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Random-matrix approach to the statistical compound nuclear reaction
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Using a random-matrix approach and Monte Carlo simulations, we generate scattering matrices and cross
sections for compound-nucleus reactions. In the absence of direct reactions we compare the average cross
sections with the analytic solution given by the Gaussian orthogonal ensemble (GOE) triple integral, and with
predictions of statistical approaches such as the ones from Moldauer; Hofmann, Richert, Tepel, and Weidenmüller;
and Kawai, Kerman, and McVoy. We find perfect agreement with the GOE triple integral and display the limits of
validity of the latter approaches. We establish a criterion for the width of the energy-averaging interval such that
the relative difference between the ensemble-averaged and the energy-averaged scattering matrices lies below
a given bound. Direct reactions are simulated in terms of an energy-independent background matrix. In that
case, cross sections averaged over the ensemble of Monte Carlo simulations fully agree with results from the
Engelbrecht-Weidenmüller transformation. The limits of other approximate approaches are displayed.
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I. INTRODUCTION

For medium-weight and heavy target nuclei, nuclear re-
actions represent a very complex phenomenon because the
number of degrees of freedom grows rapidly with mass number
A. That fact has naturally led to the development of a statistical
approach. Central to the approach are the concept of a fully
equilibrated compound nucleus and the Bohr hypothesis [1],
which states that a particle incident on a medium-weight or
heavy nucleus shares its energy with the target nucleons. The
resulting compound nucleus attains statistical equilibrium, and
the modes of decay of the equilibrated system are independent
of the mode of formation. The postulated independence im-
plies a factorization of the energy-averaged compound-nucleus
cross section [2]. The factorization hypothesis holds very well
at sufficiently large bombarding energies (i.e., in the Ericson
regime) but not for isolated or weakly overlapping compound-
nucleus resonances [3,4]. In that regime the average cross
section given by the factorization hypothesis must be corrected
by a “width fluctuation correction” factor (WFC). The WFC
factor basically accounts for an enhancement of the elastic
average cross section.

In the 1970s numerous efforts were undertaken to derive the
WFC factor [4–10] or to generate a suitable parametrization
of the WFC factor with the help of the Monte Carlo (MC)
technique [8,11–13]. All of these were guided by random-
matrix theory (RMT). Inspired by Bohr’s idea, Wigner had
introduced RMT into nuclear physics as a means to cope
with the complexities of the compound nucleus (see Brody
et al. [14]). In RMT, the nuclear Hamiltonian is assumed to
be a member of the Gaussian orthogonal ensemble (GOE)
of random matrices. Wigner himself never went as far as
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formulating a statistical theory of nuclear reactions in terms
of the GOE. Lacking such a theory, the above-mentioned
approaches used approximations that were not fully controlled.
Only in 1985 an exact closed-form expression for the average
S matrix and for the S matrix correlation function based upon
a GOE scattering approach was derived [15], based upon the
shell-model approach to nuclear reactions [16] and valid in
the limit of a large number of resonances. In that work the S
matrix is written in terms of the GOE Hamiltonian H (GOE).
Averages are performed directly over the Gaussian-distributed
elements of H (GOE).

The exact results of the GOE scattering approach [15] apply
for all values of the parameters (number of open channels and
isolated or overlapping resonances) characterizing compound-
nucleus reactions. More generally, that work describes uni-
versal features of quantum-chaotic scattering [17,18] and is,
therefore, relevant also beyond the confines of nuclear physics.
However, the exact expression for the S-matrix correlation
function [15] involves a triple integral. The computational
cost of evaluating that integral is quite heavy, especially when
many channels are open. That is why only few numerical
studies have been performed in the past. Fröhner [19] and
Igarasi [20] independently compared the GOE triple-integral
results with Moldauer’s method and obtained good agreement.
Hilaire, Lagrange, and Koning [21] extended the numerical
study and applied it to some realistic cases where neutron
radiative capture and fission channels are involved. Updated
parametrizations of Moldauer’s method based on the GOE
triple-integral calculation are also available [22,23], which are
of practical use for cross-section calculations.

In the present paper we present a thorough analysis of
the results of the GOE approach and a comparison with
other approximate methods, with the aim to understand
their applicability and limitation. The work is based on a
Monte Carlo approach. We generate an ensemble of scattering
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matrices or cross sections. This is done by drawing at random
the elements of H (GOE) and using these to generate the elements
of the scattering matrix. In this way we are able to avoid some
phenomenological assumptions made in the past concerning
the distribution of the decay amplitudes or of levels. In that
respect our MC approach also differs from the one used by
Moldauer or Hofmann et al. We average over the ensemble
of realizations generated by the MC method and compare
these with predictions of the exact GOE approach and of
other approximate methods. We are able to answer some
important and long-standing questions concerning compound
nuclear reactions, such as the difference between energy and
ensemble averages, the role of direct channels, the existence
of correlations between distributions of levels and decay
amplitudes, and the behavior of the cross section in the limit
of weak absorption.

II. THEORY OF STOCHASTIC SCATTERING

A. Compound-nucleus cross section

The cross section for a reaction from channel a to channel
b is written as

σab = π

k2
a

ga|δab − Sab|2. (1)

Here ka is the wave number for channel a, ga is the spin
factor, and δab is the Kronecker δ, and the element Sab of the
scattering matrix S consists of an energy-averaged part 〈Sab〉
and a fluctuating part Sfl

ab. The energy-averaged cross section
also consists of two parts,

〈σab〉 = π

k2
a

ga〈|δab − Sab|2〉

= π

k2
a

ga

{|δab − 〈Sab〉|2 + 〈|Sfl
ab|2

〉}
. (2)

The term containing |δab − 〈Sab〉|2 describes shape elastic
(a = b) or shape inelastic (a �= b) scattering. The term
containing 〈|Sfl

ab|2〉 is the average compound-nucleus (CN)
cross section

σ CN
ab = π

k2
a

ga

〈∣∣Sfl
ab

∣∣2〉
. (3)

In the first part of the paper we confine ourselves to cases where
the average S matrix is diagonal, 〈Sab〉 = δab〈Saa〉. Then 〈Saa〉
and the shape-elastic cross section

σ SE
aa = π

k2
a

ga|1 − 〈Saa〉|2 (4)

are given by the optical model. It is the aim of various theories
of CN reactions to express the CN cross section in terms of
〈Saa〉 and of the transmission coefficients

Ta = 1 − |〈Saa〉|2, 0 � Ta � 1. (5)

These measure the unitary deficit of 〈S〉 and, thus, the
probability of CN formation. In the second part of the paper
we address the case when 〈Sab〉 is not diagonal.

Bohr’s idea of the independence of formation and decay
of the CN led to the Hauser-Feshbach formula [2] for the CN

cross section,

σ HF
ab = π

k2
a

ga

TaTb∑
c Tc

. (6)

Corrections to that formula are conveniently expressed in terms
of the WFC factor [24],

σ CN
ab = π

k2
a

ga

TaTb∑
c Tc

Wab. (7)

Rigorously speaking, Wab should be separated into two
parts, the “elastic enhancement factor” and the proper “width
fluctuation correction factor” [4]. However, for the comparison
of various approaches it is more convenient to adopt the
suggestion of Hilaire, Lagrange, and Koning [21] and to define
the width fluctuation factor Wab as the ratio σ CN

ab /σ HF
ab .

