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The reaction γp → K+�0 has been investigated using a tree-level effective Lagrangian model similar to that
employed previously by the author to study the electromagnetic production of �’s from protons. In addition to
the Born terms, the model incorporates a number of baryon resonances with spins up to 5

2 and the two kaon
resonances, K�(892) and K1(1270). Momentum- and energy-dependent widths for the nucleon and � resonances
are included by means of a dynamical model that makes use of empirical on-shell branching ratios. The model
parameters, consisting of products of the coupling strengths at the electromagnetic and strong interaction vertices
in the resonance contributions, are fit to a large pool of photoproduction data from the CLAS and GRAAL
Collaborations. Results are presented for the unpolarized differential cross section, the photon beam asymmetry
�, the hyperon recoil asymmetry P , and the double-polarization observables Cx and Cz in a variety of kinematical
situations and compared with the data.
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I. INTRODUCTION

The electromagnetic production of strangeness from pro-
tons and other light nuclei has been a major field of interest
within the nuclear physics community for well over 2 decades.
The extra degree of freedom represented by the strange quark
makes the investigation of reactions involving strange baryons
imperative for gaining a fuller understanding of the strong
interaction within a nuclear environment. Most of the effort
in strangeness photoproduction studies has focused on the
K+� reaction channel, because the relatively long life of
the � combined with the nonzero charge of the K+ makes
this channel the easiest to study experimentally. However, a
number of recent measurements of the γp → K+� reaction
have also included data for the γp → K+�0 reaction, and the
data obtained for the latter reaction are copious enough and of
sufficient quality to warrant a separate theoretical examination
of that reaction.

Theoretical studies of strangeness photoproduction from
the proton date back to the late 1960s and early 1970s [1,2],
but the theoretical work at that time was severely hampered by
the lack of empirical data. There was renewed interest in the
field beginning in the late 1980s [3–12] when better quality
data started to become available, but, as mentioned above, this
work focused mainly on � production. Theoretical studies that
include �0 production are of more recent vintage and much
fewer in number [13–18].

The work reported here is based on a model developed
earlier for the analysis of the γp → K+� reaction [19]. An
earlier version of the model was used to study the photopro-
duction of �’s from the deuteron and 3He [11,20,21], and
an extension of the model with electromagnetic form factors
incorporated was employed in studies of � electroproduction
from the proton and the deuteron [22,23]. The model is a
tree-level effective Lagrangian model consisting of s-channel,
u-channel, and t-channel contributions. The main difference
between � production and �0 production in such a model is
that the isospin of the � permits � resonance intermediate
states to be excited. Aside from the inclusion of � resonances,
the model described here differs from the earlier model in

the incorporation of data from a more recent version of the
particle data tables [24] and in some adjustments to the set of
nucleon resonances that are included in the s channel. Details
are presented in Sec. II.

The fitting procedure is described in Sec. III. The param-
eters of the model were fit to CLAS data for the unpolarized
differential cross section [25,26], the hyperon recoil asym-
metry [26,27], and a pair of double-polarization observables
[28], as well as GRAAL data for the photon beam asymmetry
[29]. The model parameters determined in the fit, consisting of
products of the coupling strengths at the electromagnetic and
strong interaction vertices in the resonance contributions, are
listed in Sec. IV. Section IV also contains a discussion of the
results, some conclusions, and a brief outline of future work.

II. REACTION MODEL

The reaction model is based on three types of contributions,
depicted in Fig. 1, which are designated s-channel, u-channel,
or t-channel contributions according to whether the squared
four-momentum in the intermediate state propagator corre-
sponds to the s, t , or u Mandelstaam variable. In each channel,
the Born terms are supplemented with terms involving the
excitation of intermediate hadronic resonances appropriate to
that channel.

