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We study the effects of the strange axial form factor and axial mass on both neutral- and charged-current
reactions in the quasielastic region within the framework of a relativistic single-particle model. For this purpose,
we calculate the differential cross section, the separated cross sections associated with the longitudinal and
transverse response functions, the asymmetry for the neutral-current reaction, and the various ratios of the
neutral- to charged-current reactions. The calculations are performed for a 12C target at specific incident neutrino
(antineutrino) energies of 0.5 and 1.5 GeV, or with the flux-averaged incident energies of the MiniBooNE
experiment. Then, we discuss the dependence of the cross sections, asymmetry, and ratios on the axial mass and
strange axial form factor. Finally, we compare our calculations with the MiniBooNE experimental data.
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I. INTRODUCTION

With the recent development of neutrino-beam facilities,
interest in neutrino-nucleus (ν − A) scattering has increased.
This scattering was widely applied in various fields of physics,
such as astrophysics, cosmology, particle physics, and nuclear
physics. In nuclear physics, ν − A scattering is one of the
powerful tools used to study aspects of the weak interaction,
such as strangeness and the axial form factor (GA) of
nucleon [1].

For example, the uncertainty regarding the strangeness
content was studied using the Paschos-Wolfenstein relation
[2] for a nucleon and target nuclei, and the strangeness
contribution to GA was determined within an uncertainty
of 0.015. However, this value is heavily dependent on the
strangeness magnetic moment and the isospin of the target
nucleus [3]. Alberico et al. [4] have calculated the (ν − A)
scattering within two relativistic independent-particle models
(the Fermi gas and shell models), and found that the final
state interaction (FSI) significantly affects the ratio of the
neutral-current (NC) to charged-current (CC) reactions at an
incident neutrino energy of Eν � 200 MeV.

On the other hand, in our previous works [5], we studied
the effect of the density-dependent weak form factor generated
from the quark meson coupling (QMC) model for (ν − A)
scattering. Hence, it was found that the density effect reduces
the cross section for both incident neutrinos and antineutrinos,
with the effect on GA being the largest, while that on the Dirac
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form factor (F1) is very small. In addition, we investigated
the effect of the FSI, and found that the FSI description may
play an important role in estimation of the cross sections.
Furthermore, the FSI effect on each response cross section
may differ from those on the differential cross sections [6].

The MiniBooNE Collaboration has recently reported four
kinds of high statistical flux-averaged differential cross-section
data, i.e., for muon neutrino CC [7], neutrino NC [8], muon
antineutrino CC [9], and antineutrino NC [10] scattering from
CH2 as a function of the four-momentum transfer square,
Q2 = −qμqμ. In particular, new values for the axial mass
(MA) and strange axial form factor (gs

A) from the NC reaction
[8] were extracted at Q2 = 0, with MA = 1.39 ± 0.11 GeV
and gs

A = 0.08 ± 0.26. In particular, this MA value deviates
significantly from the previous standard value. However,
intensive discussion continues as to whether such deviations
stem from nuclear structure effects or the uncertainty inherent
in MA itself. The induced pseudoscalar coupling constant of
the axial current deduced from the radiative muon capture
[11] is a similar problem wherein it exhibits a deviation of
approximately 25% from the standard value [12].

As the effects of the nuclear structure on the target were
not fully determined in the MiniBooNE experiments, a large
number of theoretical studies [13–17] have been devoted to
this problem. For example, the authors of Ref. [13] calculated
inclusive CC ν − A scattering including two-nucleon
processes and π production, and they compared their results
with the MiniBooNE data by scaling MA = 1.03 GeV
to MA = 1.35 GeV. However, their results were found to
yield overestimated values compared to the experimental
data. Another study [14] has investigated the cross-section
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dependence on MA by changing this value from its world
average value to 1.23 GeV, or even by applying an overall
factor (=1.2) to a spectral function. The obtained theoretical
result describes the MiniBooNE data within a relativistic
Fermi gas model. In Refs. [15–17], the cross-section
dependence on gs

