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A quantum reaction approach to low-energy collisions of weakly bound few-body nuclei, based on the
time-dependent wave-packet method, is presented in detail. In contrast to existing models that use this perspective,
the approach separates the complete and incomplete fusion from the total fusion. Calculations performed within
a one-dimensional model with two degrees of freedom for 6Li + 209Bi at energies around the Coulomb barrier
demonstrate that converged reliable excitation functions for total, incomplete, and complete fusion can be obtained
with this type of approach.
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I. INTRODUCTION

Nowadays many facilities are being built around the
world to perform measurements using beams of exotic nuclei
[often called radioactive ion beams (RIBs)]. Performing good
measurements is laborious for various reasons, as the RIB
needs to satisfy some basic properties: It is desirable for it to
be intense, pure, and able to cover a wide range of incident
energies. This means that the production of such a beam has
to be fast, selective, efficient, and with a high production rate.
Details about the techniques used to produce RIBs can be
found in Ref. [1]. Because producing a good quality RIB is
extremely challenging, a theory able to describe the dynamics
of these exotic nuclei could be helpful for better planning and
interpretation of measurements.

Investigating the reaction dynamics of low-energy colli-
sions involving a halo projectile nucleus is a challenging
task, from the theoretical point of view as well as from the
experimental one [2,3]. A halo nucleus is typically weakly
bound with a few-body cluster structure and its key feature is
that it can be easily separated into its constituents. Because
of the possibility of the projectile nucleus breaking up, at
a given incident energy several reaction paths (or channels)
are available simultaneously, as shown in Fig. 1. These can
be grouped in two main categories: events where none of
the projectile fragments are captured by the target, called
no-capture break-up (NCBU), and events associated with
the fusion process. Among these, we can further distinguish
between the case where just part of the fragments are captured,
incomplete fusion (ICF), and the case where the projectile is
fully captured, complete fusion (CF). It can be observed in
Fig. 1 that two different processes contribute to the complete
fusion event: one where the projectile breaks up and all the
fragments are captured, and one where the projectile fuses with
the target without a preceding breakup. One of the key points is
to understand how the projectile’s breakup, and thus its internal
structure, are related with the different fusion processes. The
difficulty lies in setting up a quantum theory able to describe
and quantify (calculating observables) each process at the
same time and independently one from the other. Among
other reasons, theorists are interested in studying this kind of

problem because low-energy nuclear reactions involving halo
nuclei occur during the nucleosynthesis of heavy elements
(heavier than 56Fe) in the rapid neutron-capture process.

During the past years a lot of work has been done and several
models of different nature (classical, quantum mechanical,
and also semiclassical) have been proposed. The continuum
discretized coupled channels (CDCC) method [4] is one of
those which provides good results concerning certain observ-
ables such as the total fusion (TF) (i.e., the sum of ICF and
CF), the elastic, and NCBU cross sections. But it has a strong
limitation as it cannot calculate the integrated ICF and CF cross
sections unambiguously. A classical model [5–7] overcomes
some problems but, not being a quantum mechanical model, it
does not include the quantum tunneling probability.

The aim of this article is to describe in detail a new
type of approach [8] which tries to offer a solution to the
limitations of the other previous models mentioned above.
In Sec. II, the theoretical concepts and associated formulas
on which the method is based are presented within a simple
model. Section III shows numerical results concerning the
convergence of fusion excitation functions within the present
approach. Because the model is schematic, the physical
interpretation of its results is only qualitative. A summary
is given in Sec. IV.

II. METHODOLOGY

The present three-body model addresses the reaction
problem from a time-dependent perspective, allowing one to
follow the time evolution of the reaction processes. It makes it
possible to construct a picture of what is happening at any
desired moment, facilitating the understanding of how the
reaction observables emerge during the nuclear collision. This
perspective was already employed in the past, e.g., see Ref. [9].
The method consists of three main steps:

(i) to compute the three-body wave function, �(t = 0),
describing the system at the initial time;

(ii) to propagate �(0) → �(t), where the propaga-
tion is governed by the time evolution operator,
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FIG. 1. (Color online) Some key reaction processes induced by a
weakly bound two-body nucleus at low incident energies.

exp(−iĤt/�), with Ĥ being the total Hamiltonian of
the system;

(iii) after a long propagation time tf , to calculate energy-
resolved observables using the wave function �(tf ).