In what follows we compare several approaches to the
calculation of σ CN

ab and/or of the WFC factor. In chrono-
logical order, these are the approach of Kawai, Kerman,
and MacVoy [6] (KKM), the parametrization by Hofmann,
Richert, Tepel, and Weidenmüller [8] (HRTW), Moldauer’s
parametrization [13], the GOE approach by Verbaarschot,
Weidenmüller, and Zirnbauer [15], the parametrization by
Ernebjerg and Herman [22], and that by Kawano and
Talou [23]. These are briefly summarized in the Appendix.
Hereafter we drop the kinetic and spin factors πga/k2

a , so all
the cross sections are dimensionless.

All these approaches use GOE-inspired statistical as-
sumptions on the parameters of the CN resonances. In our
comparison we use the results of Ref. [15] as a benchmark.
We do so because the work of Ref. [15] is the only one that,
starting from a random-matrix model for the Hamiltonian
of the CN resonances and using controlled approximations,
obtains an analytical expression for σ CN

ab that is valid in all
regimes—from the regime of isolated resonances to that of
strongly overlapping resonances.

B. S matrix, K matrix, and R matrix

In order to display the connection between various theories
of resonance reactions we recall here briefly the derivation of
a universal expression for the S matrix [6,16]. Specialization
of that expression then yields the formulas used in various
approaches.

Given a time-reversal-invariant Hamiltonian H we use
Feshbach’s projection operators P and Q = 1 − P (where P
projects onto all open channels labeled a,b, . . .) to write the
Schrödinger equation (E − H )� = 0 for the scattering wave
function � in the form of the coupled equations

(E − HPP )P� = HPQQ�, (8)

(E − HQQ)Q� = HQP P�. (9)

We use the standard notation, HPP = PHP , HPQ = PHQ,
etc. With the P space scattering wave function ψ (+)

a defined
by

(E − HPP )ψ (+)
a = 0, (10)
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the unitary and symmetric S matrix is given by

Sab = S
(0)
ab − 2πi

(
ψ (−)

a |HPQ

1

E − HQQ

HQP |ψ (+)
b

)
. (11)

Here S
(0)
ab is a unitary background scattering matrix defined

by the asymptotic form of the solutions ψ (+)
a , and HQQ is the

effective Hamiltonian in Q space,

HQQ = HQQ + HQP

1

E+ − HPP

HPQ. (12)

To be useful Eqs. (11) and (12) must be specialized further.
The S-matrix approach of Ref. [15] and the expressions for S
in terms of the K matrix and the R matrix use different such
specializations. Common to these is the assumption that the
unitary background scattering matrix S(0) is diagonal, S

(0)
ab =

δab exp{2iφa}. We assume that the phases φa are removed
by the transformation Sab → exp{−iφa}Sab exp{−iφb}. Then
ψ (+)

a exp{−iφa} = ψa is real, and Eq. (11) becomes

Sab = δab − 2πi

(
ψa|HPQ

1

E − HQQ

HQP |ψb

)
. (13)

For the S-matrix approach of Ref. [15] we introduce an
arbitrary orthonormal basis of states labeled μ in Q space and
write

Wμa = (μ|HQP |ψa) = Waμ = W ∗
aμ,

(14)(
μ|HQP

1

E+ − HPP

HPQ|ν
)

= 	μν − iπ
∑

c

WμcWcν, (15)

(
μ|HQQ|ν) = Hμν. (16)

The sum extends over all open channels. The real shift
function 	μν is defined by a principal-value integral. It is
commonly assumed that the matrix elements Waμ change
slowly with energy on a scale defined by the mean level spacing
of the resonances. Then 	μν ≈ 0. We use that assumption
throughout. With these definitions, Eqs. (11) and (12) take the
form

Sab = δab − 2iπ
∑
μν

Waμ(D−1)μνWνb, (17)

where

Dμν = Eδμν − Hμν + iπ
∑

c

WμcWcν. (18)

For the K-matrix parametrization of S we use Eq. (12) to
define the eigenvalues Eσ and eigenvectors Xσ of the bound
compound system,

(Eσ − HQQ)Xσ = 0. (19)

The states Xσ produce the CN resonances in the scattering
process. These states correspond to a special choice of the
basis of states μ used in Eqs. (14)–(16). The partial decay
amplitude of state Xσ into channel a is

γσa = γ ∗
σa = (Xσ |HQP |ψa). (20)

Under neglect of the shift matrix 	 the S matrix of Eq. (13)
can be written as

Sab =
(

1 − iK

1 + iK

)
ab

, (21)

where

Kab(E) = π
∑

σ

γaσ γσb

E − Eσ

. (22)

The R matrix is obtained by a nonstandard choice of the
projection operators P and Q. In every channel c (open and
closed) a radius rc is defined. The set {rc} of all channel radii
separates the internal and the external regions of configuration
space. The operator Q projects onto the internal region, and
P = 1 − Q. At the channel surfaces of the internal region,
self-adjoint boundary conditions are introduced with real
boundary condition parameters Bc. These define a Hermitian
Hamiltonian HQQ and associated internal eigenvalues E(R)

σ

and orthonormal eigenfunctions X(R)
σ . The reduced width

amplitude γ (R)
σc is the projection of the eigenfunction X(R)

σ onto
the surface of channel c, and the R matrix is defined as

Rab(E) =
∑

σ

γ (R)
aσ γ

(R)
σb

E
(R)
σ − E

. (23)

This is in close analogy to Eq. (22), except that a factor
√

π
has been absorbed by each of the reduced width amplitudes.
The resulting form of the scattering matrix is

Sab = δab

+ 2i
√

Pa({1 − R(L − B)}−1R)ab

√
Pb. (24)

Here Pa is the penetration factor in channel a, the matrices
B and L are diagonal with elements Ba and La = Sa + iPa ,
and the real entities Sa − Ba play a role that is analogous to
that of the shift function 	 in Eq. (15). The diagonal matrices
L and P depend only on channel radius ra and wave number
ka [25]. The boundary condition parameter Ba is often taken
as Ba = −la [26], with la the orbital angular momentum of
relative motion in channel a. In the R-matrix approach the
phases φa are caused by elastic scattering on a hard sphere of
radius ra while in the approach of Ref. [15] they are elastic
potential scattering phase shifts.

C. Implementation of stochasticity

To fully define the scattering matrices in Sec. II B we
need to determine the resonance parameters. This is done
by introducing statistical assumptions, using random-matrix
theory [27] as a guiding principle. The actual procedure differs
somewhat for the three forms of the scattering matrix in
Sec. II B. These are referred to as the S-matrix approach, the
K-matrix approach, and the R-matrix approach, respectively.

The relevant random-matrix ensemble is the time-reversal-
invariant GOE. The elements H (GOE)

μν of the N -dimensional
GOE matrix H (GOE) are Gaussian-distributed real random
variables with zero mean values and second moments given
by

H
(GOE)
μν H

(GOE)
ρσ = λ2

N
(δμρδνσ + δμσ δνρ). (25)

044617-3
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Here and in what follows, the ensemble average is denoted
by an overbar. The parameter λ is related to the average level
spacing d at the center of the GOE spectrum by d = πλ/N .
Universal properties are analytically derived [27] in the limit
N → ∞. The eigenvalues and the eigenvectors of H (GOE)

are statistically uncorrelated. The projections of the (real)
eigenvectors on any fixed vector in Hilbert space have a
Gaussian distribution centered at zero. The eigenvalues obey
Wigner-Dyson statistics. The degree to which these properties
can be implemented depends on the approach used.

