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Background: Although local phenomenological optical potentials have been standardly used to interpret
nuclear reactions, recent studies suggest the effects of nonlocality should not be neglected.

Purpose: In this work we investigate the effects of nonlocality in (p,d) transfer reactions using nonlocal
optical potentials. We compare results obtained with the dispersive optical model to those obtained using the
Perey-Buck interaction.

Method: We solve the scattering and bound-state equations for the nonlocal version of the dispersive optical
model. Then, using the distorted-wave Born approximation, we calculate the transfer cross section for (p,d) on
40Ca at Ep = 20, 35, and 50 MeV.

Results: The inclusion of nonlocality in the bound state has a larger effect than that in the scattering states.
The overall effect on the transfer cross section is very significant. We found an increase due to nonlocality in
the transfer cross section of ≈30–50% when using the Perey-Buck interaction and of ≈15–50% when using the
dispersive optical potential.

Conclusions: Although the details of the nonlocal interaction can change the magnitude of the effects, our
study shows that qualitatively the results obtained using the dispersive optical potential and the Perey-Buck
interaction are consistent, in both cases the transfer cross sections are significantly increased.
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I. INTRODUCTION

Nuclear reactions offer an exceptional opportunity to probe
the properties of nuclei away from stability. Of particular inter-
est are single-nucleon transfer reactions involving deuterons. A
number of experimental programs have focused on measuring
(d,p) or (p,d) reactions with the motivation of learning about
shell evolution and the configuration of the valence nucleons
in exotic nuclei (e.g., Refs. [1,2]). These types of reactions are
also used to extract astrophysical information and quantities
relevant to stockpile stewardship (e.g., Refs. [3–5]). From a
theoretical perspective, these reactions are attractive because
they can be reduced to a three-body problem composed of
n + p + A.

In recent years, there have been many efforts to improve the
description of (d,p)/(p,d) transfer reactions. Studies bench-
marking various methods have exposed serious limitations
in even the most advanced approaches [6–9]. Although the
methodology for accurately solving the three-body scattering
problem is under intense research, there are at least two less-
tractable sources of uncertainty in the calculation of transfer
reaction observables, namely, the reduction of the many-body
problem to a three-body problem and the uncertainties in
the effective interactions introduced as a consequence of that
reduction [10]. The context of this work is associated with
the second aspect, namely, the uncertainties in the so-called
optical potentials.

Traditionally, nucleon optical potentials have been derived
phenomenologically, primarily from fitting elastic-scattering
data but sometimes the fits also include total and ab-
sorption cross sections and polarization observables (e.g.,

Refs. [11–14]). The common assumption in all of these
global optical-model fits is that the interaction is made local,
and to compensate for this, a strong energy dependence of
the potential is introduced. From a microscopic standpoint,
the effective interaction between the nucleons is inherently
nonlocal and one expects that the nonlocality is mostly felt in
the nuclear interior. Perey and Buck [15] developed a nonlocal
global potential in the sixties using a standard real volume
Woods-Saxon form and an imaginary surface term for the
optical potential, multiplied by a single Gaussian nonlocality
with a range of 0.85 fm. With this potential, they showed that
the elastic-scattering data for a variety of nuclei ranging from
light to heavy masses could be reproduced without introducing
explicit energy dependence in the optical-model parameters.

Motivated by earlier work [7], we recently performed
a systematic study of the effects of nonlocality in the
nucleon-nucleus effective interactions in (p,d) transfer re-
actions used for studying single-particle states [16]. All
calculations in Ref. [16] were based on the Perey-Buck (PB)
optical potential and compared with local phase equivalents
obtained for this interaction. Consistent with what had been
found before [17,18], we found that nonlocality affects the
scattering wave functions in the nuclear interior out to the
surface region. Nonlocality similarly affects the bound state
in the nuclear interior, but also beyond the surface region
because it changes the asymptotic normalization coefficient.
When introducing the wave functions obtained with nonlocal
interactions in the transfer matrix element, we obtained very
significant differences compared to those obtained with the
phase-equivalent interactions. Typically the nonlocality in the
bound state increased the cross section, while nonlocality in
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the scattering state decreased it. Although we found some
cancellation when putting both effects together, the overall
effect was still found to be very significant, of the order of
an ≈10–30% change in the differential cross section at the
peak of the angular distribution. A standard way to take care
of the nonlocal effects on the wave function, without solving a
nonlocal equation, is through the introduction of the so-called
Perey factor [17,18]. As shown in Ref. [16], this factor does
not provide an accurate description of nonlocality in transfer
reactions. Given that the study of Ref. [16] focused exclusively
on the PB interaction, which has a rather simple form, it was
unclear to us whether these results could be generalized.