A simple model with two degrees of freedom

As a test case, we will study the 6Li + 209Bi fusion within
a one-dimensional model with two degrees of freedom, where
the 209Bi target and the 6Li fragments ( 4He and 2H) are always
on a line. Figure 2 shows the coordinate system employed in
the model (Jacobi coordinates for a system of three bodies),
with the projectile considered is composed of two bodies (or
fragments). Xc.m. identifies the distance between the target and
the center of mass (c.m.) of the projectile, while ξ gives the
distance between the projectile constituents. M is the mass
of the target nucleus, while m1 and m2 are the masses of the
projectile constituents. The Hamiltonian of the system in terms

FIG. 2. (Color online) Illustration of the one-dimensional three-
body model and its coordinates.

TABLE I. Parameters of the Woods-Saxon nuclear potential,
which are used for different binary systems in the present calculations,
as well as the radius parameter of the uniformly charged sphere for
their Coulomb interactions (last column).

System V0 (MeV) r0 (fm) a0 (fm) r0c (fm)

209Bi − 6Li −50.000 0.950 1.050 1.2
209Bi − 4He −32.931 1.461 0.605 1.2
209Bi − 2H −26.000 1.465 0.668 1.2
4He + 2H −78.460 1.150 0.700 1.465

of these coordinates reads

Ĥ = P̂ 2
Xc.m.

2μTP
+ p̂2

ξ

2μ12
+ U12(ξ ) + VT 1(Xc.m. − α ξ )

+VT 2(Xc.m. + β ξ ), (1)

where μTP = M(m1 + m2)/(M + m1 + m2), μ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2

describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

�(ξ,Xc.m.,t = 0) = �0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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FIG. 3. (Color online) (a) The density of probability of the 6Li
ground-state wave function, and (b) the initial map of probability
which includes the initial wave packet describing the 209Bi − 6Li
relative motion.

with H̃ being the part of the Hamiltonian in Eq. (1) which
contains the dependency only on ξ , and keeping the eigen-
function associated with the physically motivated smallest
eigenvalue. Concerning �0(Xc.m.), it is chosen to be a Gaussian
wave packet centered in X0, with spatial width σ and average
wave-number K0:

�0(Xc.m.) = 1

π1/4
√

σ
e
− (Xc.m.−X0)2

2σ2 e−iK0(Xc.m.−X0). (4)

Figure 3(a) shows the probability density of the ground-
state wave function of a pseudo- 6Li projectile (= 4He + 2H).
This wave function is calculated using a nuclear Woods-Saxon
potential between the α particle and the deuteron, shown in
Table I, which provides a 1s state with a separation energy
of −1.47 MeV. It is assumed that the strongly bound 0s
state (−32.96 MeV) is occupied by the 4He nucleons. As
an example, Fig. 3(b) shows a map of probability associated
with Eq. (2), where X0 = 50 fm and σ = 10 fm. Please note
that the Xc.m. and ξ coordinates are strongly coupled when
the 6Li and 209Bi nuclei come together, so a product state like
Eq. (2) is only justified asymptotically.

2. Time propagation

The formal solution of the time-dependent Schrödinger
equation at time t + 
t reads

�(t + 
t) = exp

(
−i

Ĥ
t

�

)
�(t). (5)

The time evolution operator is represented as a convergent
series of polynomials Qn (see Ref. [12]):

exp

(
−i

Ĥ
t

�

)
≈

∑
n

an Qn(Ĥnorm). (6)

In Eq. (6), the time-independent Hamiltonian is renormal-
ized so that its spectral range is within the interval [−1,1],
which is the domain of the polynomials, by defining

Ĥnorm = (H̄ 1̂ − Ĥ)


H
, (7)

where H̄ = (λmax + λmin)/2, 
H = (λmax − λmin)/2, λmax,
and λmin are, respectively, the largest and smallest eigenvalues
in the spectrum of Ĥ supported by the numerical grid, and
1̂ denotes the identity operator. The expansion coefficients in
Eq. (6) read

an = in(2 − δn0) exp

(
−i

H̄ 
t

�

)
Jn

(

H 
t

�

)
, (8)

where Jn are Bessel functions of the first kind. Because
Jn(x) exponentially goes to zero with increasing n for n > x,
the expansion in Eq. (6) converges exponentially for n >

H
t/�.