In the S-matrix approach the Q-space Hamiltonian Hμν

of Eq. (18) is replaced by H (GOE)
μν . That replacement provides

the most direct implementation of random-matrix theory into
scattering theory. The average cross section is worked out
as an average over the GOE. For the specification of the
parameters Waμ one uses the invariance of the GOE under
orthogonal transformations in Hilbert space. That invariance
implies that ensemble averages can depend on the W ’s only via
the invariant forms

∑
μ WaμWμb. For the average S matrix to

be diagonal, the sums must be diagonal in the channel indices,∑
μ

WaμWμb = δabNv2
a, (26)

and the only parameters left are the v2
a . With

xa = π2v2
a

d
, (27)

these determine the average S matrix elements Saa and the
transmission coefficients Ta as

Saa = 1 − xa

1 + xa

, Ta = 4xa

(1 + xa)2
. (28)

Equations (28) imply that the average strength xa of the
coupling of the CN resonance states to channel a is fixed by
the average S matrix and, thus, determined by the shape-elastic
input. In that sense, the GOE ensemble average of |Sfl

ab|2 is
parameter free. This differs from past calculations using a
statistical R matrix or K matrix.

In the K-matrix and R-matrix approaches, two assumptions
are made:

(1) The partial width amplitudes γaσ and the reduced width
amplitudes γ (R)

aσ both have a Gaussian distribution with
zero mean and a specified second moment 〈γ 2

a 〉.
(2) The eigenvalues Eσ and E(R)

σ obey Wigner-Dyson
statistics.

If fully implemented, these assumptions correspond for N →
∞ to the properties of the GOE listed below Eq. (25).

In practical calculations, the implementation of these statis-
tical assumptions causes difficulties. The S-matrix approach
lends itself to an analytical calculation of σ CN

ab in the limit
N → ∞. The resulting expression is given in Eq. (35) below.
However, the use of that expression was limited for a long
time because of the difficulties in calculating reliably the
ensuing threefold integral. A direct implementation would
consist in drawing the elements H (GOE)

μν from a Gaussian
distribution, choosing a set of matrix elements Waμ consistent
with Eqs. (26) and (28) and inverting the resulting matrix Dμν .

For N 
 1 that is quite cumbersome and, to the best of our
knowledge, has not been done before. We report on such a
calculation below.

For the K-matrix and R-matrix approaches, it is straightfor-
ward to draw the partial width amplitudes or the reduced width
amplitudes from a Gaussian distribution. To meet postulate 2,
the eigenvalues should be determined by diagonalization of the
GOE matrix H (GOE) for N 
 1. This is cumbersome, and a
simplified version sometimes replaces postulate 2. The Wigner
surmise for the distribution P (s) of spacings s of neighboring
eigenvalues reads

PW (s) = π

2
s exp

(
−πs2

4

)
, (29)

with s the actual spacing in units of d. Spacings of neigh-
boring eigenvalues are drawn at random from PW (s) and are
used to construct the spectrum. Higher correlations between
eigenvalue spacings are thereby neglected. In particular, the
stiffness of the GOE spectrum (a central property) is not taken
into account.

With this input, the energy-averaged cross section 〈|δab −
Sab|2〉 can be calculated. It is often assumed that the energy
average can be replaced by an ensemble average over the
joint distribution of level energies and decay amplitudes. The
ensemble average can be readily obtained even in the limit
of isolated resonances. The energy-averaged S matrix is more
simply obtained using a Lorentzian average of width I and
given by

〈S(E)〉 = S(E + iI ), (30)

and S(E + iI ) is obtained by replacing K(E) in Eq. (22) or
R(E) in Eq. (23) by K(E + iI ) or R(E + iI ), respectively.
That yields the transmission coefficients in Eq. (5).

Monte Carlo calculations based on this approach [28] have
been used to define heuristic parametrizations of the width
fluctuation correction factor Wab. The results of HRTW [8,11]
are based on the K matrix, and those of Moldauer [13] on the
R matrix. The resulting fit formulas for the WFC factor are
collected in the Appendix.

III. MONTE CARLO SIMULATIONS

A. R matrix and S matrix

In the 1960s and 1970s, the statistical R-matrix approach
used by Moldauer [4,5] offered the only possibility to use
random-matrix ideas in CN scattering. As an example for
that method we show in Fig. 1 the result of a new Monte
Carlo simulation of the elastic cross section for neutron
scattering on 56Fe (bottom panel). This is compared with the
real cross section (upper panel) given in ENDF/B-VII.1 [29].
In the simulation we put 〈γ 2

c 〉 = 10 keV for the s wave and
200 eV for the higher partial waves (p, d, and f waves). The
radiative capture channel was ignored. Although the statistical
R-matrix calculation cannot reproduce the detailed structure,
the comparison provides information on average properties
and, thus, a useful link between the fluctuating cross section
and the optical model calculations [30].
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FIG. 1. (Color online) An example of an elastic-scattering cross
section generated with the statistical R-matrix method (bottom panel),
compared with the real cross section in ENDF/B-VII.1 (top panel),
for a neutron-induced reaction on 56Fe in the 1- to 2-MeV energy
range.

However, the approach involves a number of parameters,
such as the partial widths, the level density [31,32], the energy
range of interest, and so forth. Strict implementation of the
more abstract GOE approach actually removes the need to
define these parameters. This is most easily demonstrated for
the case of the K matrix. Upon scaling the energies by the
mean level spacing d so E/d → ε, Eσ/d → εσ , the quantities
ε and εσ are dimensionless, and the spacing distribution
of the εσ is given in terms of the universal dimensionless
correlation functions of the GOE [27]. The expression for
PW (s) in Eq. (29) is an example. Applying the analogous
scaling to the partial width amplitudes, γaσ /d1/2 → γ̃aσ gener-
ates dimensionless uncorrelated Gaussian-distributed random
variables γ̃aσ . The second moments of these quantities are
determined by the average S-matrix elements of the optical
model. In other words, the scaling E/d → ε, Eσ/d → εσ ,
γaσ /d1/2 → γ̃aσ maps the CN scattering problem onto a GOE

scattering problem where the only input parameters are the
number of open channels and the elements 〈Saa〉 of the average
scattering matrix in each channel. That scattering problem
describes universal chaotic scattering.

For the S-matrix simulation, Eqs. (17) and (18) with Hμν

replaced by H (GOE)
μν as

S
(GOE)
ab = δab − 2iπ

∑
μν

Waμ(D−1)μνWνb, (31)

Dμν = Eδμν − H (GOE)
μν + iπ

∑
c

WμcWcν, (32)

serve as starting point. The matrix elements Wμa obey Eq. (26).
The simulation generates an ensemble of S matrices by
generating a single set of matrix elements {Wμa} combined
with a number of realizations of H (GOE). By construction,
all S matrices in the ensemble have for N → ∞ the same
mean values. The matrix elements Wμa are determined as
follows. Given the elements Gμa of a coupling strength matrix
G of dimension N × �, where � is the number of channels,
diagonalization of the real symmetric matrix GT G in channel
space with an orthogonal matrix O yields

O−1GT GO = diag
(
v2

a

)
, (33)

W = GO. (34)

This procedure guarantees that Eqs. (26) are satisfied. The
eigenvalues v2

a and d = πλ/N define xa = π2v2
a/d and these,

in turn, the transmission coefficients Ta via Eq. (28). Figure 2
shows examples of calculated elastic-scattering cross sections
for � = 2, N = 20,100, and for three different transmission
coefficients Ta = 0.1, 0.5, and 0.99. To show how the cross
section evolves as the transmission coefficient increases, we
fixed the random number sequence so the eigenvalues of
H (GOE) are the same for the three Ta cases.

