t).

(8)

The loss term accounts for photon absorption in nucleus (A −
1). From here Eq. (6) with i = 0 replaced by i = 1 takes over
until the energy EN is reached in nucleus (A − 1). That is the
case after absorption of two photons. The process continues,
alternating between Eq. (6) and the analogue of Eq. (8) for the
second, third, ..., daughter nucleus. Except for the counting
of k values, these combined equations all have the same form
as Eq. (6), and their solution, therefore, has the form of the
right-hand side of Eq. (7). Hence

P (i,kn,t) = (N�dipt)kn+3i

(kn + 3i)!
exp{−N�dipt}. (9)

The function P (i,kn,t) has its maximum at t = (kn +
3i)/(N�dip). In other words, while it takes 87 (216) photons to
reach EN from the ground state of the target nucleus with mass
number A = 100 (A = 200, respectively), it takes only 15
additional absorbed photons to move 5 mass units away from
the line of stability. The additional time needed is 15/(N�dip).
These figures show that once the threshold energy EN for
significant neutron evaporation is reached, the process quickly
populates nuclei far from the valley of stability. The spread σ
of the laser pulse needed to reach the energy EN is given by

σ0 = N�dipEL/EN . (10)

Here EN is independent of EL. With EN = 435 MeV and
EN = 1080 MeV for mass numbers A = 100 and A = 200, re-
spectively, Eq. (10) defines a relation between the experimental
parameters σ , EL, and N�dip. The formation of proton-rich
nuclei sets in whenever σ � σ0. Clearly, these times are
overestimates because neutron decay is actually simultaneous
with (and not subsequent to) photon absorption. After several
tens of zs, fission puts an end to the process, sooner for heavy
nuclei than for medium-weight ones.

IV. NUMERICAL RESULTS

We calculate the time-dependent occupation probabilities
P (i,k,t) for medium-weight (A = 100) and heavy (A = 200)
target nuclei that interact with a short pulse of coherent MeV
photons. We solve Eq. (1) numerically for several choices
of photon energy EL, of the effective dipole width N�dip,
and of the length (n + 1) of the decay chain. Equation (1)
is written in matrix form (including target and daughter
index i = 0,1, . . . ,n) as Ṗ = MP with P (i,k,t) → P(k +
i(kmax + 1),t) and kmax the maximum number of excitation
steps considered. The matrix M is independent of time and
has both block-diagonal parts (fixed index i) describing dipole
absorption, stimulated emission, neutron decay, and fission, as
well as nondiagonal feeding terms for the daughter nuclei
[mass (A − i)] which are populated by neutron decay of
their predecessors [mass (A − i + 1)]. The formal solution of
Eq. (1) in vector form is P(t) = exp{Mt}P(t = 0). Because
of the strongly varying rates and the large level densities
involved [for instance, ρ(Emax) 
 10104MeV−1 for A = 200],

severe numerical problems may arise when one attempts to
use standard linear algebra routines such as LAPACK [24] for
the calculation of the matrix exponential.

Dedicated matrix exponential methods for solving systems
of extremely stiff differential equations, i.e., equations for
which the solving methods are numerically unstable, unless the
step size is taken to be extremely small, have been developed
in the last half-century [25–27] and applied, e.g., to nuclear
fuel burn-up calculations [28–30]. In this work, we employ a
new fast general-purpose semi-analytical matrix exponential
solver, which is based on a combination of backward-stable
matrix algorithms [31]. First, the system of differential equa-
tions is brought to triangular form using Schur decomposition.
Then, the triangular system is solved recursively using a
combination of Schur decomposition and back substitution
algorithms. This yields the solution in analytical form as a
combination of polynomials and exponential functions of time
t . To verify numerical accuracy, we additionally carry out
comparative calculations with other state-of-the-art solvers for
the particularly demanding case of heavy nuclei with A = 200.