A as well as MA was studied and compared
with the MiniBooNE data. Using the LEA code [18], the
authors of Ref. [15] extracted MA = 1.28 ± 0.05 GeV
and gs

A = −0.11 ± 0.36. Furthermore, Meucci et al. [16]
performed NC ν − A scattering calculations using a relativistic
Green’s function and obtained reasonable agreement with
the MiniBooNE data, without increasing the standard value
of MA. However, the sensitivity to gs

A was shown to be
somewhat small, therefore gs

A could be changed from 0.34 to
−0.18 without degrading the agreement with the experimental
data.

In Ref. [17], the fitted values of MA and gs
A were estimated

by calculating the (νp → νp)/(νN → νN ) ratio and compar-
ing the MiniBooNE data with two nuclear models, namely,
the super-scaling approximation (SUSA) and relativistic mean
field (RMF) models. The values extracted from the RMF and
SUSA models were (MA,gs

A) = (1.34 ± 0.06 GeV,0.04 ±
0.28) and (1.42 ± 0.06 GeV,−0.06 ± 0.31), respectively. In
our previous paper [19], we studied the influence of gs

A.
Although the effect of gs

A on the cross section is very
small, it can be distinguished from the other contributing
factors by calculating the difference and summation of the
asymmetries between the NC and CC reactions. However,
the majority of theoretical analyses have focused on only
one of the four available scattering data sets. In our previous
paper [20], we suggested the combination of some physical
observables with the accumulated scattering data. For ex-
ample, NC-to-CC ratios (or neutrino to antineutrino cross
sections) and their asymmetries can provide valuable oppor-
tunities to study the strangeness content of nucleons and/or
nuclei.

In this work, we investigate the sensitivity of such observ-
ables as well as the cross sections to MA and gs

A in inclusive
NC and CC ν(ν̄) − A scattering from a 12C target. To calculate
these reactions, we use a relativistic single-particle model that
requires bound-state and continuum-nucleon wave functions
and a transition current operator. The bound-nucleon wave
functions are solutions to the Dirac equation in the presence of
the strong scalar and vector potentials of the σ − ω model [21].
The wave functions of the knocked-out nucleons are generated
by the same bound-nucleon potential, called the RMF. This
RMF model guarantees the current conservation and gauge
invariance. This model provides a very good description
of (e,e′) Bates experimental data with good treatment of
Coulomb distortion for the incoming and outgoing electrons
[22]. In particular, to include the Coulomb distortion of the
outgoing leptons, we use the same method as in our previous
work [23].

The outline of this paper is as follows: In Sec. II, we
briefly present the formalism for the NC and CC reactions; in
Sec. III, our numerical results for the cross sections, separated
cross sections, ratios, and asymmetry of the corresponding
cross sections are presented; and in Sec. IV, the summary and
conclusion are given.

II. FORMALISM

To model the ν(ν̄) − A scattering mathematically, we
choose the nucleus rest frame where the target nucleus is
positioned at the origin of the coordinate system. The four-
momenta of the incoming and outgoing neutrinos (antineu-
trinos) are labeled p

μ
i = (Ei,pi) and p

μ
f = (Ef ,pf ). p

μ
A =

(EA,pA), p
μ
A−1 = (EA−1,pA−1), and pμ = (EN,p) represent

the four-momenta of the target nucleus, the residual nucleus,
and the knocked-out nucleon, respectively. In the laboratory
frame, the inclusive cross section for the NC and CC reactions
is given by the contraction between the lepton and hadron
tensor,

dσ

dTN

= 4π2 MNMA−1

(2π )3MA

∫
sin θldθl

∫
sin θNdθNpf −1

rec σ
Z, W±
M

× [vLRL + vT RT + hv′
T R′

T ], (1)

where θl denotes the scattering angle of the lepton, θN

is the polar angle of the knocked-out nucleons, and h =
−1 (h = +1) corresponds to the helicity of the incident ν (ν̄).
The RL,RT , and R