Table I lists all of the baryon resonances that have been
incorporated in the model. In the s-channel, these include
all of the well-established nucleon and � resonances (three-
and four-star status) with spins less than or equal to 5

2 that
appear in the most recent particle data tables [24]. I have
also incorporated a number of two-star resonances of higher
energy, including N (1860), N (1880), and N (2000). Inclusion
of these higher energy resonances improves the data fits at the
higher energy end. A number of other two-star nucleon and
� resonances, such as N (1895), N (2060), N (2120), �(1900),
�(1940), and �(2000), have been excluded because there is
no evidence for these resonances in the most recent George
Washington University analysis, despite their two-star status in
the particle data tables. I have also excluded two other nucleon
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FIG. 1. Contributions to the amplitude for the reaction γp →
K+�0.

resonances, the spin 3
2 N (2080) and the spin 5

2 N (2200), that
were included in earlier fits to � production data [19,22], but
which have since disappeared from the particle data tables.

In the u channel, the resonances incorporated are the
same as those incorporated in the earlier fits to � production
data [19,22]. In Ref. [19], it was shown that the inclusion
of more resonances in the u channel does not materially
improve the fits. I have also employed the same t-channel kaon
resonances that were incorporated in the earlier � production
fits, namely, the K�(892) and K1(1270) resonances. These two
kaon resonances have been included in almost all of the more
recent analyses of photoproduction data that are based on an
effective Lagrangian model.

The s-, u-, and t-channel contributions to the reaction
amplitude in the impulse approximation have the general forms

T̂s =
∑
N,�

V†
K (pK )D(ps)Vγ (pγ ), (1)

T̂u =
∑
Y

V†
γ (pγ )D(pu)VK (pK ), (2)

and

T̂t =
∑
K

V†
γK (pγ ,pt )Dt (pt )Vp�(pt ), (3)

TABLE I. Baryon resonances considered in the model.

Resonance J P

N (1440) 1
2

+

N (1520) 3
2

−

N (1535) 1
2

−

N (1650) 1
2

−

N (1675) 5
2

−

N (1680) 5
2

+

N (1700) 3
2

−

N (1710) 1
2

+

N (1720) 3
2

+

N (1860) 5
2

+

N (1875) 3
2

−

N (1880) 1
2

+

N (1900) 3
2

+

N (2000) 5
2

+

�(1232) 3
2

+

�(1600) 3
2

+

�(1620) 1
2

−

�(1700) 3
2

−

�(1905) 5
2

+

�(1910) 1
2

+

�(1920) 3
2

+

�(1930) 5
2

−

�(1405) 1
2

−

�(1670) 1
2

−

�(1820) 5
2

+

�(1830) 5
2

−

�(1890) 3
2

+

�(2110) 5
2

+

�(1385) 3
2

+

�(1775) 5
2

−

�(1915) 5
2

+

�(1940) 3
2

−

where ps = p� + pK , pu = p� − pγ , and pt = pγ − pK are
the intermediate four-momenta in the s-, u-, and t-channel
amplitudes, respectively. The V’s here are the vertex functions
at the electromagnetic and strong interaction vertices, and
the D’s are the intermediate hadron propagators. Note that
the sums include the Born terms as well as the resonance
contributions.

The vertex functions and propagators in these expressions
depend upon the spins and parities of the intermediate
resonances. The various forms adopted here are the same
as those employed in the earlier � production fits and are
discussed in detail in Ref. [19]. Here I just summarize the
forms employed.
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In the t channel, the vertex functions are given by

VγK = eε(2pK − pγ ) (4)

and

Vp� = g�Kpγ5 (5)

for an intermediate ground-state kaon (the t-channel Born
term), by

Vμ
γK = gγKK�

msc
εμνρλενpγρptλ (6)

and

Vμ
p� =

(
gV

�K�p + gT
�K�p

mp + m�

γpt

)
γ μ (7)

for an intermediate K�(892) resonance, and by

Vμ
γK = gγKK1

msc

(
εptp

μ
γ − pγ ptε

μ
)

(8)

and

Vμ
p� =

(
gV

�K1p + gT
�K1p

mp + m�

γpt

)
γ μγ5 (9)

for an intermediate K1(1270) resonance, where ε is the photon
polarization four-vector and msc is a scaling mass that has
been set equal to 1000 MeV. Because the kinematics of
the photoproduction reaction preclude intermediate resonance
decay in the t channel, the kaon resonance propagator does
not include a width. Thus,