Figure 4 shows the target occupation probability
P (0,E,t) = P (0,kEL,t) in the absence of both neutron decay
and fission for photon energy EL = 5 MeV and for A =
100 and N�dip = 1,5,8 MeV. Depending on the effective
dipole width, the saturation energy Emax = 533 MeV where
stimulated emission limits photon absorption is reached after
50 zs for N�dip = 8 MeV (after 100 zs for N�dip = 5 MeV,
respectively). The energy EN above which �N > (N�)eff is
reached for the case of N�dip = 5 MeV much later than the
time estimated in Sec. III C of tN = 12 zs. A neck-like artifact
can be observed at the switching point E = 68 MeV in the
calculation method for the level densities ρ(i,k) and is best
visible in Fig. 4(a). Additional information is provided by
value and position of the maximum and by the FWHM of the
occupation probability shown in the lower part of the figure
for the three cases considered. In accord with our estimates
in Sec. III C the FWHM is proportional to

√
t and, after

the first few zs, the peak height has a 1/
√

t dependence.
The linear dependence of the maximum on time holds only
for the smallest of the three values of N�dip and does so
only for small times. In all other cases stimulated dipole
emission slows down the linear increase. The switching point
at E = 68 MeV is also visible here in the shape of kinks in the
three curves illustrating the peak position, height and FWHM
of the occupation probability in Fig. 4(d).

Figure 5 shows qualitatively similar results for a target
nucleus with A = 200. The time dependence of the peak
position, maximum peak value, and FWHM again confirm our
estimates in Sec. III C, except that the linear approximation
for the peak position is only valid for short times t (except
for the case N�dip = 1 MeV). Reaching the saturation energy
Emax = 1200 MeV requires a substantially larger number of
absorbed photons than for A = 100. The switching point
between the calculation methods for the level densities ρ(i,k)
at E = 200 MeV is also here visible, especially in Figs. 5(a)
and 5(d).

Laser excitation of heavy nuclei (A = 200) poses a nu-
merically challenging problem, due to increased stiffness
of the equation system. We have used the parameter set
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FIG. 4. (Color online) Occupation probabilities P (0,E,t) for EL = 5 MeV, A = 100, and for dipole absorption and stimulated emission
only. (a)–(c) Contour plots of the time-dependent occupation probability P (0,E,t) as a function of excitation energy E for (a) N�dip = 1 MeV,
(b) N�dip = 5 MeV, and (c) N�dip = 8 MeV. (d)–(f) Corresponding peak height (dashed blue line) (scale on the right y axis), position (solid red
line), and FWHM (long-dashed green line) of the occupation probability (scales on the left y axis) for (d) N�dip = 1 MeV, (e) N�dip = 5 MeV,
and (f) N�dip = 8 MeV.

A = 200, EL = 5 MeV, and N�dip = 5 MeV as testing
ground for five state-of-the-art equation solvers that employ
matrix exponential methods: (1) the semi-analytical matrix
exponential method [31], (2) the Chebyshev rational approx-
imation method (CRAM) with partial fraction coefficients
for approximation order 14 [29,32], (3) CRAM with partial
fraction coefficients for approximation order 16 [29,32], (4)
eigenvector decomposition of matrix M, and (5) a modern
scaling and squaring Taylor expansion algorithm [33]. The
five solvers were used to reproduce Fig. 5(b). The comparison
shows that differently calculated P (0,E,t) values agree within
an accuracy of 10−3. All methods produce some numerical

artifacts in the form of fringes on the upper side of P (0,k,t)
at an accuracy level of 10−4–10−5. We do not expect that
such a level of accuracy can be attained in experiments in
the foreseeable future and consider these fringes irrelevant.
The semi-analytical algorithm used in the present work [31]
is the fastest one, yielding results in less than a minute,
while the slowest scaling and squaring Taylor expansion
method required more than two weeks for the same parameter
set.