′
T terms are the longitudinal, transverse,

transverse-interference response functions, respectively. The
squared four-momentum transfer is given by Q2 = q2 − ω2 =
−q2

μ. For the NC reaction, the kinematic factor (σZ
M ) is defined

by

σZ
M =

(
GF cos(θl/2)Ef M2

Z√
2π

(
Q2 + M2

Z

)
)2

, (2)

and for the CC reaction,

σW±
M =

√
1 − M2

l

E2
f

(
GF cos(θC)Ef M2

W

2π
(
Q2 + M2

W

)
)2

, (3)

where MZ and MW are the rest masses of the Z and W
bosons, respectively. θC represents the Cabibbo angle given
by cos2 θC � 0.9749. The recoil factor (frec) is expressed as

frec = EA−1

MA

∣∣∣∣1 + Ep

EA−1

[
1 − q · p

p2

]∣∣∣∣. (4)

For both NC and CC reactions, explicit expressions for the
kinematical coefficients vL,vT , and v′

T and the corresponding
response functions RL,RT , and R′

T in Eq. (1) can be found in
Ref. [19].

The weak current (Jμ) represents the Fourier transform of
the nucleon current density, which is expressed as

Jμ =
∫

ψ̄pĴμψbe
iq·rd3r, (5)

where Ĵμ is a free weak nucleon current operator and ψp and
ψb are wave functions of the knocked-out and bound-state
nucleons, respectively. For a free nucleon, the current operator
comprises the weak vector and the axial vector form factors,

Ĵμ = FV
1 (Q2)γ μ + FV

2 (Q2)
i

2MN

σμνqν + GA(Q2)γ μγ 5

+ 1

2MN

GP (Q2)qμγ 5, (6)
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where MN denotes the nucleon mass. By the conservation of
the vector current (CVC) hypothesis, the vector form factors
for the proton (neutron) [FV,p(n)

i (Q2)] are expressed as

F
V,p(n)
i (Q2) =

(
1

2
− 2 sin2 θW

)
F

p(n)
i (Q2) − 1

2
F

n(p)
i (Q2)

− 1

2
F s

i (Q2), for the NC,

FV
i (Q2) = F

p
i (Q2) − Fn

i (Q2), for the CC, (7)

where θW is the Weinberg angle given by sin2 θW = 0.2224.
The strange vector form factor [F s

i (Q2)] in Eq. (7) is usually
given in dipole form, independently of the nucleon isospin,
such that

F s
1 (Q2) = F s

1 (0)Q2

(1 + τ )
(
1 + Q2/M2

V

)2 ,

F s
2 (Q2) = F s

2 (0)

(1 + τ )
(
1 + Q2/M2

V

)2 , (8)

where τ = Q2/(4M2
N ) and MV = 0.843 GeV is the cut-

off mass parameter usually adopted for nucleon elec-
tromagnetic form factors. F s

1 (0) is defined as F s
1 (0) =

dGs
E(Q2)/dQ2|Q2=0 = 0.53 GeV−2 and F s

2 (0) = μs = −0.4
is an anomalous strange magnetic moment.

The axial form factors are given by

GA(Q2) = 1

2

( ∓ gA + gs
A

)
/
(
1 + Q2/M2

A

)2
, (9)

where gA = 1.262. As we have stated in the introduction, the
main purpose of this work is to investigate the cross-section
sensitivity to these parameters. The −(+) signs are from the
isospin dependence, and correspond to the knocked-out proton
(neutron).

The induced pseudoscalar form factor is parametrized by
the Goldberger-Treimann relation,

GP (Q2) = 2MN

Q2 + m2
π

GA(Q2), (10)

where mπ is the pion mass. However, note that the contribution
of the pseudoscalar form factor vanishes for the NC reaction,
because of the negligible final lepton mass participating in this
reaction.

