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Structure effects in the 15N(n,γ ) 16N radiative capture reaction
from the Coulomb dissociation of 16N

Neelam, Shubhchintak,* and R. Chatterjee†
Department of Physics, Indian Institute of Technology - Roorkee, 247667, India

(Received 21 May 2015; revised manuscript received 31 August 2015; published 26 October 2015)

Background: The 15N(n,γ ) 16N reaction plays an important role in red giant stars and also in inhomogeneous
big bang nucleosynthesis. However, there are controversies regarding spectroscopic factors of the four low-lying
states of 16N, which have direct bearing on the total direct capture cross section and also on the reaction rate.
Direct measurements of the capture cross section at low energies are scarce and available only at three energies
below 500 keV.
Purpose: The aim of this paper is to calculate the 15N(n,γ ) 16N radiative capture cross section and its subsequent
reaction rate by an indirect method and in that process investigate the effects of spectroscopic factors of different
levels of 16N to the cross section.
Method: A fully quantum mechanical Coulomb breakup theory under the aegis of post-form distorted wave Born
approximation is used to calculate the Coulomb breakup of 16N on Pb at 100 MeV/u. This is then related to the
photodisintegration cross section of 16N(γ,n) 15N and subsequently invoking the principle of detailed balance,
the 15N(n,γ ) 16N capture cross section is calculated.
Results: The nonresonant capture cross section is calculated with spectroscopic factors from the shell model
and those extracted (including uncertainties) from two recent experiments. The data seem to favor a more single
particle nature for the low-lying states of 16N. The total neutron capture rate is also calculated by summing up
nonresonant and resonant (significant only at temperatures greater than 1 GK) contributions and comparison is
made with other charged particle capture rates. In the typical temperature range of 0.1–1.2 GK, almost all the
contributions to the reaction rate come from capture cross sections below 0.25 MeV.
Conclusion: We have attempted to resolve the discrepancy in the spectroscopic factors of low-lying 16N levels
and conclude that it would certainly be useful to perform a Coulomb dissociation experiment to find the low
energy capture cross section for the reaction, especially below 0.25 MeV.
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I. INTRODUCTION

Radiative capture reactions play an important role in stellar
nucleosynthesis. At temperatures relevant to these events
the corresponding relative energies between the participating
nuclei are mainly in the sub-MeV scale. Direct measurements
of reaction cross sections at these low energies are often very
difficult. In fact, for the 15N(n,γ ) 16N reaction direct measure-
ments have been possible only at a few energies below 500 keV
[1]. The situation can be addressed by an indirect method
like the Coulomb dissociation method, wherein capture cross
sections at low energies can be obtained from Coulomb disso-
ciation measurements at higher energies. The 14C(n,γ ) 15C [2]
and 7Li(n,γ ) 8Li [3] neutron capture reactions are two recent
examples where the Coulomb dissociation method have been
used to calculate the corresponding radiative capture cross
section. Therefore it would be interesting to investigate if in
the case of 15N(n,γ ) 16N too indirect measurements add to a
better understanding of capture cross sections at low energies.

The radiative neutron capture 15N(n,γ ) 16N reaction plays
an important role in the synthesis of heavy elements by
s-process nucleosynthesis in red giant stars and also in the
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inhomogeneous Big Bang model [4–6]. This reaction is also a
part of the neutron induced chain which leads to the breakout
from the CNO cycle and hence depletion of CNO abundances
[7]. Being the competing reaction with 15N(α,γ ) 19F, the
neutron capture 15N(n,γ ) 16N reaction is also important in
determining the abundance of fluorine [8,9]. Furthermore, it is
also thought to compete with charged particle capture reactions
on 15N [5] and therefore can affect the abundance of heavier
mass elements.