This representation of the time evolution operator requires
the computation of the action of Qn(Ĥnorm) on the wave
function �(t). The Qn polynomials obey the recurrence
relations [12]:

e−γ̂ Qn−1(Ĥnorm) + eγ̂ Qn+1(Ĥnorm)

− 2ĤnormQn(Ĥnorm) = 0, (9)

with the initial conditions Q0(Ĥnorm) = 1̂ and Q1(Ĥnorm) =
e−γ̂ Ĥnorm. Here, γ̂ is an operator, function of (ξ,Xc.m.), related
to the optical potential Ŵ (ξ,Xc.m.). As explained above, to
simulate the irreversibility of the fusion process, two imaginary
potentials ŴT 1(x1) and ŴT 2(x2) are added to the Hamiltonian.
Following Ref. [12], these are given by

ŴTj = 
H [cos δ (1 − cosh γ̂j ) − i sin δ sinh γ̂j ], (10)

where δ = arcos (E−H̄

H

), E denotes the incident energy, and
j = 1,2 identifies the projectile fragment. Because the time-
dependent Schrödinger equation is represented in terms of
the Jacobi coordinates, the absorbing potential also needs to
be represented in those coordinates. The relationship between
the total absorbing potential as a function of the coordinates
(x1,x2) and that in terms of (ξ,Xc.m.) reads

ŴT 1(x1) + ŴT 2(x2) = Ŵ (ξ,Xc.m.). (11)

From Eqs. (10) and (11) it follows that

γ̂ = tanh−1

[
sinh(γ̂1) + sinh(γ̂2)

cosh(γ̂1) + cosh(γ̂2) − 1

]
, (12)

where the operators γ̂1(x1) and γ̂2(x2) result from Eq. (10),
thus γ̂ = γ̂ (ξ,Xc.m.).

The quantity e−γ̂ (ξ,Xc.m.) in Eq. (9) acts like a damping factor
for the wave function: In case of no absorption (Ŵj = 0 implies
γ̂j = 0), the factor e−γ̂ (ξ,Xc.m.) = 1 and the Qn polynomials
in Eq. (9) are the Chebyshev polynomials. The expansion in
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FIG. 4. (Color online) Maps of probability of the time-dependent
total wave function, when the main body of the wave packet
in Fig. 3(b) is near the interaction region. The white region is
innaccessible with the model, as all the coordinates in Fig. 2 are
positive.

Eq. (6) corresponds to the standard Chebyshev propagator [13]
and the wave function preserves its norm. On the other
side, when the absorption is present, the quantity e−γ̂ (ξ,Xc.m.)

becomes smaller (tends to zero), the wave function is damped,
and its norm is no longer preserved. This mechanism simulates
the fusion process when flux is removed from the entrance
channel. In this work, 
t = 10−22 s, and in absence of
the imaginary potentials the norm of the wave function
is preserved with an accuracy of ∼10−14. Chapter 11 in
Ref. [14] provides a survey of techniques for solving the
time-dependent Schrödinger equation, which are distinguished
by the numerical implementation of the time evolution operator
in Eq. (5).

As an example, Fig. 4 shows maps of probability associated
with the time-propagating total wave function, at two times,
when the main body of the wave-packet in Fig. 3(b) is close
to the interaction region. The moving region of maximal
probability includes the contribution of the different wave-
function components which are not fully absorbed by the two
imaginary potentials, such as the scattering and the ICF parts of
the total wave function; all the contributions are being summed
up over a range of incident energies around the average energy
of the initial wave packet.

3. Energy-resolved fusion cross sections

In the present work, we concentrate on the TF, ICF, and CF
cross sections: σTF, σICF and σCF. A limitation of most fusion
models of weakly bound nuclei is the lack of an unambiguous
calculation of σICF and σCF [8].

The key idea to overcome this issue is to examine the
location of each fragment with respect to the position of
the individual Coulomb barriers, irrespective of the internal
excitation of the 6Li projectile: If a fragment is located inside
the radius of its Coulomb barrier it is considered captured by
the target. Otherwise, it is not captured. We identify a CF event
when both fragments are located inside their individual barrier
radii, while an ICF event occurs when just one of the fragments
is inside its barrier radius. This idea is realized by means of
position projection operators:

P̂j = �
(
R

jT
B − xj

)
, (13)

Q̂j = 1̂ − P̂j , (14)

where �(x) is the Heaviside step function and R
jT
B are

the locations of the Coulomb barriers in the target-fragment
j interaction. The projection operators satisfy the properties:
P̂ 2

j = P̂j , Q̂2
j = Q̂j , and P̂j Q̂j = 0̂.