While Fig. 4 shows how the value of N�dip affects the
speed of nuclear excitation, Fig. 6 displays the influence of
EL. We take EL = 1, 5, and 10 MeV and use the same
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FIG. 5. (Color online) Occupation probabilities P (0,E,t) for EL = 5 MeV, A = 200, and for dipole absorption and stimulated emission
only. (a)–(c) Contour plots of the time-dependent occupation probability P (0,E,t) as a function of excitation energy E for (a) N�dip = 1 MeV,
(b) N�dip = 5 MeV, and (c) N�dip = 8 MeV. (d)–(f) Corresponding peak height (dashed blue line) (scale on the right y axis), position
(solid red line), and FWHM (long-dashed green line) (scales on the left y axis) of the occupation probability and for (d) N�dip = 1 MeV,
(e) N�dip = 5 MeV, and (f) N�dip = 8 MeV.
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FIG. 6. (Color online) Contour plots of the time-dependent occupation probability P (0,E,t) as a function of excitation energy E for (a)
EL = 1 MeV, (b) EL = 5 MeV, and (c) EL = 10 MeV. The results are for N�dip = 5 MeV, A = 100, and for dipole absorption and stimulated
emission only.

dipole absorption width N�dip = 5 MeV throughout. The
dependence of the occupation probability P (0,E,t) on photon
energy EL is shown in Fig. 6 for the generic medium-weight
target nucleus with A = 100 and in the absence of neutron
decay. Depending on photon energy, the saturation region is
reached after 400, 100, or 50 zs, respectively. A large photon
energy speeds up the excitation process and may partially
counteract the effect of a small dipole absorption width N�dip.
For EL = 1 MeV the excitation path is energetically more
narrow than in the other cases. In summary, photon energy
EL and dipole absorption width N�dip, (i.e., the number of
coherent photons in the laser pulse) jointly determine the time
scale of the excitation process. We add few technical remarks:
Due to the smaller excitation energy per step of the calculation,
the case EL = 1 MeV is more sensitive to where we switch
from the Bethe formula to our method for the calculation of
nuclear level densities. That point shows up as a small neck
at ≈68 MeV excitation energy in all three plots in Fig. 6.
In addition, the numerical effort for EL = 1 MeV is much
larger than for higher values of EL as it requires both a large
matrix and, because of the slower excitation process, many
more time points. The difference in the energy spacing also
affects the contour plots, creating the false impression that
the integral over occupation probability at any one time is
smaller for small EL. Numerically, for any time t the sum
over all occupation probabilities

∑
k P (0,k,t) equals unity

with accuracy better than 10−6 for all three considered photon
energies EL.

We now take account of neutron decay of the target and
of three consecutive daughter nuclei, still neglecting fission.
We solve the master equation for a chain of five nuclei
with mass numbers ranging from A to A − 4. We disregard
neutron emission by the last nucleus with mass number A − 4
which serves as a dump for the overall probability flow.
The dimensions of the matrices M are five times larger
than for the parent nucleus only. In particular, for photon
energy EL = 5 MeV the matrix dimension is 500 (1000)
for an A = 100 (an A = 200) target nucleus, respectively.
Figure 7 shows contour plots of the occupation probabilities
P (i,E,t) for i = 0 (target) and i = 1,2,3,4 (daughters) and
for three parameter sets as indicated. In all cases, the final
nucleus in the chain undergoes only dipole excitation with
energies eventually reaching the saturation energy. Compared
to pure dipole absorption, neutron emission is seen to broaden
the distribution; cf. Figs. 4(b) and 5(b). The occupation