The only direct measurement of the 15N(n,γ ) 16N capture
cross section has been performed at neutron laboratory
energies of 25, 152, and 370 keV by Meissner et al. [1].
The direct capture calculations performed in order to explain
the data using experimental spectroscopic factor (C2S) [10]
show a p-wave dominated capture. These C2S had an inherent
uncertainty of 30%. Further, their calculated reaction rates
were 30–50 % smaller than those calculated by Rauscher
et al. [11]. Theoretical calculations by Herndl et al. [12],
in the framework of a hybrid compound and direct capture
model (C2S from Ref. [10]) were used to explain the data
[1] and their calculated rates were in agreement with those
of Ref. [11]. Another direct capture calculation has been
performed in Ref. [13] using the potential model [14] with
C2S from Ref. [10].

In fact, the capture cross section and the rate of the
15N(n,γ ) 16N reaction strongly depend upon the C2S of the
four low-lying levels (with spin-parity Jπ = 2−, 0−, 3−,
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and 1−) in 16N. The calculations of Refs. [1,13] could account
for the data only when the suggested 30% uncertainty in
the C2S from Ref. [10] was considered. But this was not
the case with the calculations of Ref. [12]. A point also
to be noted is that the experimentally extracted C2S in
Ref. [10] are almost half as those calculated from the shell
model [1,10], which gives a pure single particle picture of
these levels. In this regard, an experiment was performed
by Bardayan et al. [8], where they extracted the C2S for
all these four levels, from the measured angular distribution
of 15N(d,p) 16N. These C2S values obtained were close to
unity and were in good agreement with those suggested by the
shell model [1,10]. However, the C2S values extracted in a
recent experiment [9] from the measured angular distribution
of 15N( 7Li, 6Li) 16N are not in full agreement with either
of the previous experiments [8,10]. Their C2S values suggest
that the two levels of 16N (with Jπ = 2− and 3−) are good
single-particle levels whereas, the other two (with Jπ = 0−
and 1−) are not.

With this background we present an indirect method of
calculating the 15N(n,γ ) 16N radiative capture cross section
from the Coulomb breakup of 16N on Pb at 100 MeV/u
beam energy. The Coulomb breakup theory is fully quantum
mechanical and is calculated under the post-form finite range
distorted wave Born approximation (FRDWBA) [15]. The
theory is mainly analytic in nature given that pure Coulomb
wave functions are used in the calculation and that the
dynamics can be exactly evaluated. Thus, the main aim of
this paper is to use this theory to calculate the 15N(n,γ ) 16N
radiative capture cross section and its subsequent reaction
rate by an indirect method and in that process investigate the
effects of C2S of different levels of 16N to the cross section.
Previously this theory was successfully applied to calculate the
radiative neutron capture cross sections and subsequent rates
of the reactions 8Li(n,γ ) 9Li [16] and 14C(n,γ ) 15C [17] from
the Coulomb breakup of 9Li and 15C, respectively.

The paper is organized in the following way. Section II
contains a brief formalism of the Coulomb breakup process and
the capture cross section. In Sec. III, we present our results,
where we discuss the capture cross section and rate of the
15N(n,γ ) 16N reaction from the Coulomb dissociation of 16N
and finally in Sec. IV we present our conclusions.

II. FORMALISM

We consider the elastic breakup of a two-body composite
projectile a in the Coulomb field of target t as: a + t →
b + c + t , where the projectile a breaks up into fragments b
(charged) and c (uncharged). The three-body Jacobi coordinate
system adopted is shown in Fig. 1.

The position vectors r1, ri , rc, and r satisfy the following
relations:

r = ri − αr1; rc = γ r1 + δri .

α, γ , and δ are the mass factors, given by

α = mc

mc + mb

; δ = mt

mb + mt

; γ = (1 − αδ),

r
r

r

r

i

c
1

t

b

c

FIG. 1. The three-body Jacobi coordinate system.

where mb, mc, and mt are the masses of fragments b, c, and t ,
respectively.