Dt =
−gμν + ptμptν

m2
K�

p2
t − m2

K�

. (10)

In the s and u channels, the vertex functions are given by

V
K 1

2
+(pK ) = gγ5 (11)

and

V
γ 1

2
+ (pγ ) = gγ εμiσμν(pγ )ν, (12)

with

gγ = eκ

2mB

, (13)

for positive parity intermediate baryons of spin 1
2 . The negative

parity vertex functions are just the positive parity functions
with the γ5 factor moved from the strong interaction vertex
to the electromagnetic vertex. Here mB is equal to the proton
mass in the s channel and to the � mass in the u channel. The
s-channel Born contribution has an additional charge term,

Vcharge(pγ ) = eγ μεμ, (14)

that has to be added to the electromagnetic vertex given above.
For positive parity intermediate resonances of higher spin,

the vertex functions are

Vμ

K 3
2

+(pK ) = − g

mπ

p
μ
K, (15)

Vμν

K 5
2

+ (pK ) = g

m2
π

p
μ
Kpν

Kγ5, (16)

Vμ

γ 3
2

+(pγ ) =
[

g1

2mB

(
εμγpγ − pμ

γ γ ε
)

+ g2

4m2
B

(
εpBpμ

γ − pγ pBεμ
)]

γ5, (17)

and

Vμν

γ 5
2

+(pγ ) =
[

g1

2mB

(
εμγpγ − pμ

γ γ ε
)

+ g2

4m2
B

(
εpBpμ

γ − pγ pBεμ
)] pν

γ

mπ

, (18)

where pB is the ground-state baryon four-momentum and the
factor mπ has been introduced to make g dimensionless. The
corresponding propagators are constructed by multiplying
the Dirac propagator,

D
1
2 (p) = γp + mI

p2 − m2
I + imI�I

, (19)

on the right by either the spin 3
2 projection operator,

P
3
2

μν = gμν − 1

3
γμγν + 1

3

pμγν − pνγμ

mI

− 2

3

pμpν

m2
I

, (20)

or the spin 5
2 projection operator,

P
5
2

μν,μ′ν ′ = Rμν,μ′ν ′ − 1

5
PμνPμ′ν ′

− 1

5
(Pμργ

ργ σRσν,μ′ν ′ + Pνργ
ργ σRσμ,μ′ν ′ ), (21)

with

Rμν,μ′ν ′ = 1

2
(Pμμ′Pνν ′ + Pμν ′Pνμ′), (22)

where

Pμν = gμν − pμpν/m2
I (23)

and mI is the intermediate resonance mass.
In photoproduction p2

u is generally small or negative, so
the intermediate hyperon resonances in the u channel cannot
decay. However, in the s channel, p2

s is large enough that one
or more decay channels may be open for the intermediate
nucleon and � resonances. Thus, widths must be included in
the s-channel propagators, and these widths are both energy
and momentum dependent. In earlier work involving the
photoproduction of �’s, a dynamical model was developed
for these widths [20], which I also employ here. In this
model, the full decay width is decomposed into a number
of partial widths for decay into various two- and three-body
decay channels. In each such channel, the off-shell energy
and momentum dependence is treated using an effective
Lagrangian model with the required coupling strength adjusted
to yield the empirical on-shell branching ratio for decay into
that channel. For the two-body channels, this procedure yields
straightforward expressions for the partial widths that depend
on the spins and parities of both the resonances and the decay
products.

Three-body decays are approximated as two-body decays
with one stable decay product and one unstable decay product.
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TABLE II. s-channel width data branching ratios.