B. Ensemble average

The ensemble average of Eqs. (31) and (32) can be evaluated
numerically either by employing the MC technique where
the elements H (GOE) are drawn from a Gaussian distribution
or by calculating the threefold integral of Verbaarschot,
Weidenmüller, and Zirnbauer [15]

Sfl
ab(E1)Sfl∗

cd (E2) = 1

8

∫ ∞

0
dλ1

∫ ∞

0
dλ2

∫ 1

0
dλ μ(λ,λ1,λ2)e−ir(λ1+λ2+2λ)

∏
c

1 − Tcλ√
(1 + Tcλ1)(1 + Tcλ2)

J (λ,λ1,λ2), (35)

where

μ(λ,λ1,λ2) = λ(1 − λ)|λ1 − λ2|√
λ1(1 + λ1)

√
λ2(1 + λ2)(λ + λ1)2(λ + λ2)2

, (36)

J (λ,λ1,λ2) = δabδcdSaaS
∗
ccTaTc

(
λ1

1 + Taλ1
+ λ2

1 + Taλ2
+ 2λ

1 − Taλ

)(
λ1

1 + Tcλ1
+ λ2

1 + Tcλ2
+ 2λ

1 − Tcλ

)

+ (δacδbd + δadδbc)TaTb

{
λ1(1 + λ1)

(1 + Taλ1)(1 + Tbλ1)
+ λ2(1 + λ2)

(1 + Taλ2)(1 + Tbλ2)
+ 2λ(1 − λ)

(1 − Taλ)(1 − Tbλ)

}
, (37)

r = π

d
(E2 − E1). (38)
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FIG. 2. (Color online) Generated elastic- |1 − Saa|2 and inelastic- |Sab|2 scattering cross sections with the GOE S-matrix for three different
transmission coefficients Ta of 0.1, 0.5, and 0.99. The solid curves are the elastic, and the dot-dashed curves are the inelastic cross sections.
The left column is for N = 20 and the right is for the N = 100 case.

The triple integral in Eq. (35) can be evaluated numerically by
introducing new integration variables [33] that avoid singular-
ities in the integrand and by the Gauss-Legendre quadrature
with the order high enough to obtain convergence [21]. In
practical applications we need SabS

∗
ab only, so Eq. (35) can be

reduced to a slightly simpler form [21] as SaaS
∗
aa = 1 − Ta .

This is not the case if we have off-diagonal elements in 〈S〉 or
different energy arguments so r �= 0.

A benefit of MC is that we are able to explore a larger
parameter space, while Eq. (35) holds in the limit N → ∞. In
Eq. (35) we have replaced the energy average 〈|δab − S

(GOE)
ab |2〉

by the ensemble average |δab − S
(GOE)
ab |2. The difference

between the two averages is discussed later. Hereafter we
always calculate the ensemble average unless stated explicitly
otherwise. The average is evaluated at the center of the
GOE eigenvalue distribution, E = 0. As shown in Fig. 2, the
calculated cross section near E = 0 for a single realization
of H (GOE) displays chaotic fluctuations. The number of MC
realizations needed to obtain a meaningful average varies from
10 000 to a million, depending on convergence. The criterion
used was that the deviation of the average S matrix from its
input value was sufficiently small, |	Sab| < 10−5.

Figure 3 shows the probability distribution of the elastic-
scattering cross section at E = 0 for N = 100, � = 2, and
three different Ta = Tb values of 0.1, 0.5, and 0.99. The MC
ensemble average values are indicated by the location of the
arrows, e.g., in the case of Ta = 0.99, the average is 1.47.
To compare these averages with predictions of the statistical
model, we have to subtract the direct part (1 − ReSaa)2 from
the elastic channel. That gives the average fluctuating part
|Sfl|2 of 0.660. The Hauser-Feshbach cross section is

〈∣∣Sfl
aa

∣∣2〉 = T 2
a

Ta + Tb

= 0.495, (39)

giving in that case a 25% smaller elastic cross section. When
the GOE triple integral of Eq. (35) is performed for the
given transmission coefficients, the simulated cross sections
are recovered. In Table I we compare the MC results with other
statistical models—KKM [6], HRTW [8,11], Moldauer [13],
Ernebjerg and Herman [22], and Kawano and Talou [23].
In general, all the statistical models predict the average
reasonably well when 〈�〉/d is large. More comparisons of
the MC generated cross sections with these statistical models
can be found in Ref. [23].
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FIG. 3. (Color online) Distribution of elastic-scattering cross
section at E = 0 for many GOE S-matrix realizations. Three cases,
Ta = Tb = 0.1, 0.5, and 0.99 are shown. The arrows show the actual
average values for each distribution.

One may argue that the agreement between the GOE triple
integral and the MC simulation is obvious because the triple
integral is an analytical form of the ensemble average for
Eqs. (31) and (32) in the limit of N → ∞. We have, therefore,
studied the N dependence of the calculated averages. Starting
with N = 100, we reduce the number of resonances and
compare the ensemble average of the elastic cross section with
the triple-integral results. Surprisingly, the triple integral still
gives very accurate average values even if N = 3. This implies
Eqs. (31) and (32) yield the ensemble average reasonably well
even N is small. We do not have an explanation for that fact. We
recall, however, that Wigner based his very successful surmise
of the nearest-neighbor spacing distribution on the behavior of
matrices of dimension two. In any case, averaging over a few
resonances is certainly an extreme case and is not realistic.

IV. VALIDATION OF STATISTICAL MODELS

A. Energy average versus ensemble average

There are three ways to calculate averages: (a) The
ensemble average can be performed analytically in the limit

N → ∞, which is given in Eq. (35); (b) the ensemble average
can be performed numerically using the MC simulations for
finite N ; and (c) the average is taken over energy and calculated
for a single realization of the ensemble. Method (c) is the only
way to perform averages over actual data. Such averages define
the optical model. Obviously it is highly important to know
whether (and, if so, when) these averages agree.

Let w(E0,E,I ) be the weight function centered at energy
E0 with width I used to define the average over energy E. In
what follows w(E0,E,I ) is taken to be a Lorentzian. Our aim
is to know under which circumstances the equality∫ +∞

−∞
w(E0,E,I )S(E)dE = S(E0) (40)

holds. Since there is no analytical way to investigate that
relation, we ask when the weaker condition

|〈S〉 − S|2 = 0 (41)

is fulfilled [14]. It is straightforward to show that Eq. (41) is
equivalent to∫ +∞

−∞
dE1w(E0,E1,I )

∫ +∞

−∞
dE2w(E0,E2,I )

Sfl(E1)Sfl∗(E2) = 0, (42)

where the two-point function Sfl(E1)Sfl∗(E2) is given by
Eq. (35).

The average two-point function Sfl(E1)Sfl∗(E2) involves
two S matrices at energies E1 and E2. Because of the very weak
energy dependence of the average S matrix we approximate
S(E1) � S(E2) and evaluate both at E = 0. Then the energies
E1 and E2 in the two-point function appear only in the
oscillating term

exp {−ir(λ1 + λ2 + 2λ)}, r = π

d
(E2 − E1). (43)

We assume that the level spacing d = πλ/N is independent of
energy. We limit ourselves to the case where all transmission
coefficients are equal and given by Ta . We perform the energy
averages using Lorentzians centered at zero,

w(E,0,I ) = I

π

1

E2 + I 2
, (44)

TABLE I. Comparison of numerical average |Sfl
aa|2 for some cases of Ta = Tb = 0.1, 0.5, and 0.99, with the statistical models—Hauser-

Feshbach [2], KKM [6], HRTW [11], Moldauer [13], GOE [15], Ernebjerg-Herman [22], and Kawano-Talou [23].