The triple differential cross section for the reaction in terms
of relative coordinates is given by

d3σ

dEbcd�bcd�at

= 2π

�vat

μbcμatpbcpat

h6

×
∑
�m

1

(2� + 1)
|β�m|2, (1)

where vat is the a − t relative velocity in the entrance channel
and Ebc is the b − c relative energy in the final channel. μbc and
μat are the reduced masses, �bc and �at are solid angles, and
pbc and pat are appropriate linear momenta corresponding to
the b − c and a − t systems, respectively. β�m is the reduced
amplitude in post form FRDWBA, given by

β�m = 〈ei(γ qc−αK).r1 |Vbc

∣∣φ�m
a (r1)

〉
×〈χ (−)

b (qb,ri)e
iδqc.ri |χ (+)

a (qa,ri)〉. (2)

The first term containing the projectile bound state wave
function φ�m

a (r1) of any angular momentum � (with projection
m) is the structure part, while the second term containing the
Coulomb distorted waves χ (±) describes the dynamics of the
reaction and further can be expressed analytically in terms of
the bremsstrahlung integral [18]. Vbc is the interaction between
b and c in the initial channel. In Eq. (2), K is an effective local
momentum appropriate to the core-target relative system (see
Appendix A) and qi’s (i = a,b,c) are the Jacobi wave vectors
of the respective particles. For more details on these quantities
we refer to Ref. [15].

The relative energy spectra ( dσ
dEbc

) of the reaction can be
obtained from Eq. (1) by integrating over the appropriate solid
angles.

Then, the photodisintegration cross section (σπλ
γ,n) for the

reaction a + γ → b + c can be related to the relative energy
spectra as

σπλ
γ,n = Eγ

nπλ

dσ

dEbc

, (3)

provided a single multipolarity (πλ) dominates. Here π stands
for electric or magnetic type and λ is the multipolarity.

In Eq. (3), Eγ = Ebc + Q is the photon energy with Q as
the Q value of the reaction and nπλ is the equivalent photon
number which depends upon the a − t system [19]. For more
details of the method one is referred to Refs. [17,19–21].
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The radiative capture cross section σn,γ can then be
calculated utilising the principle of detailed balance,

σn,γ = 2(2ja + 1)

(2jb + 1)(2jc + 1)

k2
γ

k2
bc

σ πλ
γ,n, (4)

where ja , jb, and jc are the spins of particles a, b, and c,
respectively. kγ and kbc are the wave numbers of the photon
and that of relative motion between b and c, respectively.

The nonresonant reaction rate per mole NA〈σv〉nr (NA

being the Avogadro constant) can be calculated from the
neutron capture cross section σn,γ (Ebc) as

NA〈σv〉nr = NA

√
8

(kBT )3πμbc

×
∫ ∞

0
σn,γ (Ebc) Ebc exp

(
− Ebc

kBT

)
dEbc, (5)

where kB is the Boltzmann constant and T is the temperature
in Kelvin (K). We shall show subsequently (Sec. III C) that the
significant contribution to the reaction rate comes from a very
small range of energies and hence the whole integration range
in the above equation need not be considered.

In case of narrow resonances, the capture cross section can
be obtained by using the Breit-Wigner formula. In such a case
the reaction rate per mole can be easily expressed as the sum
over individual resonances with energy Ei [22] as

NA〈σv〉r = 1.54 × 1011(μbcT9)−3/2

×
∑

i

(ωγ )i exp

(−11.605Ei

T9

)
(6)

with ωγ being the resonance strength and T9 is the temperature
in units of 109 K. The total rate per mole NA〈σv〉 is then the
sum of nonresonant and resonant contributions.

III. RESULTS AND DISCUSSIONS

A. Structure of 16N
16N has one-neutron separation energy (Sn) of 2.491 MeV

in its ground state having Jπ = 2−. There are three low-lying
excited states with Jπ = 0−, 3−, and 1− at energies 0.120,
0.298, and 0.397 MeV above the ground state, respectively.
Two states 2− and 3− are formed by the coupling of 1d5/2 ν

with the 1/2− ground state of 15N, whereas the other two
states 0− and 1− are formed by the coupling of 2s1/2 ν

with the 1/2− ground state of 15N. All these four levels
have been suggested to contribute to the direct capture cross
section of 15N(n,γ ) 16N [1,12,13] and the capture process
is dominated by E1 transitions [13]. Apart from these, the
862 keV resonance is the only relevant resonance which
has been suggested to contribute to the reaction rate at high
temperature (>1 GK) [1].