probabilities P (i,E,t) with i � 3 show that neutron emission
comes into play early, slowing down the excitation process
even at energies below EN , i.e., below ≈435 MeV for
A = 100 and 1080 MeV for A = 200, respectively. As soon
as the neutron emission rates reach approximately 1020s−1,
sufficiently many daughter nuclei are produced within the tens
of zs time span of the laser pulse to strongly deplete the
occupation probability of the target nucleus. A comparison
of the probability distributions of A = 100 parent nuclei for
photon energies EL of 5 and 10 MeV energy [columns (i)
and (ii) in Fig. 7] shows that higher excitation energies are
reached (and correspondingly stronger neutron decay sets in)
as the photon energy is increased. For t = 10 zs and for
EL = 10 MeV most of the nuclei have disintegrated to the
dump (i = 4), while for EL = 5 keV the target nucleus and
the first daughter i = 0,1,2 are still predominantly occupied
at t < 10 zs. Comparing columns (i) and (iii) of Fig. 7 we
note that, for identical times t , higher excitation energies are
reached in the heavier target. That is possible because of the
much higher value of EN = 1080 MeV for A = 200. As is
the case for A = 100, neutron emission plays an important role
long before the excitation energy EN is reached. After 10 zs,
the occupation probability of the target nucleus practically
vanishes, while the occupation probabilities for nuclei with
i = 2,3 and even i = 4 are significant.

Fission is taken into account by adding the fission width
as a diagonal loss term in Eq. (1). We do not follow the
fate of the fission products as their masses are much smaller
than those of the target nucleus and of the first few daughter
nuclei. For a one-to-one comparison, results are shown in
Fig. 8 for the same set of parameters as used in Fig. 7. As
expected from the decay rates shown in Sec. III B, Fig. 8
shows that neutron emission is much faster than fission. For
A = 100, fission is so much slower than neutron decay that
the comparison of the results for the target (T) and the first
three daughter (D1-D3) nuclei shows little difference between
the cases without and with fission. Only for the last nucleus
in the chain, where neutron decay is switched off, do we reach
the time scale for which the fission rate produces significant
loss. Since heavy nuclei (A = 200) have a larger fission width,
some loss of probability can be observed already for the first
daughter nucleus and for the daughters with i = 3 and i = 4
the occupation probabilities almost vanish. The effective loss
of total occupation probability

∑
i,k P (i,k,t) = 0 is displayed

in Fig. 9 for all three cases (i), (ii), and (iii).
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FIG. 7. (Color online) Contour plots of the time-dependent occupation probabilities P (i,E,t) with (from top to bottom) target nucleus
(i = 0, label T ) and four daughter nuclei (i = 1 to 4, labels D1–D4) as functions of excitation energy E for N�dip = 5 MeV. Left column:
target nucleus A = 100, photon energy EL = 5 MeV; middle column: target nucleus A = 100, photon energy EL = 10 MeV; right column:
target nucleus A = 200, photon energy EL = 5 MeV. Please note the different color coding span for the case with target nucleus A = 200,
which we chose for purpose of comparison with the next figure.
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FIG. 8. (Color online) Same as Fig. 7 but including induced fission.

V. DISCUSSION

The results of Sec. IV are obtained with neglect of the direct
emission of nucleons by photoabsorption into the continuum.
As shown in Ref. [7], such direct emission plays only a minor

role for nuclei around A = 100 but is competitive with neutron
decay for heavy nuclei. The effective charges of neutrons
and protons being nearly equal in magnitude, such direct
photoionization is expected to produce neutrons and protons
in about equal numbers. As a consequence, photoabsorption
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FIG. 9. (Color online) Loss of total occupation probability∑
i,k P (i,k,t) due to fission for the three parameter sets used in Figs. 7

and 8: N�dip = 5 MeV in all cases, (i) target nucleus with A = 100,
photon energy EL = 5 MeV (solid red line), (ii) target nucleus with
A = 100, photon energy EL = 10 MeV (long-dashed green line),
and (iii) target nucleus with A = 200, photon energy EL = 5 MeV
(short-dashed blue line).

populates highly excited states not only in the chain of nuclei
reached by neutron emission, but also in all nuclei with mass
numbers (A − i) that lie between the valley of stability and
nuclei in that chain. We have not attempted to calculate that
process in detail.