III. RESULTS

Within the framework of a relativistic single-particle model,
we investigate the effects of MA and gs

A on the weak
current. The bound-nucleon wave functions are solutions to
the Dirac equation in the presence of the strong scalar and
vector potentials of the σ − ω model [21]. For the FSI, the
wave functions of the knocked-out nucleons are obtained
by solving a Dirac equation with the same potential as the
bound nucleons, which is referred to as the RMF. For the
CC reaction, the Coulomb distortion of the outgoing leptons
is an important component. Hence, we use the approximate
distorted-wave Born approximation (DWBA) generated by the
Ohio University group [22].
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FIG. 1. (Color online) Differential cross sections of NC ν − A

scattering in terms of knocked-out nucleon kinetic energy for 0.5-
(left panel) and 1.5-GeV (right panel) incident neutrino energies from
12C. The solid (red) curves are the results for MA = 1.032 GeV and
gs

A = −0.19, the dashed (black) curves are for MA = 1.032 GeV
and gs

A = 0.08, the dotted (blue) curves are for MA = 1.39 GeV
and gs

A = −0.19, and the dash-dot-dotted (sky-blue) curves are for
MA = 1.39 GeV and gs

A = 0.08. (a) and (b) Sums of proton and
neutron knockouts. (c) and (d) Cross sections for proton knockout.
(e) and (f) Cross sections for neutron knockout.

A. Cross section

As shown in Fig. 1, to determine the dependence of
MA and gs

A on the neutrino-scattering cross sections, we
present the differential cross sections for the NC reac-
tion of the 12C nucleus in terms of the kinetic ener-
gies of the knocked-out nucleons for four different condi-
tions: (MA,gs

A) = (1.032,−0.19),(1.032,0.08),(1.39,−0.19),
and (1.39,0.08). Cross sections with incident neutrino energy
of E = 0.5 and 1.5 GeV are shown in the left and right panels,
respectively. In each figure, the solid (red) curves are the results
for MA = 1.032 GeV and gs

A = −0.19, the dashed (black)
curves are for MA = 1.032 GeV and gs

A = 0.08, the dotted
(blue) curves are for MA = 1.39 GeV and gs

A = −0.19, and
the dash-dot-dotted (sky-blue) curves are for MA = 1.39 GeV
and gs

A = 0.08. Figures 1(a) and 1(b) show the sums of the
proton and neutron knockouts. Figures 1(c) and 1(d) show
proton knockout results, while Figs. 1(e) and 1(f) show the
neutron knockout data.

The gs
A contribution has a different effect on the proton and

neutron knockouts. Changing gs
A from −0.19 to 0.08 reduces

the cross section for the former but increases that of the latter.
As a result, the gs

A contribution to the sum of the cross sections
is very small, as can be seen in Figs. 1(a) and 1(b). On the
other hand, the contribution of MA is somewhat noticeable in
both cases. A larger value of MA increases both cross sections,
but the sensitivity of the proton knockouts is slightly higher.

Figure 2 shows that the incident antineutrino cross sections
and kinematics are the same as in Fig. 1. The shapes are
similar to those of Fig. 1, but the cross-section magnitudes
are smaller than those for the neutrino case. We also obtain
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FIG. 2. (Color online) Identical to Fig. 1, but for antineutrinos.

similar cross-section sensitivity to gs
A and MA to that of the

neutrino scattering case. Therefore, the cross sections of both
the 12C(ν,ν

′
) and 12C(ν̄,ν̄

′
) reactions are almost independent

of gs
A, because the effects are canceled out by the neutrons and

protons. However, these cross sections depend on MA.
The energy of the incoming neutrinos is not fixed in actual

neutrino experiments. Instead, the incoming neutrinos have
an energy spectrum and the associated cross sections must
be averaged over the flux. To confirm that MA and gs