In our study, we calculate the bound state wave function
of the projectile (which is the only input in our theory) by
assuming a Woods-Saxon interaction between the valence
neutron and the charged core. The depth (V0) of the potential
is adjusted to reproduce the binding energy. The radius and
diffuseness parameters are taken to be 1.25 fm and 0.65 fm,

as in Refs. [9,13]. However, for the sake of completeness, we
have also investigated the effect of changing the radius and
diffuseness parameters by 20% on our results in Appendix B.

We use shell model C2S values which considers low-lying
16N levels as good single-particle states. In fact, these are also
supported by the experiment performed in Ref. [8]. Another
support to our choice comes from isospin symmetry, given
that the C2S for low-lying four levels in mirror nucleus 16F
are near unity [23,24]. Nevertheless, we have also performed
our calculations with the C2S of Refs. [9,10] for the sake of
completeness.

In Table I, we show the respective depths of the Woods-
Saxon potential obtained corresponding to neutron removal
from all four levels mentioned above, along with their Sn and
C2S values.

B. Capture cross section

The first step to calculate the capture cross section is to
calculate the relative energy spectra, which we have done for
the Coulomb breakup of 16N on a Pb target at 100 MeV/u
beam energy for all projectile bound state configurations
mentioned in Table I. From the relative energy spectra
we calculate the photodisintegration cross section for the
reaction 16N(γ,n) 15N, using Eq. (3). This is the key step in
using Coulomb dissociation as an indirect method in nuclear
astrophysics. Furthermore, given that the γ ray transition
corresponding to all four levels of 16N of present interest are all
dominated by E1 multipolarity [13], so the conditions for the
applicability of Eq. (3) are fulfilled. The photodisintegration
cross sections are then used to calculate the radiative capture
cross sections by applying the principle of detailed balance
[Eq. (4)].

In Fig. 2(a), we show our 15N(n,γ ) 16N nonresonant capture
cross section as a function of the center of mass energy
(Ec.m.) and compare it with the experimental data, which are
available at three energies in the range 0–500 keV. The solid
line corresponds to the total nonresonant capture cross section
which is obtained by summing up capture contributions to
all four levels of 16N using their respective shell model C2S
values (given in Table I).

It is clear that among all these four states, nearly all the
contributions to the total cross section come from the 1−
and the 0− states. Therefore the change in C2S of these
two states can change the total cross section to a significant

TABLE I. Depths (V0) of the Woods-Saxon potential obtained
corresponding to neutron binding energies (Sn) of four low-lying
states of 16N. The shell model C2S (OXBASH) of these levels are from
Ref. [1]. The values of the radius and diffuseness parameters are taken
to be 1.25 fm and 0.65 fm, respectively.

J π configuration Sn V0 C2S

(MeV) (MeV)

2− 15N(1/2−)⊗1d5/2ν 2.491 58.06 0.93
0− 15N(1/2−)⊗2s1/2ν 2.371 53.89 0.95
3− 15N(1/2−)⊗1d5/2ν 2.193 45.04 0.87
1− 15N(1/2−)⊗2s1/2ν 2.094 49.38 0.96
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FIG. 2. (Color online) (a) Total nonresonant 15N(n,γ ) 16N cross
section (solid line) obtained by summing up contributions of capture
to all four states of 16N (given in Table I) using their respective shell
model C2S. (b) Total nonresonant capture cross section obtained by
using the experimentally extracted C2S (including uncertainties) from
Refs. [8] (filled band) and [9] (filled pattern) compared with the total
nonresonant cross section (solid line) shown in (a). The experimental
data in both panels are from [1].

extent. This point is further elucidated in Fig. 2(b), when we
compare the total capture cross section with experimentally
extracted C2S (including their uncertainties) from Refs. [8]
(filled band) and [9] (filled pattern) with those of the shell
model (solid line). Clearly the difference between the C2S of
the 1− and the 0− states in these two experiments is the reason
for their disagreement among the calculated cross sections in
Fig. 2(b). It is clear that with the shell model C2S (which is
also supported by the upper limit of the calculations using C2S
of Ref. [8]), our results are in good agreement with the data.
This would support the contention that the low-lying states of
16N are predominantly single particle in nature.