Resonance c width (MeV) Two-body channels Three-body channels

Nπ Nη �K Nσ �(1232)π Nρ

N (1440) 350 0.60 0.15 0.25
N (1520) 115 0.60 0.20 0.20
N (1535) 150 0.50 0.45 0.05
N (1650) 140 0.70 0.10 0.05 0.10 0.05
N (1675) 150 0.45 0.55
N (1680) 130 0.68 0.12 0.10 0.10
N (1700) 150 0.12 0.68 0.20
N (1710) 100 0.12 0.20 0.10 0.18 0.25 0.15
N (1720) 250 0.10 0.05 0.05 0.40 0.40
N (1860) 200
N (1875) 200 0.15 0.05 0.20 0.50 0.10
N (1880) 250
N (1900) 250
N (2000) 350
�(1232) 117 1.00
�(1600) 320 0.20 0.60 0.20
�(1620) 140 0.25 0.55 0.20
�(1700) 300 0.15 0.45 0.40
�(1905) 330 0.12 0.70 0.18
�(1910) 280 0.23 0.07 0.70
�(1920) 260 0.20 0.80
�(1930) 360

These are handled in the same fashion as the two-body decays
except that the mass of the unstable decay product is assumed
to be variable with a Breit-Wigner distribution. To obtain the
corresponding width, it is necessary to integrate over this
distribution. Details concerning the procedure, together with
detailed expressions for the various widths so obtained, can be
found in Ref. [19].

The dynamical width model is appropriate for resonances
for which there are enough data to make reasonable estimates
of the on-shell partial widths. This is the case for most of
the well-established nucleon and � resonances. For these
resonances, I have updated the branching ratio information
used in the previous � photoproduction fits to incorporate
the data summarized in the most recent version of the particle
data tables [24]. For the less well-established resonances,
the branching ratio data are not sufficient to make use of the
dynamical model. Hence, for these resonances, I employ the
fixed on-shell width estimates given in the particle data tables.

Table II lists the on-shell width and branching ratio values
that are employed in the present study. For the two-body
branching ratios, the values used represent central values
within the empirical ranges given in the tables. The three-body
branching ratios are more uncertain. In Table II, any decay
strength not allocated to one of the two-body channels is
attributed to either the π� or the ρN decay channel using
the particle data tables as a rough guide as to how to make
the allocation. In practice, for several of the resonances,
much of the three-body decay is attributed in the tables to an
undifferentiated ππN channel, so that any allocation to π� or
ρN channels is somewhat arbitrary. For resonances for which
no branching ratio values appear in the table, in particular, for

the N (1880), N (1900), N (2000), and �(1930) resonances, the
fixed resonance width prescription was employed. It should
be noted again that the branching ratios in the table represent
on-shell values. At energies below the threshold for a particular
channel, the corresponding partial width is set equal to zero.

III. FITTING PROCEDURE

The model described in the previous section for the reaction
γp → K+�0 was fit to cross-section and polarization data
from a variety of sources. In particular, I fit CLAS data for
the unpolarized differential cross section [25,26]; GRAAL
data for �, the photon beam asymmetry [29]; CLAS data
for P , the hyperon recoil asymmetry [26,27]; and CLAS data
for the double-polarization observables, Cx and Cz [28]. The
differential cross section is given in the center of mass (c.m.)
by the expression

dσ

d�
= 1

(2π )2

mpm�pF

4Eγ s

1

4

∑
spins

|〈F |T̂ |I 〉|2, (24)

where pF is outgoing three-momentum magnitude, s is the
squared c.m. energy, and Eγ is the incident photon energy. The
single-polarization observables are defined by the relations

� = dσ⊥
γ − dσ ‖

γ

dσ⊥
γ + dσ

‖
γ

, (25)

P = dσ+
� − dσ−

�

dσ+
� + dσ−

�

, (26)
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TABLE III. Coupling strength products. The first column of
numbers corresponds to fit 1 and the second column to fit 2, as
described in the text.