Applying the unity operator 1̂ = (P̂1 + Q̂1)(P̂2 + Q̂2) on
the total wave function, �̃(x1,x2,t), the latter is decomposed
into three parts:

�̃CF(x1,x2,t) = P̂1P̂2�̃(x1,x2,t), (15)

�̃ICF(x1,x2,t) = (P̂1Q̂2 + Q̂1P̂2)�̃(x1,x2,t), (16)

�̃SCATT(x1,x2,t) = Q̂1Q̂2�̃(x1,x2,t). (17)

Each of these parts of the wave function is associated with
specific physical processes in Fig. 1. The last term with the
SCATT subscript (scattering) refers to the event where both
fragments are located out of their Coulomb barriers and thus
are not captured by the target (NCBU event). Please note
that �̃(x1,x2,t) is connected with �(ξ,Xc.m.,t) through the
coordinate transformation (ξ,Xc.m.) → (x1,x2).

The TF cross section, σTF, is derived from the continuity
equation for the probability current of the total wave function:

σTF = 2

� v
〈�̃|WT 1(x1) + WT 2(x2)|�̃〉, (18)

where v = � K0/(μTPV ) and V is a unit volume of the target.
Making use of the projection operator properties, the CF and
ICF cross sections read

σCF = 2

� v
〈�̃CF|WT 1(x1) + WT 2(x2)|�̃CF〉, (19)

σICF = 2

� v
〈�̃ICF|WT 1(x1) + WT 2(x2)|�̃ICF〉. (20)

The CF cross section in Eq. (19) also includes the
contribution of the sequential fusion in Fig. 1, which is defined
as the fusion of all the projectile fragments with the target after
the projectile breakup.

These cross sections are calculated after a long period of
time, using �(ξ,Xc.m.,t = tf ), as σCF and σICF, which should
be compared with experimental data, must be stationary values
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of Eqs. (19) and (20). Moreover, those fusion cross sections
correspond to an incident wave packet of initial average energy
E0. However, experimental cross sections are determined at
specific incident energies (within certain accuracy). Therefore,
we need to calculate the energy-resolved fusion cross sections,
for which the window operator method is used [15], as
explained below.

The energy-resolved fusion cross section can be written
using the energy-resolved transmission coefficient through the
Coulomb barrier:

σ (E) = π�
2

2μE
T (E), (21)

where each fusion process (TF, ICF, and CF) has its own
transmission coefficient T (E). These transmission coefficients
will be used in the present model for discussing the relative
importance of the different fusion processes.

In the following general discussion, � refers to a wave
function which has any asymptotic contribution, such as the
initial and final total wave functions as well as the parts of
the wave function in Eqs. (16) and (17). Having calculated the
transmission coefficients for TF and ICF using the window
operator method, the transmission coefficient for CF can be
determined by TCF(E) = TTF(E) − TICF(E).

The window operator method. The key idea of the window
operator method is to calculate, for instance, the energy
spectrum P(Ek) of the initial and final total wave functions.
Ek is the centroid of a total energy bin of width 2ε. A
vector of reflection coefficients, R(Ek), is determined by the
ratio [9,14],

R(Ek) = P final(Ek)

P initial(Ek)
. (22)

The transmission coefficients are

T (Ek) = 1 − R(Ek). (23)

The energy spectrum P(Ek) = 〈�|
̂|�〉, where 
̂ is the
window operator [15],


̂(Ek,n,ε) ≡ ε2n

(Ĥasy − Ek)2n + ε2n
, (24)

Ĥasy is the asymptotic part of the Hamiltonian in Eq. (1),
and n determines the shape of the window function. As n is
increased, this shape rapidly becomes rectangular with very
little overlap between adjacent energy bins [15], the bin width
remaining constant at 2ε. The spectrum is constructed for a set
of Ek where Ek+1 = Ek + 2ε. Thus, scattering information
over a range of incident energies can be extracted from a
time-dependent wave function that was calculated on a grid.
In this work, n = 2 and ε = 0.25 MeV. Solving two successive
linear equations for the vector |χ〉,
(Ĥasy − Ek +

√
i ε)(Ĥasy − Ek −

√
i ε) |χ〉 = |�〉, (25)

yields P(Ek) = ε4 〈χ |χ〉.
As an example, Fig. 5 shows the energy-resolved trans-

mission coefficients from Eq. (23) (circles) compared with
those determined by the stationary solution of the Schrödinger
equation with IWBC (solid line), for 6Li + 209Bi with (i) the
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FIG. 5. (Color online) Energy-resolved transmission coefficients
of the time-dependent wave-packet (TDWP) method for 6Li + 209Bi
are compared with those of a stationary calculation.