Ta 0.1 0.5 0.99

Elastic Inelastic Elastic Inelastic Elastic Inelastic

MC simulation 0.0733 0.0261 0.351 0.149 0.660 0.330
Hauser-Feshbach 0.0500 0.0500 0.250 0.250 0.495 0.495
KKM 0.0662 0.0332 0.333 0.167 0.660 0.330
HRTW 0.0737 0.0257 0.352 0.147 0.661 0.330
Moldauer 0.0734 0.0260 0.349 0.150 0.665 0.325
GOE 0.0734 0.0260 0.351 0.148 0.661 0.330
Ernebjerg-Herman 0.0742 0.0252 0.366 0.134 0.681 0.310
Kawano-Talou 0.0735 0.0259 0.351 0.148 0.661 0.330
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FIG. 4. (Color online) L(Ta,�,I ) as defined in Eq. (45) versus
the Lorentzian width I for � = 10 channels and for different values
of the transmission coefficient Ta . From the lowest to the highest
curve Ta changes from 0.1 to 0.9 in steps of width 0.1.

with width I specified in units of d/π . We define

L(Ta,�,I ) =
∫ ∞

−∞

∫ ∞

−∞
w(E1,0,I )w(E2,0,I )

×R(E2 − E1; Ta,�) dE1dE2, (45)

where

R(E2 − E1; Ta,�) = Re{SflSfl∗(|E2 − E1|)}
|S|2(0)

. (46)

We use the real part only because integration over the
imaginary part in Eq. (45) yields zero.

Our results for the elastic channel are displayed in Figs. 4
to 7. Figure 4 shows the function L of Eq. (45) versus I
for � = 10 and for values of Ta ranging from 0.1 to 0.9.
As expected, L decreases as I increases so ensemble average
and energy average agree when the Lorentzian width I is
sufficiently large. To get the same accuracy larger values of
Ta require larger widths I . The dependence of L on channel
number � is shown versus I in Fig. 5 for Ta = 0.5 (logarithmic
scale) and in Fig. 6 for Ta = 0.99 (linear scale). Larger values
of � require larger values of I , the slowest decrease occurring
for the strong-absorption case where Ta is close to unity. For
the strong-absorption case Ta = 0.99, Fig. 7 shows the values
of I versus channel number for which L = 0.1. The result is a
clear linear dependence

I (L = 0.1) � 2.2� + 1.9. (47)

In the Ericson regime
∑

a Ta 
 1 or, for equal transmission
coefficients in all channels, Ta� 
 1, the autocorrelation
function is known analytically. The real part is a Lorentzian
with denominator r2 + �2 where the total width is given by
� = (d/2π )

∑
a Ta . For large I the function L falls off with

(2I )−1. We have L = 0.1 for I ≈ 5�.
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FIG. 5. (Color online) L(0.5,�,I ) as defined in Eq. (45) versus
the Lorentzian width I for Ta = 0.5 and for different channel numbers
�. From the lowest to the highest curve the values of � are 2, 5, 10,
20, 30, 40, and 50.

The rate of decrease of L versus I depends on Ta and
�. Using our results we can nevertheless draw some general
conclusions concerning neutron-induced reactions at low
energy. In the domain of isolated resonances the number of
channels is effectively small (γ channels are numerous but
extremely weak individually). Here the L function becomes
∼0.1 or less when I is larger than 10 or so. A value of I = 100
corresponds to 100d/π ∼ 30d. Hence the L function will be
sufficiently small when the energy-averaging interval is one
or two orders of magnitude larger than the average resonance
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FIG. 6. (Color online) L(0.99,�,I ) as defined in Eq. (45) versus
the Lorentzian width I for Ta = 0.99 and for different channel
numbers �. From the lowest to the highest curve the values are � =
2, 3, 4, 5, 6, 8, 10, 12, and 15. The horizontal line shows L = 0.1.
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Lorentzian width I and channel number � the function L(0.99,�,I )
attains the value 0.1. The line is a least-squares fit to the symbols;
I (L = 0.1) � 2.2� + 1.9.

spacing d. In the Ericson regime that same statement applies
with d replaced by �, the average total resonance width.

B. Asymptotic value at strong-absorption limit

1. Elastic enhancement factor in Ericson limit

In the strong-absorption or Ericson limit
∑

a Ta 
 1,
Eq. (35) yields Wa = 2 for the elastic enhancement factor or,
equivalently, νa = 2 for the channel degree of freedom [33].
Explicitly we have

〈σab〉 = (1 + δab)TaTb∑
c Tc

+ · · · . (48)

The dots indicate terms of order (
∑

c Tc)−2 or higher. The term
of leading order is the Hauser-Feshbach result with an elastic
enhancement factor of two. Most statistical models agree with
that result. An exception is the model by Moldauer, which
has an asymptotic value of νa = 1.78. Although Moldauer’s
heuristic method to obtain Eq (A7) in the Appendix is
somewhat similar to the MC technique we adopt here, there is
a notable difference between the two approaches. In the MC
approach we perform the ensemble average over the elements
of the Hamiltonian H (GOE)

μν . Moldauer’s statistical R-matrix
model has two independent inputs: the decay widths drawn
from the Porter-Thomas distribution and the level spacing
sampled from the Wigner distribution in Eq. (29).

2. Decay amplitude distribution

Our aim is to reproduce Moldauer’s lower asymptotic value
by modifying the MC sampling method. Before doing that, we
show the distribution of the width amplitudes

√
πγaσ when

we rewrite our stochastic S matrix of Eq. (31) in an equivalent
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FIG. 8. (Color online) Distribution of decay amplitudes γaσ ,
when the GOE S matrix is written in the K-matrix form. The
histograms correspond to Ta = 0.1, 0.5, and 0.99, respectively. For
Ta = 0.99, we compare the Gaussian distribution with the one
obtained from the standard deviation in Eq. (59).

form [15,18],

Kab(E) =
∑

σ

W̃aσ W̃σb

E − Eσ

, (49)

W̃σa = √
π

∑
ν

OσνWνa, (50)

O−1H (GOE)O = diag(Eσ ), (51)

where Eσ is the eigenvalue of H (GOE). In this form the
width amplitudes W̃aσ = √

πγaσ are uncorrelated Gaussian-
distributed random variables with zero mean values and the
standard deviation. We produced the distributions of W̃ for
the case N = 100, � = 2, and three values of Ta = 0.1, 0.5,
and 0.99.

The width distributions are shown in Fig. 8 for the elastic
channel. Because we used the same transmission for both
channels, the distribution for the elastic and inelastic channels
are identical. Figure 9 shows the standard deviation σa for each
Gaussian for various Ta .

The second moment of Gaussian distribution is given
by [15]

σ 2
a = d

π

Ta

2 − Ta ± √
1 − Ta

, (52)

which is shown by the two dashed curves in Fig. 9. The sign
ambiguity in Eq. (52) is caused by the fact that there are two
values of Saa with opposite signs that yield the same value of
Ta = 1 − |Saa|2.
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FIG. 9. (Color online) Standard deviation of GOE decay ampli-
tude distribution as a function of transmission coefficient. The dashed
curves are Eq. (52) and the solid curve is Eq. (59).