Spin 1
2 resonances

N (1440) FN� −9.5359 −7.8671
N (1535) FN� 2.1039 1.1034
N (1650) FN� 0.2140 −0.0343
N (1710) FN� −0.2478 −0.0674
N (1880) FN� 0.3145 1.0145
�(1620) F� −1.2076 −0.7896
�(1910) F� −0.2145 −1.4869
�(1405) F�� 1.5253 2.2330
�(1670) F�� 2.5702 0.0111

Spin 3
2 resonances

N (1520) G1
N� 3.1726 2.0474

G2
N� 2.5997 2.6298

N (1700) G1
N� 5.5018 −2.8002

G2
N� 4.2759 −4.1911

N (1720) G1
N� −0.0062 0.2572

G2
N� 0.8729 −0.4442

N (1875) G1
N� −0.0687 −0.9594

G2
N� 0.1179 −1.0823

N (1900) G1
N� −0.1417 0.1035

G2
N� −1.2793 0.0647

�(1232) G1
� −0.2507 0.0870

G2
� −2.0684 −0.5610

�(1600) G1
� 0.4182 −0.9305

G2
� 0.5768 3.1898

�(1700) G1
� −7.3510 6.2298

G2
� −5.3411 8.9796

�(1920) G1
� 0.0735 −0.1417

G2
� 1.4616 −0.0074

�(1890) G1
�� −8.3231 −7.3739

G2
�� 7.7830 6.6918

�(1385) G1
�� 2.3543 3.1159

G2
�� 6.6994 −5.4446

�(1940) G1
�� 5.9979 6.1471

G2
�� −9.0359 9.7442

Spin 5
2 resonances

N (1675) G1
N� 0.0008 0.0080

G2
N� 0.0418 0.0110

N (1680) G1
N� 0.0426 −0.0993

G2
N� 0.0191 −0.1965

N (1860) G1
N� −0.0888 −0.0608

G2
N� −0.1992 −0.0924

N (2000) G1
N� −0.0040 −0.0104

G2
N� −0.0522 −0.0129

�(1905) G1
� 0.0865 0.0974

G2
� 0.2754 0.1695

�(1930) G1
� −0.0009 −0.0002

G2
� −0.0066 −0.0022

�(1820) G1
�� 1.6957 0.1079

G2
�� −0.3016 0.1811

�(1830) G1
�� −0.0056 0.0458

G2
�� 6.1255 −0.6987

TABLE III. (Continued.)

Spin 5
2 resonances

�(2110) G1
�� 2.2253 −0.1345

G2
�� −1.8388 −0.2581

�(1775) G1
�� −0.0675 −0.0567

G2
�� −5.4884 0.6461

�(1915) G1
�� −3.6871 0.0585

G2
�� 1.4414 0.1698

Kaon resonances

K(892) GV
K� 10.2218 8.6461

GT
K� 4.3609 2.1909

K(1270) GV
K� −2.1659 11.9499

GT
K� 18.7692 3.7975

where the superscripts ⊥ and ‖ refer to photon polarizations
perpendicular and parallel to the scattering plane and the
superscripts + and − refer to � spin projections above and
below the scattering plane. The double-polarization variables
are defined for circularly polarized photons with positive

FIG. 2. Differential cross section vs cos θc.m. for (a) Ec.m. =
1.715 GeV, (b) Ec.m. = 1.795 GeV, (c) Ec.m. = 1.875 GeV, (d) Ec.m. =
1.945 GeV, (e) Ec.m. = 2.025 GeV, and (f) Ec.m. = 2.105 GeV. The
solid curves were obtained with fit 1 and the dot-dashed curves with
fit 2, as described in the text. Data are from Refs. [25,26].
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FIG. 3. Differential cross section vs Ec.m. for (a) cos θc.m. =
−0.7, (b) cos θc.m. = −0.5, (c) cos θc.m. = −0.3, (d) cos θc.m. = 0,
(e) cos θc.m. = 0.5, and (f) cos θc.m. = 0.7. The solid curves were
obtained with fit 1 and the dot-dashed curves with fit 2, as described
in the text. Data are from Refs. [25,26].

helicity by the relation

Ci = dσ+
� − dσ−

�

dσ+
� + dσ−

�

, (27)

where now the superscripts + and − refer to � spin projections
along and opposite to either the z (i = z) or x (i = x) axes.