Fission ultimately terminates all the processes considered
in this paper. Characteristic time scales are given in Fig. 9. The
study of nuclei at high excitation energies and far off the line of
stability is possible only when the laser pulse terminates before
that characteristic time, i.e., if σ � �f . It was mentioned above
that we expect �f to increase with increasing distance of
the fissioning nuclei from the valley of stability. A reliable
estimate would require a precise calculation of the height of
the fission barrier Ef versus that distance. Termination by
fission of the processes considered in this paper would allow
to measure �f and, thus, to check such calculations.

It was pointed out by Richter [34] that at excitation
energies of several 100 MeV, the compound nucleus might
undergo transitions in which excited states of the nucleon are
populated or in which subthreshold pion production occurs.
How likely are such processes (which we have disregarded
in this paper)? In the quasi-adiabatic regime, the compound
nucleus is near equilibrium at all times, and the answer follows
from a statistical argument. The large number of equilibrium
configurations at energy E must be compared with the very
much smaller number of configurations where (almost) all the
energy resides in a single mode (that of the excited nucleon or
that of the pion). The situation is comparable to the emission of
a fast neutron that carries almost all the excitation energy of the

compound nucleus and leaves the residual nucleus in a state
of low excitation energy. In comparison with slow-neutron
emission, this process is suppressed by up to twenty orders of
magnitude. We expect a large suppression factor also for the
processes under discussion. However, each of these processes
is easily distinguishable experimentally from any of the
processes considered in our paper. In spite of their enormous
scarcity, formation of any of the � resonances or subthreshold
pion production might, therefore, still be observable.

In conclusion, in the quasi-adiabatic regime reactions
induced by coherent laser light will cause the absorption of
up to several 100 photons. Such reactions offer the unique
chance to explore the level density of the compound nucleus
far above the yrast line, hitherto an unknown territory. The
model we have used is plausible but not yet established. It is
for experimental data to tell whether our present understanding
is correct. The reaction will produce nuclei far from the valley
of stability. Their decay processes will yield spectroscopic
information not accessible so far.

APPENDIX

We calculate the distribution of spin values in the target
nucleus after absorption of N0 photons. We take the direction of
propagation of the photons as the z axis. In an unpolarized laser
beam each dipole photon carries the z-component angular mo-
mentum ±1. Absorption of a single photon populates nuclear
states with Jz = ±1. These correspond to total spin J = 1. Ab-
sorption of two photons populates nuclear states with Jz = ±2
(once each) and Jz = 0 (twice), corresponding to J = 2 (once)
and J = 0 (once). Absorption of N0 photons populates states
with Jz = ±N0,±N0 ∓ 2,±N0 ∓ 4, . . .. Inspection shows that
the multiplicity of states with given |Jz| is given by

(
N0

k

)
where

2k = |Jz| + N0 and k = N0/2,N0/2 + 1, . . . ,N0 for N0 even
and k = (N0 + 1)/2,(N0 + 3)/2, . . . ,N0 for N0 odd. We note
that for N0 even (odd) only even (odd) values of Jz and, thus,
of total spin J occur. The number Z(J ) of such spin values
is given by

(
N0

k

) − (
N0

k+1

)
with 2k = J + N0. For N0 � 1 we

use Stirling’s formula and approximate the difference by the
negative derivative with respect to k. Thus,

Z(J ) =− d

dk

(
N0

k

)∣∣∣∣
k=(N0+J )/2

≈ ln
N0 − J

N0 + J
exp{N0 ln N0 − (1/2)(N0 + J )

× ln(N0 + J )/2 − (1/2)(N0 − J ) ln(N0 − J )/2}.
(A1)

By definition, Z(J ) � 0. We note that Z(J ) = 0 at J = 0.
Inspection shows that Z(J ) has a single maximum and drops
off to relatively small values for J ≈ N0. The maximum J0

of Z(J ) is located at J0 = √
N0. We have used J0 � N0. For

N0 � 1 that condition is met by the solution (A1).
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