3. Emulating Moldauer’s calculation

Moldauer’s K matrix (see Sec. II B) can be written as

KM
ab(E) = δabReK0

a +
∑

σ

waσwσb

E − Eσ

. (53)

The elements K0
a of the elastic background matrix and the

variances of the amplitudes w are determined by the energy-
averaged S matrix. For K0

a we have

K0 = i
1 − S(GOE)(E + iI )

1 + S(GOE)(E + iI )
, (54)

showing that K0
a is determined by the transmission coefficient

Ta . Since ImS(E + iI ) ∼ 0, we may omit the background term
ReK0

a . When we view the K matrix as an R matrix, ImK(E +
iI ) is the pole strength 2πγ 2

a /d; therefore the second moment
for the distribution of the widths waσ reads

σ 2
a = 2πγ 2

a = d

π

∣∣ImK0
a

∣∣. (55)

The elastic enhancement factor Wa can be defined only when
all channels are identical, Ta = Tb = · · · = T�. That is the
case we address.

The calculation of the ensemble average of Eq. (53)
proceeds as follows. First we generate S of Eq. (31) and
convert it into K via Eq. (21). As Moldauer performed in
Ref. [13], we use K(E + iI ) and Eq. (55) to determine the
average widths of the decay amplitudes. The latter are then
sampled from Gaussians with widths σa , independently of the
GOE eigenvalues. The Lorentzian average width I is taken
to be 0.2 λ. We extract the elastic enhancement factors and
compare with the standard GOE simulation that is described
in Sec. III B.
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FIG. 10. (Color online) Channel degree-of-freedom values νa as
functions of

∑
a Ta . The symbols are the Monte Carlo simulation

results, see text. The solid curves in the top panel are from Eq. (A17),
and the dotted curves are from Eq. (A10) for Ta = 0.25 and 0.75.
The curves in the bottom panel show Moldauer’s systematics given
by Eq. (A7) for the same set of Ta .

The elastic enhancement factor Wa is calculated as

Waa =
∣∣Sfl

aa

∣∣2

σ HF
aa

, σ HF
aa = T 2

a

�Ta

, (56)

Wa = (� − 1)Waa

� − Waa

, νa = 2

Wa − 1
. (57)

We calculate K(E + iI ) for each realization of the GOE S
matrix. Therefore, the ensemble average of Eq. (53) converges
slowly. In addition, simulations for very large values of N or �
are not feasible in general. We chose N = 200, � = 5, 10, 20,
and 30. The transmission coefficients are 0.25 and 0.75. These
combinations roughly cover Moldauer’s numerical study of
the strong-absorption cases.

The values of νa versus
∑

a Ta obtained in that way are
compared with the GOE result in Fig. 10. The symbols in the
upper panel show the results of the standard GOE simulation,
and those in the lower panel the results of the simulation
described in the previous paragraph. The curves in the upper
panel represent Eqs. (A17), and those in the lower panel
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represent Eq. (A7), for the cases Ta = 0.25 and 0.75. These
equations are meant to approximate νa for given values of the
transmission coefficients. The results of the GOE simulation
are well represented by Eq. (A17) which has the asymptotic
value of 2 in the strong-absorption limit. The MC simulation
that uses Eq. (55) tends to give lower νa values, similar to
Moldauer’s findings.

A plausible explanation of this discrepancy relates to the
determination of the decay amplitude via Eq. (55). Since

ImK0
a = Ta

2 − Ta

, (58)

the widths in Moldauer’s approach have a second moment
given by

σ 2
a = d

π

Ta

2 − Ta

, (59)

which is shown in Fig. 9 by the solid curve. Comparison with
Eq. (52) shows that this is correct only for small values of
Ta . Discrepancies arise for Ta ≈ 1. In Fig. 8 we compare
for Ta = 0.99 the distribution of widths using for the second
moment the correct expression (52) with the one obtained from
Moldauer’s equation (59). (We do not show the Ta = 0.1 and
0.5 cases because they perfectly overlap with the exact values).
We note that Moldauer’s approach gives a slightly narrower
distribution. We suspect that this is the root of Moldauer’s
incorrect asymptotic value for νa = 1.78.

4. Asymptotic expansion

The next-to-leading-order term of Eq. (48) is given by
an asymptotic expansion of Eq. (35) in inverse powers of∑

c Tc [33,34], which is also given in the Appendix. This is
shown by the dashed curves in Fig. 10(a). The asymptotic
expansion approximates the GOE triple integral very well,
when

∑
c Tc > 10. This might be practically useful in the

strong-absorption limit, in particular when the number of open
channels is so large that calculation of the GOE triple integral
becomes extremely difficult.

C. Very weak entrance channel

An extreme case where all the statistical models fail is
reported in Ref. [23]. When there are few open channels
with either very small or very large transmission coefficients,
none of the width fluctuation models reproduces the GOE
results. That was also discussed by Moldauer [35] as the
total width fluctuation, and his numerical study shows a
strong enhancement in the elastic channel. We performed
the GOE simulation for the case of N = 100, � = 2, and
Ta/Tb  1. The calculated width fluctuation correction factor
Waa , which is the ratio of the elastic channel cross section to
the Hauser-Feshbach cross section, is shown in Fig. 11. Since
the GOE triple integral is correct for all values of � and Ta , the
MC simulation perfectly agrees with GOE, except some
deviation seen at very small Ta/Tb values, due to numerical
instability.

Few-channel cases with very different values of the trans-
mission coefficients are very special and hard to realize in
practice. A photo-induced reaction that creates a compound
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FIG. 11. (Color online) Ratio of the elastic cross section to the
Hauser-Feshbach prediction as a function of the ratio Ta/Tb of
transmission coefficients. The symbols are the MC simulation results.
The curves are predictions by various statistical models.

nucleus just above neutron threshold could be a case in
point. However, since almost all incoming flux goes to the
neutron channel and to the other gamma channels, the photon
compound elastic cross section is tiny even if it is enhanced
by a factor of 50. That is why it might be difficult to confirm
the strong enhancement in the elastic channel experimentally.

V. DIRECT REACTIONS

A. Engelbrecht-Weidenmüller transformation

So far it was assumed that the average S matrix is diagonal.
That assumption fails when some channels are strongly
coupled. In practice that happens, for instance, when collective
states in the target nucleus are excited by an incident nucleon
(a direct reaction). In such cases, the average S matrix is not
diagonal. The unitarity of the scattering matrix imposes strong
constraints on the scattering amplitudes. As a consequence,
directly coupled channels cause correlations between the
resonance amplitudes in those channels. That is why the
calculation of the average compound-nucleus cross section
in the presence of direct reactions has been a long-standing
problem.

When 〈S〉 is not diagonal, the definition of the transmission
coefficients T must be generalized. That is done using
Satchler’s transmission matrix [36]

Pab = δab −
∑

c

〈Sac〉〈S∗
bc〉. (60)

In the strong-absorption limit, KKM [6] expressed the
compound-nucleus cross section in terms of the matrix P
[see Eqs. (A8) and (A9)]. Actual calculations using KKM
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including the direct channels are, unfortunately, very limited,
e.g., Refs. [37] and [38].

In practical calculations, an often-used approximate way
to include the direct reaction in the statistical model consists
in redefining the transmission coefficients to take account of
some direct reaction contribution,

T ′
a = 1 −

∑
c

|〈Sac〉〈Sac〉∗|2. (61)

The sum of the modified transmission coefficients T ′
a equals

Tr(P ). Therefore, it is reasonable to expect that GOE
cross-section calculations using the modified transmission
coefficients T ′

a as input parameters as done in Ref. [39]
may not be far off the mark. In comparison with the exact
approach introduced below, the method greatly simplifies
the calculations. However, a quantitative validation of the
simplification (61) and an understanding of its limitations are
still needed.