A play
the same roles in actual experiments, we also calculate the
flux-averaged differential cross section using the neutrino
spectrum for MiniBooNE experiments. In Fig. 3, we show
the flux-averaged differential cross sections per nucleon for
the NC reaction in terms of Q2. The left and right panels
show the neutrino and antineutrino results, respectively. The
neutrino and antineutrino experimental data were measured at
MiniBooNE (Refs. [8] and [10], respectively). Qualitatively,
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FIG. 3. (Color online) Flux-averaged differential cross sections
(〈dσ/dQ2〉) per nucleon for νN → νN and ν̄N → ν̄N . The curves
are defined as in Fig. 1. The neutrino and antineutrino experimental
data were measured at MiniBooNE (Refs. [8] and [10], respectively).
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FIG. 4. (Color online) Flux-averaged differential cross sections
for CC reaction. The solid curves are the results of MA = 1.032 GeV
and the dashed lines are for MA = 1.39 MeV. The dotted (blue)
curves are the results without Coulomb distortion of the final lepton
with MA = 1.032 GeV. The neutrino and antineutrino experimental
data were measured at MiniBooNE (Refs. [7] and [9], respectively).

we obtain similar sensitivity to gs
A and MA as that seen in

Figs. 1 and 2.
In Fig. 4, the flux-averaged differential cross sections

per nucleon for the CC reaction are presented in terms of
Q2. The neutrino and antineutrino experimental data were
measured at MiniBooNE (Refs. [7] and [9], respectively). In
the case of the CC reaction, as this is an isovector interaction,
the isoscalar-type interaction represented by gs

A does not
contribute to the cross section. Thus, from the CC reaction,
we can examine the cross section as we vary MA only,
from MA = 1.032 to 1.39 GeV. The cross section increases
by approximately 15% with larger values of MA, as before.
For both incident neutrinos [ 12C(νμ,μ−)] and antineutrinos
[ 12C(ν̄μ,μ+)], our theoretical results (solid lines) are lower
than the data, by approximately 35% in the vicinity of the
peak. This disagreement was also observed in the total cross
sections and double differential cross sections of CC scattering
[5]. In Fig. 4, the dotted (blue) curves are the results obtained
without considering the Coulomb distortion of the final lepton
for MA = 1.032 GeV. The Coulomb distortion increases
(decreases) the flux-averaged differential cross sections for the
neutrino (antineutrino) case. However, the changed amounts
in both cross sections are so small as to be negligible, as the
12C target is a light nucleus and the projectile particles have
no charge, contrary to the case of electron scattering. These
results are identical to those of our previous work [23].

B. Response cross sections

To investigate the cross-section dependence on MA and gs
A

in more detail, we study the response cross sections, which are
defined as the cross sections connected to RL,RT , and R

′
T , as

shown in Eq. (1). In Fig. 5, we show the flux-averaged cross
sections of each response function, which integrate over the
scattering angle and the polar angle of the knocked-out nucleon
in Eq. (1) as a function of Q2. The left and right panels show the
proton and neutron results, respectively. The curves are defined
as in Fig. 1. In the proton case, the longitudinal cross section
is most sensitive to gs

A. Here, gs
A reduces all the response cross

sections, but MA increases them. Note that the sensitivity to
MA is similar for all the response cross sections. In the neutron
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FIG. 5. (Color online) Response cross sections for NC flux-
averaged differential cross sections.

case, the longitudinal cross section is almost insensitive to
both MA and gs

A, but the other response functions increase in
accordance with increasing MA and gs

A. The response cross
sections have similar shapes, and the main contribution to the
differential cross section is from the transverse response cross
section. However, similar to the differential cross sections in
Sec. III A, summation over the protons and neutrons for each
response term does not yield any discernible gs

A dependence.
In Fig. 6, the response cross sections for the CC reactions

are shown. MA increases the response cross sections, but the
sensitivity of the longitudinal response to MA is very small.
All three response cross sections have the same shape, and the
magnitudes in the neutrino case are larger than those in the
antineutrino case. The magnitude of the transverse response
cross section is dominant, as in Fig. 5.

C. Asymmetry and ratios

In this subsection, we study the asymmetry of the NC
reaction and the various ratios of the NC-to-CC reactions.