We also wish to point out that capture cross sections
at energies below 500 keV will not have any significant
contribution from the 862 keV resonance. However, it could
contribute to the reaction rate for temperatures T9 > 1, as will
be seen later.

C. Reaction rate

As mentioned earlier, 15N(n,γ ) 16N plays an important role
in the synthesis of heavier nuclei and also it is considered
to compete with other charged particle reactions on 15N. So
it would be interesting to find the rate of the 15N(n,γ ) 16N
reaction and compare it with the other charged particle reaction
rates.

In Fig. 3, we present our 15N(n,γ ) 16N reaction rate in the
temperature range T9 = 0.05–3. The total rate (solid line) is
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FIG. 3. (Color online) Total 15N(n,γ ) 16N reaction rate (solid
line) obtained by summing up the nonresonant (dashed line) and
resonant (dot-dashed line) rates.

the sum of nonresonant (dashed line) and resonant (dot-dashed
line) rates. The nonresonant reaction rates are calculated by
using Eq. (5), where the energy integration has been performed
up to 0.5 MeV, consistent with the energy range shown in
Fig. 2. In order to ensure that we have not missed any
contribution to the nonresonant rates at higher energies we plot
the integrand in Eq. (5) as a function of energy [at T9 = 0.1,
a typical temperature of asymptotic giant branch (AGB) stars]
in Fig. 4. It is clear from the figure that at this temperature
almost all the contributions to the nonresonant rate are from
the energy range below 0.1 MeV. In fact, we have checked
that even at a higher temperature (at T9 = 1) the contribution
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FIG. 4. Integrand in Eq. (5), plotted as a function of relative
energy (Ebc) for T9 = 0.1 (typical temperature of AGB stars). For
more details see text.
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FIG. 5. (Color online) Calculated 15N(n,γ ) 16N reaction rate
(solid line) compared with other evaluations based on various
experimental estimates of C2S. Guo 2014 [9]; Rauscher 1994 [11];
Bardayan 2008 [8], Meissner 1996 [1]. For more details see text.

after 0.25 MeV is negligible. This shows that even in the
temperature range relevant for the inhomogeneous big bang
model, i.e., T9 = 0.2–1.2, the maximum contribution to the
nonresonant rate of 15N(n,γ ) 16N comes from the energies
below 0.25 MeV. Figure 2 shows that in this energy range
our calculated neutron capture cross sections are in good
agreement with the experimental data. The resonant rates are
calculated using Eq. (6) with the parameters given in Ref. [1].
They seem to be relevant only for temperatures T9 > 1.

As can be expected, different C2S of the levels of 16N
affects the reaction rate and this has also been seen by several
authors so far. In Fig. 5, we compare our total rates (solid
line) with the rates from other theoretical predictions and
evaluations based on various experimental estimates of C2S
[1,8,9,11]. The rates reported by Meissner et al. in Ref. [1] (dot-
dashed line) are smaller than the rates calculated by Rauscher
et al. [11] (dashed line) by 30–50 % and this discrepancy was
traced to the different C2S used. Rates calculated by Bardayan
et al. [8] (dotted line), using their experimentally extracted
C2S were also almost double as compared to those calculated
in Ref. [1]. The discrepancy of a similar factor has also been
reported recently by Guo et al. in Ref. [9] (squared line), on
comparing their rates with those of Meissner et al.

It is clear that in the temperature ranges relevant for
inhomogeneous big bang model (T9 = 0.2–1.2) and for typical
AGB stars (T9 ≈ 0.1), our rates are almost the same as those in
Ref. [1]. However, in the same temperature range our predicted
rates are slower than those of Refs. [8,9,11]. We reiterate that
our reaction rates are based on capture cross sections derived
from a fully quantum mechanical Coulomb breakup theory.