The fits were carried out by minimizing the χ2 per degree
of freedom defined by the relation

χ2

ν
=

∑ (Ycalc − Yexp)2

σ 2
, (28)

where the sum is over the data points employed in the fit, Ycalc

and Yexp are calculated and measured values for the observable
corresponding to a particular data point, and σ 2 is the squared
uncertainty in Yexp. The number of degrees of freedom in the
fit is given by ν = Ndata − Npar, where Ndata is the number of
data points and Npar the number of fit parameters. For some
of the energies considered, the empirical values for Cx or
Cz lie outside the mathematically allowed ranges for these
parameters, i.e., have magnitudes that exceed unity. Because
such values cannot be fit in any theoretical model, I have simply
excluded them from the fit data set.

The fit parameters consist of the products of the coupling
strengths at the electromagnetic and strong interaction vertices

FIG. 4. Hyperon recoil asymmetry vs cos θc.m. for (a) Ec.m. =
1.729 GeV, (b) Ec.m. = 1.844 GeV, (c) Ec.m. = 1.933 GeV,
(d) Ec.m. = 2.024 GeV, and (e) Ec.m. = 2.111 GeV. The solid curves
were obtained with fit 1 and the dot-dashed curves with fit 2, as
described in the text. Data are from Refs. [26,27].

for all resonances incorporated in the fit. These are defined by
the relations

FN� = eκpN�g�KN�,

F� = eκp�g�K�, (29)

FY = eκ�Y gYKp,

for spin 1
2 baryon resonances; by

G1
N� = g

pN�

1 g�KN�,

G2
N� = g

pN�

2 g�KN�,

G1
� = g

p�
1 g�K�,

(30)
G2

� = g
p�
2 g�K�,

G1
Y = g�Y

1 gYKp,

G2
Y = g�Y

2 gYKp,

for spin 3
2 and spin 5

2 baryon resonances; and by

GV
K� = gγKK�gV

�K�p,
(31)

GT
K� = gγKK�gT

�K�p,

for the kaon resonances.
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FIG. 5. Hyperon recoil asymmetry vs Ec.m. for (a) cos θc.m. =
−0.7, (b) cos θc.m. = −0.5, (c) cos θc.m. = −0.3, (d) cos θc.m. = 0,
(e) cos θc.m. = 0.5, and (f) cos θc.m. = 0.7. The solid curves were
obtained with fit 1 and the dot-dashed curves with fit 2, as described
in the text. Data are from Refs. [26,27].

For the Born term couplings, I employ fixed values
determined through the use of empirical data and symmetry
relations. In particular, for the electromagnetic couplings, the
particle data tables [24] yield the values κp = 1.79, μ�+ =
2.46μN , μ�− = −1.16μN , and μT = 1.61μN , where μN is
the nucleon magneton and the value given for the ��0 transi-
tion magnetic moment μT is an absolute value. Because there
is no empirical value for the magnetic moment of the neutral �,
I use the simple quark model relation, μ�0 = 1

2 (μ�+ + μ�− ),
which yields the value μ�0 = 0.650μN . For the transition
magnetic moment, only the absolute value has been determined
empirically. In the previous � photoproduction fits, a positive
value was adopted for this magnetic moment. However, the
quark model predicts a negative value, so I have employed a
negative value for μT in the present study. The corresponding
values for the κ’s appearing in Eq. (13) are

κ�0 = m�0

mp

μ�0

μN

= 0.825,

(32)
κT = m�0

mp

μT

μN

= −2.04.

For the strong interaction couplings, I begin with the
value for the �Kp coupling that was used in the previous
� electroproduction studies [22], namely, g�Kp = −6.537.

FIG. 6. Photon beam asymmetry vs cos θc.m. for (a) Ec.m. =
1.755 GeV, (b) Ec.m. = 1.808 GeV, (c) Ec.m. = 1.858 GeV, and
(d) Ec.m. = 1.906 GeV. The solid curves were obtained with fit 1,
and the dot-dashed curves with fit 2, as described in the text. Data are
from Ref. [29].