0.0
0.5
1.0
1.5
2.0
2.5

<
σ L

>
 [

cm
2 /G

eV
2 ]

X10-39(a)

(ν, μ- p)

0.0

2.0

4.0

6.0

8.0

<
σ T

>
[c

m
2 /G

eV
2 ]

(ν, μ- p)
X10-39(b)

0.0

2.0

4.0

6.0

0 0.5 1.0 1.5 2.0

<
σ T

T>
[c

m
2 /G

eV
2 ]

Q2[ (GeV/c)2]

(ν, μ- p)
X10-39(c)

0.0

0.5

1.0

1.5

2.0

2.5

X10-39(d)

(ν-, μ+ n)

0.0

2.0

4.0

6.0

8.0

(ν-, μ+ n)

X10-39(e)

0.0

1.0

2.0

3.0

4.0

0 0.5 1.0 1.5 2.0

Q2[ (GeV/c)2]

(ν-, μ+ n)

X10-39(f)

FIG. 6. (Color online) Identical to Fig. 5, but for CC reaction.
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FIG. 7. (Color online) Asymmetry of flux-averaged differential
cross sections for NC reaction. The data were measured at Mini-
BooNE [8,10]. The curves are defined as in Fig. 1.

First, the asymmetry is defined as

ANC = σ (ν) − σ (ν̄)

σ (ν) + σ (ν̄)
, (11)

where σ (ν) and σ (ν̄) denote the neutrino and antineutrino
differential cross sections in Eq. (1), respectively. In particular,
ANC is sensitive to the axial current, because the nominator
contains only the axial current term and the nuclear structure
effects may be canceled out [20].

Figure 7 shows the asymmetry of the flux-averaged dif-
ferential cross sections for the NC reaction. The data were
measured at MiniBooNE [8,10] and the curves are defined
as in Fig. 1. The sensitivity of the asymmetry to gs

A and MA

differs for the various flux-averaged differential cross sections.
For the protons, gs

A and MA enhance and reduce the asymmetry,
respectively. However, in the neutron case, both gs

A and MA

reduce the asymmetry. This means that the present asymmetry
result favors larger gs

A and lower MA. However, it should be
noted that our theoretical asymmetry does not provide a good
description of the MiniBooNE data in low-Q2 regions, because
our incident neutrino cross section underestimates the data by
approximately 20%. A more detailed nuclear model and more
thorough descriptions of neutrino scattering are necessary to
yield a final conclusion on the gs

A dependence.
We introduce various NC-to-CC reaction ratios:

RNC/CC = σNC(ν,ν ′ p)

σCC(ν̄,μ+ n)
, (a)

or = σNC(ν,ν ′ n)

σCC(ν,μ− p)
, (b)

or = σNC(ν,ν ′ p)

σCC(ν,μ− p)
, (c)

or = σNC(ν,ν ′ n)

σCC(ν̄,μ+ n)
. (d) (12)

These ratios are focused on the incident neutrinos of the NC
reaction and can be used to study the effect of MA, because
the CC reaction does not contain gs

A.
In Fig. 8, we show the NC-to-CC reaction ratios using

the flux-averaged differential cross sections. The solid (red)
and dashed (black) lines are the results for MA = 1.032
and 1.39 GeV, respectively. Note that we use gs

A = −0.19.
Figures 8(a)–8(d) correspond to Eqs. (12a)–(12d), respec-
tively. The sensitivity to MA increases with higher Q2. At
the ratio given in Eq. (12b), the MA dependence is very
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FIG. 8. (Color online) NC-to-CC reaction ratios for neutrinos in
the NC reaction. The solid (red) and dashed (black) lines are the
results for MA = 1.032 and 1.39 GeV, respectively.

small, where the target nucleons for both the numerator and
denominator are neutrons. The finding that the NC-to-CC ratio
in the neutron case is insensitive to the MA value is slightly
surprising.