The following rigorous treatment of the direct reaction was
proposed by Engelbrecht and Weidenmüller (EW) [40]. Since
P is Hermitian, P can be diagonalized by a unitary matrix

(UPU †)ab = δabpa, 0 � pa � 1. (62)

The transformation U also diagonalizes the average scattering
matrix,

〈S̃〉 = U 〈S〉UT with 〈S̃〉ab = δab〈S̃〉aa. (63)

In the diagonal basis of P , the transmission coefficients are
given by

pa = 1 − |〈S̃aa〉|2. (64)

In that basis, the decay amplitudes in different channels

are statistically uncorrelated, and the calculation of S̃pq S̃∗
rs

proceeds as described above for the case without direct
reactions, with pa as input parameters. The result must be
transformed back to the physical channels. That gives [8]

|Sab|2 =
∑
pqrs

U ∗
paU

∗
qbUraUsbS̃pq S̃∗

rs . (65)

Moldauer demonstrated the impact of the EW transfor-
mation numerically [5]. He argued that the flux into the
strongly coupled inelastic channels is enhanced. Capote
et al. [41] demonstrated that enhancement by applying the
coupled-channels code ECIS [42] to neutron scattering off 238U.
Although ECIS is capable of performing the EW transforma-
tion, it has some approximations and limited functionality,
particularly for calculating the neutron radiative capture and
fission channels. The EW approach uses only the average S
matrix as input and facilitates showing how direct reactions
impact on the compound nucleus.

A closed form of the average cross section based on the
GOE triple-integral formula that takes the EW transformation
into account was derived by Nishioka, Weidenmüller, and
Yoshida [43]. However, the computation might be impractical.
We follow the EW transformation step-by-step from Eq. (60)
to Eq (65). The result allows us to estimate uncertainties due
to the approximation Eq. (61).

B. Ensemble average using EW transformation

To implement direct reactions, one may use, for instance,
the pole expansion of the S matrix. We find it simpler to employ
the K matrix as in Eq. (22). We allow for a direct background
by writing

Kab(E) = K
(0)
ab +

∑
σ

W̃aσ W̃σb

E − Eσ

, (66)

where the elements of the background matrix K (0) serve as
parameters. When K is real and symmetric, S is automatically
unitary.

We consider a case with direct coupling between two
channels only. The background matrix K (0) is

K (0) =

⎛
⎜⎜⎝

kaa kab 0 · · ·
kab kbb 0 · · ·
0 0 0 · · ·
...

...
...

⎞
⎟⎟⎠. (67)

For the sake of simplicity, we take kaa = kab = kbb = k0,
where k0 is real. The average S matrix is

S = 1 − iK (0) + π〈W̃aW̃b〉
1 + iK (0) − π〈W̃aW̃b〉

. (68)

The amplitudes W̃aσ are zero-centered Gaussian-distributed
random variables, uncorrelated for a �= b. The parameters then
are N,�,Ta,k0. For simplicity we use the same Ta for all
channels.

The cross sections are calculated in the following three
ways.

(i) For each value of k0, the MC method is used
to generate 100 000 realizations of S. The average
cross section is obtained directly as the average of
|δab − Sab|2 over that ensemble. Figure 12 shows the
cross sections for N = 100, � = 2, Ta = 0.8 = Tb,
and for k0 varying from 0 to 2 obtained in that
way. The top panel shows the elastic-scattering cross
section |1 − Saa|2, and the bottom panel shows the
inelastic-scattering cross section |Sab|2.

(ii) The average of S over the ensemble of 100 000 real-
izations is used to calculate the modified transmission
coefficients T ′

a of Eq. (61). These are used in the
GOE triple integral to calculate the width fluctuation
correction.

(iii) S as obtained in the previous step is diagonalized using
the EW transformation. The eigenvalues pa are used

in the GOE triple integral. The result S̃pq S̃∗
rs is back-

transformed to |Sab|2.

We analyze our results in terms of the usual “optical model”
cross sections

σT = 2(1 − ReSaa), (69)

σSE = |1 − Saa|2, (70)

σDI = |Sab|2. (71)

Here σT, σSE, and σDI stand for the total, the shape elastic, and
the direct inelastic cross section, respectively. The reaction
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FIG. 12. (Color online) Simulated elastic- (top panel) and
inelastic- (bottom panel) scattering cross sections as functions of
the background parameter k0.

cross section and the compound formation cross section are
defined as σR = σT − σSE and σCN = σR − σDI, respectively.
All these cross sections are given by the coupled-channels
optical model, while the compound elastic (σCE) and com-
pound inelastic (σCI) cross sections require statistical-model
calculations. We do not use a coupled-channels optical model
in the present context but are able to calculate all these cross
sections directly from the MC simulation. The parameter
k0 controls the strength of σDI up to a limit defined by
unitarity—since σT and σSE are connected by Saa , σR is
constrained even if k0 is very large.

Figure 13 shows how the compound inelastic-scattering
cross section changes with the strength of the direct reaction.
We plot the ratio of σCI to the reaction cross section σR as a
function of the ratio σDI/σR. The upper panel is for Ta = 0.5
and the lower panel is for Ta = 0.9. In each panel we show two
cases, � = 2 and 10. The results from the EW transformation
agree perfectly with the MC simulations, confirming that the
EW transformation with the GOE triple integral yields the
correct average cross section when there are strongly coupled
channels.

When the background K matrix is parametrized as in
Eq. (67), σCI approaches the unitarity limit for very large k0.
At this limit, we have σCE � σCI. The elastic enhancement dis-
appears when a direct channel becomes very strong. Since we
employed the same transmission coefficients for all channels,
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FIG. 13. (Color online) Ratio σCI/σR of the compound inelastic-
scattering cross section to the reaction cross section as a function
of the ratio σDI/σR of direct reaction cross section to the reaction
cross section. The symbols show the ensemble average of the MC
simulation, the dotted lines are cross sections calculated with the
modified transmission coefficients T ′

a , and the solid lines are the
result of the EW transformation. The top panel is for Ta = 0.5, and
the bottom panel is for Ta = 0.9.

the compound elastic- and inelastic-scattering cross sections
are equal in that limit and given by σCN/�. Use of the modified
transmission coefficients T ′

a overestimates σCE and underesti-
mates σCI. The discrepancy increases with increasing σDI.

The EW transformation is definitely required to calculate
the correct compound cross sections when � is small and
σDI/σR is larger than about 5%. A case in point might be a
reaction induced by neutrons of several 100 keV impinging on
an actinide. Several levels of the ground-state rotational band
will be excited by the direct inelastic-scattering process. A
simple coupled-channels calculation for the 300-keV neutron-
induced reaction on 238U gives σDI/σR of about 0.1. Therefore
the approximate method that uses the modified transmission
coefficients T ′

a is expected to result in an underestimate of σCI.
We foresee that application of the EW transformation to the
actual neutron-induced reaction calculations is feasible. We
plan to demonstrate the impact of the EW transformation on
the inelastic scattering from actinides as the next step.
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VI. CONCLUSION

We have investigated the statistical properties of the scatter-
ing matrix containing a GOE Hamiltonian in the propagator.
That S matrix describes general chaotic scattering and applies
to compound-nuclear reactions at low incident energies (below
the precompound regime). We have compared results for
average cross sections obtained from Monte-Carlo (MC)
simulations with those from the GOE triple integral and from
statistical models. The latter give heuristic accounts of the
width fluctuation correction. In the GOE approach, the results
depend on few parameters: the number N of resonances,
the number � of open channels, and the average S matrix
elements. Without direct reactions, the average S matrix is
diagonal, and the relevant parameters are the transmission
coefficients in the channels. When the channels are strongly
coupled and the average S matrix is not diagonal, the number
of parameters is correspondingly increased. Our simulations
indicate the range of validity of the heuristic models and have
led to the following conclusions:

(a) For all parameter values studied, the numerical average
of MC-generated cross sections coincides with the re-
sult of the GOE triple-integral formula (35). Although
that formula is derived in the limit of a large number
of resonances, it gives the correct average even if the
number of resonances is small.