Finally, we turn our attention to the comparison of
our rates with those of charged particle capture on
15N. Figure 6, shows the comparison of the rates
of reactions 15N(n,γ ) 16N , 15N(p,α) 12C , 15N(p,γ ) 16O, and
15N(α,γ ) 19F in the temperature range of T9 = 0.001–3. The
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15
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FIG. 6. (Color online) Calculated 15N(n,γ ) 16N reaction rate
(solid line) compared with those of 15N(p,α) 12C [25] (dot-dashed
line), 15N(p,γ ) 16O [25] (dashed line), and 15N(α,γ ) 19F [26] (dotted
line).

rates of (p,γ ) and (p,α) reactions are from NACRE II
compilation [25], whereas those of (α,γ ) are from NACRE
compilation [26]. It is clear that at low temperature because
of the Coulomb barrier the charged particle capture rates are
significantly slower than the (n,γ ) rate. Consequently the
15N(n,γ ) 16N reaction dominates over the 15N(p,α) 12C and
15N(p,γ ) 16O reactions in the temperature ranges T9 = 0–0.25
and 0–1.3, respectively. Again, given the fact that the rate of the
15N(α,γ ) 19F reaction is very small in the given temperature
range, formation of 16N by neutron capture would be more
favorable than the production of 19F. Therefore, it appears
that at temperatures below T9 < 0.25, the probability of
consumption of 15N by neutron capture is more than the proton
or α capture reactions.

IV. CONCLUSIONS

In summary, we have calculated the 15N(n,γ ) 16N radiative
capture cross section and the associated reaction rate by using
the Coulomb dissociation of 16N on Pb at 100 MeV/u, as
an indirect method in nuclear astrophysics. Our Coulomb
dissociation theory is a purely quantum mechanical one, under
the aegis of the post-form finite range distorted wave Born
approximation. The entire nonresonant continuum is included
in the theory and the projectile bound state information
is the only input. The local momentum approximation to
the transition amplitude allows us to factorize the breakup
amplitude into the structure and the dynamics part. This theory
has previously been used to study the structure and dynamics
of nuclei away from the valley of stability and also to study
radiative capture reactions.

We calculate the relative energy spectra in the breakup
of 16N on Pb at 100 MeV/u and calculate the relevant
photodisintegration cross sections for the four low-lying states
(2−,0−,3−, and 1−) of 16N. The principle of detailed balance
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is then invoked to calculate the relevant 15N(n,γ ) 16N radiative
capture cross sections to the different low-lying states of 16N.
We then bring into focus the state of affairs regarding the
spectroscopic factors of these low-lying states. Comparison
of our calculations with the available direct capture data [1]
seems to favor the spectroscopic factors from Ref. [8] (which
are similar to the shell model) than those of Refs. [9,10]. This
would give the credence to the fact that the low-lying levels of
16N could be single particle in nature.

With the paucity of direct capture data for this reaction, it
would certainly be useful to perform a Coulomb dissociation
experiment to find the low energy capture cross section for
the reaction, especially below 0.25 MeV, given that almost all
the contribution to the reaction rate comes from this energy
range. An advantage, from an experimental point of view,
is that breakup fragments emerge at higher energies (given
that the projectile energies are in the range of 100 MeV/u),
which in turn facilitates their detection. Moreover, measuring
Coulomb dissociation observables like the relative energy
spectra and angular distributions one would be able to put
constraints on spectroscopic factors. In fact, recently the
Coulomb dissociation method has been used to find the neutron
capture cross section to different states of 8Li [3] and also to
find the contributions of the projectile excited states in the
charged particle capture reactions [27,28].