As an alternative approach, we introduce other NC-to-CC
reaction ratios:

R̄NC/CC = σNC(ν̄,ν̄ ′ p)

σCC(ν̄,μ+ n)
, (a)

or = σNC(ν̄,ν̄ ′ n)

σCC(ν,μ− p)
, (b)

or = σNC(ν̄,ν̄ ′ p)

σCC(ν,μ− p)
, (c)

or = σNC(ν̄,ν̄ ′ n)

σCC(ν̄,μ+ n)
. (d) (13)

Note that Eq. (13) focuses on the incident antineutrinos of the
NC reaction.

Figure 9 shows the ratios given in Eq. (13) for the
antineutrinos of the NC reaction. The curves are defined as
in Fig. 8. The effect of MA on the knocked-out protons in
the NC reaction is much larger than that for the knocked-out
neutrons. As in Fig. 8, the MA dependence for Eq. (13b) is very
small, where the target nucleons for both the numerator and
denominator are neutrons. The effect increases with higher Q2.

To compare these ratios to available experimental data, we
calculate other inclusive NC-to-CC reaction ratios, as shown
in Fig. 10. The cross sections used here are the results given
in Figs. 3 and 4. The left and right panels show the results for
incident neutrinos and antineutrinos, respectively, in both the
numerator and denominator. The solid curves represent the
ratios for MA = 1.032 GeV, the dashed lines are for MA =
1.39 GeV, and the data were measured at MiniBooNE [8,10].
For both the neutrino and antineutrino cases, our results behave
similarly to the experimental data. However, our values are
overestimated compared to the data. Thus, the effect of MA on
the antineutrinos appears to be larger.
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FIG. 9. (Color online) NC-to-CC reaction ratios for antineutrinos
in the NC reaction. The solid (red) and dashed (black) lines are the
results for MA = 1.032 and 1.39 GeV, respectively.

IV. SUMMARY

In this paper, we investigated the effects of the strange
axial form factor (gs

A) and the axial mass (MA) on the NC
and CC reactions from a 12C nucleus within the framework
of a relativistic single-particle model. Our theoretical results
were compared with the MiniBooNE experimental data. It
was shown that our results describe the NC experimental
data relatively well, but they underestimate the CC data by
approximately 35%.

To investigate these effects, we calculated the differen-
tial cross section, flux-averaged cross section, flux-averaged
response cross sections, asymmetry, and various ratios. For
both protons and neutrons, MA increases the cross sections
but reduces the asymmetry. For protons [(ν,ν

′
p) scattering],

gs
A reduces the cross sections but increases the asymmetry;

however, the opposite occurs for neutrons [(ν,ν
′
n) scattering].

Hence, as regards the net results of the inclusive (ν,ν
′
)

scattering, the effect of gs
A on the cross sections is minimally

discernible. However, gs
A does increase the asymmetry. It is

also interesting that the neutrino scattering asymmetry favors
MA ∼ 1.03 GeV. For the NC-to-CC reaction ratios, it is

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1.0 1.5 2.0

σ N
C(

ν,
 ν

’)
 / 

σ C
C(

ν μ
, μ

- )

Q2 [(GeV/c)2]

0

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0 1.5 2.0

σ N
C(

ν- , ν- ’)
 / 

σ C
C(

ν- μ,
 μ

+
)

Q2 [(GeV/c)2]

 

 

FIG. 10. (Color online) NC-to-CC reaction ratios for neutrinos
and antineutrinos. The solid (red) and dashed (black) lines are the
results for MA = 1.032 and 1.39 GeV, respectively.
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possible to study the influence of MA on the knocked-out
protons of the NC reactions distinctly.

In conclusion, the results obtained by varying MA and
examining the effects describe the MiniBooNE data for the
NC reactions, but do not explain the CC-reaction MiniBooNE
data at all. Further, the Coulomb distortions of outgoing leptons
in the CC reactions were found to be less than a few % of
the corresponding cross sections. Thus, various improvements
to our current nuclear model are necessary to reproduce the

MiniBooNE data. New analysis of the CC MiniBooNE data is
also required.
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