Woods-Saxon nuclear potential from Table I, (ii) a Woods-
Saxon imaginary potential like WTj in Sec. II, and (iii) an initial
wave packet with E0 = 28 MeV, X0 = 50 fm, and σ = 10
fm. For the sake of simplicity, the two-body structure of 6Li
is not considered in these calculations. It is observed that
the window operator method provides reliable transmission
coefficients over a wide range of energies around E0. The
energy components of the initial wave packet in that range must
have large amplitudes [14], which is determined by the σ value.
Small amplitudes yield inaccurate transmission coefficients, as
seen in Fig. 5 at low energies.

III. THE CONVERGENCE OF FUSION
EXCITATION FUNCTIONS

Calculations of energy-resolved transmission coefficients
(fusion probabilities) have been carried out using a Fourier
grid in the (ξ,Xc.m.) coordinates [13,14]: ξ = 0 − 30 fm and
Xc.m. = 0 − 200 fm with 128 and 256 evenly spaced points,
respectively.

Figure 6 displays the dependence of the energy-resolved
TF probability on the parameters of the initial wave packet:
(a) the average energy E0, (b) the spatial width σ , and (c) the
centroid position X0. It appears that a converged TF excitation
function can be constructed.

Figure 7 presents the energy-resolved ICF probability
and its dependence on the average energy E0 of the initial
wave packet. A few wave-packet propagations allows one to
calculate the converged ICF excitation function in a broad
range of incident energies.

All the calculations above have been carried out for the
6Li configuration illustrated in Fig. 2. Reversing the position
of 4He and 2H in Fig. 2, the results are qualitatively the same.
However, these two configurations contribute to the effective
transmission coefficient that is the sum of the coefficients for
each 6Li configuration, each coefficient having a weighting
factor of one-half.

Converged excitation curves of the effective transmission
coefficients for TF and ICF are shown in Fig. 8 (thick solid
and dashed lines, respectively), indicating by their similarity
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FIG. 6. (Color online) Energy-resolved total transmission coeffi-
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FIG. 7. (Color online) Energy-resolved incomplete fusion exci-
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FIG. 8. (Color online) Converged, energy-resolved fusion prob-
abilities. The arrow denotes the Coulomb barrier of the 6Li + 209Bi
reaction without breakup.

that the CF probability is very small. This may be because
of the large difference between the individual Coulomb
barriers (∼11 MeV) for the 4He and 2H fragments and
the 209Bi target. As a reference, Fig. 8 presents the fusion
probability of the 6Li + 209Bi reaction without breakup (thin
solid line) for energies around the average Coulomb barrier of
29.7 MeV (denoted by the arrow). This reference calculation
was performed by folding the potential, VT 1(x1) + VT 2(x2), in
Eq. (1) with the 6Li g.s. probability density in Fig. 3(a). At sub-
Coulomb energies, the TF probability is very much enhanced
by the ICF process (comparing the thick and thin solid lines).
At above-barrier energies, it is observed that the TF probability
with breakup is almost the same as the TF probability without
breakup, in agreement with the CDCC results [4]. In contrast
to the usual CDCC fusion calculations [4,11], the present CF
and ICF excitation functions include CF from unbound states
as well as ICF from bound states of the projectile [16]. The
ICF process from the projectile bound states is very difficult
to be distinguished from the usual transfer process which
is very strong for weakly bound projectiles at sub-Coulomb
energies [17–22].

IV. SUMMARY

A quantum approach to low-energy reaction dynamics
of weakly bound few-body nuclei was presented in detail.
It incorporates novel features into existing models based
on the time-dependent wave-packet perspective, such as the
separation of the complete and incomplete fusion from the
total fusion. This type of approach is very attractive as (i) it
provides an intuitive description of the reaction dynamics, and
(ii) all the continuum couplings are automatically included. We
have implemented this approach in a one-dimensional reaction
model with two degrees of freedom, which has allowed us
to test the reliability of various numerical methods against
commonly used techniques. A method for an unambiguous
calculation of complete and incomplete fusion cross sections
was described. This method provides incomplete fusion from
bound states as well as complete fusion from unbound states
of the weakly bound projectile. Model calculations show that
converged reliable fusion excitation functions can be obtained
with the time-dependent wave-packet method. This approach
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is being developed further, using a three-dimensional model.
Additional cross sections, such as elastic, breakup, and transfer
cross sections, can be calculated within this approach as well.
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