We also calculate the 15N(n,γ ) 16N reaction rate per mole as
a function of temperature. For temperatures relevant for typical
AGB stars and for the inhomogeneous big bang model, our
calculations favor the destruction of 15N by neutron capture
than by proton or α capture.
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APPENDIX A: VALIDITY OF THE LOCAL
MOMENTUM APPROXIMATION

We use the local momentum approximation [29–31], on the
outgoing charged fragment b to obtain the factorization of the
breakup amplitude [Eq. (2)]. Essentially, it involves the Taylor
expansion of χ

(−)∗
b (qb,r) about ri, which is exact and helps in

separation of the variables ri and r1,

χ
(−)
b (qb,r) = e−αr1.∇ri χ

(−)
b (qb,ri). (A1)

Then one can approximate the del-operator to an effective local
momentum, K(= − i∇ri

), whose magnitude is given by

K =
√

2μbt

�2
(Ebt − V (R)), (A2)

where μbt is the reduced mass of the b − t system, Ebt is the
energy of particle b relative to the target in the c.m. system,
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FIG. 7. Variation of η(r) (upper half) and K(r) (lower half) with
r for the Coulomb breakup of 16N on Pb in its ground state. For more
details, see the text.

and V (R) is the Coulomb potential between b and the target at
a distance R. Thus, the local momentum K is then evaluated at
some fixed distance R (10 fm, in our case) and the magnitude
is held fixed for all the values of r. The direction of K is taken
to be same as that of the outgoing fragment b. The condition
of validity (see, e.g., [29]) is that the quantity,

η(r) =
1
2K(r)∣∣ dK(r)

dr

∣∣ , (A3)

calculated at some representative distance R should be more
than the projectile radius, ra .

To check the validity of the approximation, in Fig. 7 we
show the variation of η(r) (upper half) and K(r) (the magnitude
of the local momentum) (lower half) as a function of r , for
the Coulomb breakup reaction 16N + Pb → 15N + n + Pb
at the beam energy of 100 MeV/u. At r = 10 fm, η(r) >>
ra (= 3.11 fm), the projectile root mean square radius. K(r)
is also seen to be constant for r > 8 fm. These conditions
have been checked to be true for the other three excited states
of 16N.

In order to check the dependence of our results on the
direction of K, we calculate the total Coulomb breakup cross
section at three different directions of the local momentum—
(d1): parallel to the beam direction (zero angles), (d2): parallel
to the direction corresponding to the half of the angles of qb,
and (d3): parallel to qb.

Table II shows the variation of total cross section in the
Coulomb breakup of 16N on Pb at 100 MeV/u, calculated
at three different directions of local momentum as mentioned
above, for all four low-lying states of 16N. It is clear that
the change in total cross section is less than 10% for ground
and second excited states and it is even less than 4% for the
first and third excited states, as one moves from direction (d1)
to (d3).
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TABLE II. Total one-neutron removal section (σ−n) in the
Coulomb breakup of 16N on Pb at 100 MeV/u, calculated at three
different directions of local momentum for all the four low-lying
states of 16N.

J π Energy (MeV) σ−n (mb)

d1 d2 d3

2− 0 1.95 2.04 2.16
0− 0.120 35.55 35.00 34.32
3− 0.298 3.04 3.17 3.36
1− 0.397 49.44 48.68 47.73

APPENDIX B: DEPENDENCE ON
WOODS-SAXON PARAMETERS

We now investigate the dependence of the Woods-Saxon
potential parameters on our results. In Fig. 8, we show
the variation of the total capture cross section for different
combinations of the radius and diffuseness parameters which
reproduce the same one neutron separation energy in 16N.
The solid line shows the result that we have used in this
paper. The dashed and dotted lines are those in which the
radius and diffuseness parameters have been increased by 20%,
respectively, over those shown by the solid line. We do not

0 0.1 0.2 0.3 0.4 0.5
Ec.m. (MeV)

10
0

10
1

100

σ n
,γ
 (

μb
)

r0 = 1.25 fm, a0 = 0.65 fm
r0 = 1.50 fm, a0 = 0.65 fm
r0 = 1.25 fm, a0 = 0.78 fm

FIG. 8. (Color online) Variation of the total 15N(n,γ ) 16N cap-
ture cross section with different Woods-Saxon parametrization. For
more details see text.

make out any major discernible difference in the results which
could be validated by present day experiments.
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