From this value, a value for the �0Kp coupling strength can
be extracted from the SU(3) symmetry relation

g�Kp = 1 − 2α√
3
(
1 − 2

3α
)g�Kp. (33)

Using α = 0.625 yields g�Kp = 1.615, so that for the Born
coupling strength products I obtain

FCp = eg�Kp = 0.489,

Fp = eκpg�Kp = 0.876,

F� = eκ�0g�Kp = 0.403, (34)

F� = eκT g�Kp = 4.04,

FK = FCp = 0.489,

where FCp is the coupling product associated with the proton
charge term and the dimensionless value e = 0.3029 has been
employed.

IV. RESULTS AND DISCUSSION

The coupling constant products associated with the two fits
are listed in Table III. The first column of numbers corresponds
to a fit of the data from threshold up to a c.m. energy of
2.0 GeV (fit 1), while the second column corresponds to a fit
from threshold up to 2.2 GeV (fit 2). Although the maximum
energies associated with the two fits differ by only 0.2 GeV, the
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FIG. 7. Photon beam asymmetry vs Ec.m. for (a) cos θc.m. =
−0.73, (b) cos θc.m. = −0.4, (c) cos θc.m. = 0, (d) cos θc.m. = 0.426,
(e) cos θc.m. = 0.77, and (f) cos θc.m. = 0.947. The solid curves were
obtained with fit 1 and the dot-dashed curves with fit 2, as described
in the text. Data are from Ref. [29].

χ2 values obtained with the two fits are significantly different.
The fit with the lower energy cutoff has a χ2 value of about 1.4;
the value 2.2 obtained for the χ2 with the higher energy cutoff
is substantially higher. As Table III reveals, the couplings
generated in the two fits are similar for some parameters, but
rather different for others.

The fit qualities are illustrated in Figs. 2–10, where in
each figure the solid curves were obtained with fit 1 and the
dot-dashed curves with fit 2. In the first of these figures, Fig. 2,
the angular distribution of the unpolarized cross section is
displayed for several values of the total c.m. energy. Note
that the cross sections in both this figure and Fig. 3 have
been multiplied by a factor of 10 so as to have units of
10−5 b/sr. At the four lower energies, the two fits yield
equally good representations of the data, although at the lowest
energy, the angular distributions resulting from the two fits
are qualitatively different. At energies exceeding the cutoff
energy of fit 1 (bottom two panels), only fit 2 yields a good
representation of the data.

The failure of fit 1 at energies exceeding its cutoff energy
is shown more dramatically in Fig. 3, where the energy
dependence of the unpolarized cross section is displayed for
several values of the kaon c.m. scattering angle. Here it can
be seen that each fit yields a fairly good representation of the

FIG. 8. Double-polarization parameter CX vs cos θc.m. for (a)
Ec.m. = 1.787 GeV, (c) Ec.m. = 1.939 GeV, and (e) Ec.m. =
2.126 GeV; and double-polarization parameter CZ vs cos θc.m. for
(b) Ec.m. = 1.787 GeV, (d) Ec.m. = 1.939 GeV, and (f) Ec.m. =
2.126 GeV. The solid curves were obtained with fit 1 and the
dot-dashed curves with fit 2, as described in the text. Data are from
Ref. [28].

data up to the cutoff energy for that fit. While fit 1 departs
significantly from the data at energies above 2.0 GeV, fit
2 remains fairly close to the data up to 2.2 GeV, although
even fit 2 does not reproduce the data well at forward angles
for energies above 2.0 GeV. The fact that the fit 1 cross
section increases rapidly at energies above the cutoff for
that fit suggests that the correct cross-section normalization
is achieved in the fits through rather delicate cancellations
among the many contributions.

Figures 4 and 5 display the angular and energy distributions
of the hyperon recoil asymmetry. As for the unpolarized cross
section, both fits yield good representations of the angular
distributions at energies below 2.0 GeV. At an energy of
2.024 GeV [Fig. 4(d)], fit 1 already shows a discrepancy with
the data at backward angles and fails completely at 2.111 Gev,
while fit 2 reproduces the empirical angular distributions quite
well at both energies. The energy distributions reinforce these
conclusions. Fit 1 reproduces the data only up to 2.0 GeV,
while fit 2 accounts for the data up to 2.2 GeV.