(b) Energy average and ensemble average agree reasonably
well (i) for isolated resonances when the width of the
Lorentzian averaging function is one or two orders of
magnitude larger than the average resonance spacing
and (ii) in the Ericson regime when the width of the
Lorentzian averaging function is one or two orders of
magnitude larger than the average total width of the
resonances.

(c) In the strong-absorption limit (Ericson regime) where∑
a Ta 
 1, the channel degree of freedom νa is 2,

differing from Moldauer’s asymptotic value of 1.78.
(d) In extreme cases where a few open channels (including

the incident channel) have very small transmission
coefficients and a few others have transmission coeffi-
cients close to unity, the elastic channel is significantly
enhanced. Most of the standard statistical models
cannot predict that enhancement. The GOE triple
integral is the only way to produce the correct average
cross section.

(e) Direct reactions (for instance, the excitation of states
of a rotational band due to inelastic scattering) cause
the average S matrix S to acquire large off-diagonal
elements. Using the Engelbrecht-Weidenmüller (EW)
transformation we have diagonalized S and evaluated
the GOE triple integral in the diagonal channel basis.
The results agree with the MC simulations. We find that
the direct reaction increases the inelastic cross sections
while the elastic cross section is reduced.
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APPENDIX: STATISTICAL MODELS

1. HRTW

In the HRTW approach [8,11], an elastic enhancement
factor Wa is expressed by the channel transmission coefficient
Ta , and all the channel cross sections are calculated from an
effective transmission coefficient Va ,

〈σab〉 = VaVb∑
c Vc

{1 + δab(Wa − 1)}, (A1)

where Vc’s are determined from the unitarity of the S matrix,
in other words, the flux conservation. The values of Wa were
derived from the statistical K-matrix analysis. There are two
sets of Wa parameterization, namely in the original paper of
Ref. [8] and the updated parameters in Ref. [11]. We refer to
the updated parameters as HRTW, which reads

Wa = 1 + 2

1 + T F
a

+ 87

(
Ta − T

T

)2(
Ta

T

)5

, (A2)

F = 4
T

T

(
1 + Ta

T

)(
1 + 3

T

T

)−1

, (A3)

where T is the average value of Ta , and T is the sum of Ta for
the all open channels T = ∑

c Tc.

2. Moldauer

The Gaussian distribution of γμa yields the Porter-Thomas
distribution of γ 2

μa when there is only one channel. More
generally, the distribution of γ 2

μa will be the χ2 distribution
with the channel degree of freedom νa . In these circumstances,
the width fluctuation correction factor can be evaluated
numerically as [4,5,35]

Wab =
(

1 + 2δab

νa

) ∫ ∞

0

dt

Fa(t)Fb(t)�kFk(t)νk/2
, (A4)

Fk(t) = 1 + 2

νk

Tk

T
t. (A5)

The integration can be performed easily by changing the
variable t into z as

t = z

1 − z
,

dt

dz
= 1

(1 − z)2
, (A6)

where z → 0 for t = 0 and z → 1 for t → ∞.
In contrast to HRTW, Moldauer’s prescription gives the

width fluctuation correction factor that ensures the unitarity
for all the channels when the channel degree of freedom νa is
provided. Moldauer obtained νa as a function of each channel
transmission coefficient Ta and the sum of them T = ∑

c Tc
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with the MC simulation, which reads [13]

νa = 1.78 + (
T 1.212

a − 0.78
)

exp(−0.228T ). (A7)

The channel degree of freedom νa is related to the elastic
enhancement factor Wa = 1 + 2/νa .

3. KKM

The model of Kawai, Kerman, and McVoy [6] differs
considerably from the MC approach of HRTW or Moldauer.
The S matrix is expressed in terms of the optical S-matrix
background, in which the energy average of the resonance sum
part will be zero. The optical model (or the coupled-channels
optical model) yields Satchler’s transmission matrix [36], and
a new Hermitian matrix X in channel space is defined as

X = − 1
2 trX + {(trX/2)2 + P }1/2. (A8)

In the overlapping resonance limit (�/D 
 1), the average
cross section is written in terms of the X matrix as

〈σab〉 = XaaXbb + XabXba. (A9)

Since Eq. (A8) is a nonlinear equation in X, one has to
solve it by an iterative procedure [38]. When 〈S〉 is diagonal
(no direct channel), KKM yields an elastic enhancement factor
Wa = 2. In other words, KKM gives the correct asymptotic
value in the Ericson regime. That same statement applies
in the case of direct reactions. This is seen using the EW
transformation.

4. GOE

The analytical expression of the correct Hauser-Feshbach
cross section, i.e., an analytical average over the GOE
resonance parameter distributions, was given by Verbaarschot,
Weidenmüller, and Zirnbauer [15], which is the so-called
triple integral of Eq. (35). The result includes the elastic
enhancement and the width fluctuation correction at the same
time, which is one of the reasons we defined the width
fluctuation correction factor by Eq. (7), namely the cross
section ratio to the Hauser-Feshbach formula.

5. Asymptotic expansion

An asymptotic expansion of the GOE triple-integral for-
mula in powers of 1/T is given by [34]

〈σab〉 � (1 + δab)
TaTb

T
A + 2δab

T 2
a

T 2
B, (A10)

where

A = 1 + 1

T

(
1 + 2

T

)
{�2 − (Ta + Tb)}

+ 5

T 2
�2{�2 − (Ta + Tb)}

+ 4

T 2

(
T 2

a + TaTb + T 2
b − �3

)
, (A11)

B = (1 − Ta)

{
1 − 2

T
(1 + 2Ta) + 3

T
�2

}
, (A12)

and

�2 = 1

T

∑
c

T 2
c , �3 = 1

T

∑
c

T 3
c . (A13)

6. Ernebjerg and Herman

Ernebjerg and Herman [22] generated a quasirandom set
of transmission coefficients and compared the simulated cross
sections with Eqs. (A1), (A4), and (35). They obtained a new
parametrization of the channel degree of freedom,

νa = 1

1 + f (Ta)T g(Ta )
, (A14)

where

f (Ta) = 0.177

1 − T 20.337
a

, (A15)

g(Ta) = 1 + 3.148Ta(1 − Ta). (A16)

7. Kawano and Talou

Similarly to Ernebjerg and Herman’s attempt, the GOE
triple-integral calculation can be well approximated by putting
the following channel degree of freedom in Moldauer’s
method,

νa = 2 − 1

1 + f
, f = αβ1

Ta + T

1 − Ta

. (A17)

They obtained

α = 0.0288Ta + 0.246, (A18)

β1 = 1 + 2.5Ta(1 − Ta) exp(−2T ). (A19)

In the special case of T < 2Ta , a better fit can be obtained
with

f = 3αβ2xa

(
T − Ta

Ta

)q

, (A20)

β2 = 1 + 2.5Ta(1 − Ta) exp(−4T ), (A21)

where q = 0.4x0.4
a and xa = Ta/(1 − Ta).
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