Results for the photon beam asymmetry are displayed in
Figs. 6 and 7. The GRAAL data for this parameter do not
extend beyond 2.0 GeV, so in principle, both fits should give
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FIG. 9. Double-polarization parameter CX vs Ec.m. for
(a) cos θc.m. = −0.7, (b) cos θc.m. = −0.4, (c) cos θc.m. = −0.1,
(d) cos θc.m. = 0.2, (e) cos θc.m. = 0.5, and (f) cos θc.m. = 0.8. The
solid curves were obtained with fit 1 and the dot-dashed curves with
fit 2, as described in the text. Data are from Ref. [28].

good representations of the data. In practice, fit 1 does a better
job, which probably reflects the lower χ2 value associated
with that fit. At the two higher energies in Fig. 6 (bottom
two panels), the angular distributions obtained with fit 2
contain a backward peak that is not present in either the
data or the fit 1 results. This discrepancy between the fit 2
results and the data at backwards angles is also seen in the
energy distributions obtained for cos θc.m. = −0.73 [Fig. 7(a)],
where fit 2 completely misses the three data points above
1.85 GeV.

The last three figures, Figs. 8, 9, and 10, display results
for the double-polarization parameters Cx and Cz. Note that
the first of these figures (Fig. 8) exhibits angular distributions
for both parameters (Cx in the left-hand panels, Cz in the
right-hand panels). The quality of the data for these parameters
is limited, but it appears that the fit 1 angular distributions are
somewhat superior at the intermidiate energy (middle panels),
while fit 2 is better at the higher energy, particularly for Cz.
The energy distribution results for Cx (Fig. 9) are not really
conclusive; neither fit is obviously superior to the other. The Cz

energy distribution results (Fig. 10), however, clearly exhibit
the superiority of fit 2 at energies above 2.0 GeV.

In summary, two new fits have been obtained for the
reaction γp → K+�0 using a tree-level effective Lagrangian

FIG. 10. Double-polarization parameter CZ vs Ec.m. for
(a) cos θc.m. = −0.7, (b) cos θc.m. = −0.4, (c) cos θc.m. = −0.1,
(d) cos θc.m. = 0.2, (e) cos θc.m. = 0.5, and (f) cos θc.m. = 0.8. The
solid curves were obtained with fit 1 and the dot-dashed curves with
fit 2, as described in the text. Data are from Ref. [28].

model similar to that employed previously to study the
photoproduction of �’s. The model incorporates most of
the well-established nucleon and � resonances in the s
channel, as well as several less well-established nucleon and
� resonances of higher energy. It also includes a variety of
hyperon resonances in the u channel and two kaon resonances
in the t channel. The first of the two fits is of higher quality
and incorporates data from threshold up to a maximum c.m.
energy of 2.0 GeV. The second fit extends the fit energy range
up to 2.2 GeV, but at the expense of a higher χ2 per degree of
freedom. Both fits give good accounts of a variety of CEBAF
and GRAAL data over their respective energy ranges.

The fits described here suffer the usual limitations of fits
based on tree-level effective Lagrangian models. Because the
parameters associated with the s-, u-, and t-channel resonances
are obtained independently of one another, the fits are not
explicitly unitary. Moreover, the fits do not take account
of possible coupling with other outgoing channels, such as
the K0�+ channel. Finally, because the success of the fit
depends on the delicate balancing of a fairly large number of
parameters, it cannot be reliably used outside the fitted energy
range.

Besides photoproduction data, there exist data for the
electroproduction of �0’s from the proton [30]. The fits
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described in this work could be extended to electroproduction
through the inclusion of electromagnetic form factors. Work
in this direction is currently in progress. There also exist data

for the electroproduction of �0’s from the deuteron and 3He
[31]; the consideration of these reactions represents another
direction in which the present work could be extended.
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