An alternative method for obtaining the optical potential
was introduced by Mahaux and Sartor [19], which included
the use of dispersion relations. One of the main attractions
of the dispersive optical model (DOM) is that it connects
bound-state properties (the real part of the self-energy at
the Fermi energy) and scattering (the imaginary part of the
optical potential) through a dispersion relation [20]. The local
DOM optical potential developed in Ref. [20] was used in
(d,p) transfer reactions on closed-shell nuclei, and results
demonstrate that the DOM potentials are able to describe
the transfer angular distributions at least as well as other
global phenomenological optical potentials on the market [21].
Because the local version of the DOM still contains an
energy dependence related to nonlocality of the real part, it
distorts the normalization of the spectral strength and requires
a correction for the proper normalization of spectroscopic
factors. A nonlocal Hartree-Fock-like and energy-independent
potential was introduced in Ref. [22] to avoid this issue. While
this step allowed the interpretation of the optical potential
as representing the nucleon self-energy, it was also shown that
observables like the nuclear charge density cannot be described
in detail. By analyzing theoretically calculated self-energies
for Ca isotopes which include long-range [23] and short-range
correlations [24], it was possible to clarify the importance of
representing the imaginary part of the optical potential also in
terms of nonlocal ingredients. These insights have recently led
to an extension of the DOM formalism to explicitly include
nonlocality [25,26] in the real and imaginary parts of the self-
energy specifically for the 40Ca nucleus. To fit a large range of
bound-state and scattering data, the nonlocality was required
to be different above and below the Fermi energy for the
imaginary components. In addition the real potential required
a more complicated nonlocality than the standard Gaussian
form. The final result includes an accurate representation
of the nuclear charge density, spectral information including
high-momentum nucleons obtained from (e,e′p) data [27] in
addition to all elastic-scattering data up to 200 MeV. Note
that because the Perey factor [17] was derived explicitly for a
potential with the simple form of the PB interaction, it cannot
be easily generalized to the DOM case. For this reason, the
Perey factor study included in Ref. [16] is not part of the
present study.

In this work, we revisit the study in Ref. [16], but now using
the DOM nonlocal interaction of Ref. [25] for the reactions
40Ca(p,d)39Ca at Ep = 20, 35, and 50 MeV. For comparison,
we also repeat the calculations with the PB interaction for
these reactions. In Sec. II, we provide details of the numerical

inputs. In Sec. III we present the results, and finally in Sec. IV
we draw our conclusions.

II. NUMERICAL INPUTS

To understand the role of nonlocality in transfer reactions,
it is critical to have a local phase-equivalent (PE) interaction.
Thus, the first step in our work was to fit in detail the elastic-
scattering predictions obtained with both the DOM [25] and
the PB [15] nonlocal interactions, with a local form. So far,
the nonlocal DOM has only been developed for 40Ca, so we
concentrated our investigation to proton scattering on 40Ca at
Ep = 20, 35, and 50 MeV.

To mimic the complex shape of the nonlocal DOM
interaction introduced in Ref. [25], its PE potential was
chosen to include, in the real part, two volume terms of
Woods-Saxon form and a spin-orbit force. The imaginary
part contains a volume term, of Woods-Saxon form, a surface
term proportional to the derivative of a Woods-Saxon form,
and a spin-orbit term. The Coulomb potential was generated
from a homogeneous charged sphere of radius R = 1.22A1/3.
The final PE form used in the fit to the nonlocal DOM
elastic-scattering predictions is

UDOM-PE(R) = −Vvol1f (R,rvol1,avol1)

−Vvol2f (R,rvol2,avol2) − iWvolf
(
R,rvol

w ,avol
w

)

+ i4asurfWsurf
d

dR
f

(
R,rsurf

w ,asurf
w

)
+V so(R) + VC(R) + iW so(R), (1)

where

f (R,r,a) =
[

1 + exp

(
R − rA1/3

a

)]−1

(2)

and A is the mass number of the target. The parameters
obtained from the fit to the predicted DOM elastic-scattering
angular distributions are presented in Table I.

The PB nonlocal interaction contains only one real volume
term and an imaginary surface term, multiplied by a Gaussian
nonlocality [15]. We keep this simple shape in the parametriza-
tion of its local phase equivalent:

UPB-PE(R) = −Vvolf (R,rvol,avol) + i4asurfWsurf
d

dR

× f (R,rsurf,asurf) + VC(R) + V so(R), (3)

where we have used the same Coulomb parameters as in
Ref. [15]. The fitted parameters obtained with this interaction
are presented in Table II.

For illustration purposes, we show in Figs. 1 and 2 the
elastic-scattering angular distributions obtained for p + 40Ca
at proton energies of Ep = 20 and 50 MeV, normalized
to Rutherford. Experimental results are indicated by the
diamond-shaped data points, predictions with the nonlocal
interactions (solid line for the DOM and dashed line for PB)
can be compared to their corresponding local PEs (open circles
for the results with the DOM local PE and open squares for
the results with the PB local PE). The angular distribution for
the DOM PE agrees well with the predictions obtained with
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TABLE I. DOM PE potential parameters corresponding to the
various proton beam energies considered.

20 MeV 35 MeV 50 MeV

Vvol1 14.556 19.817 8.885
rvol1 1.242 1.300 1.299
avol1 0.601 0.680 0.680
Vvol2 31.176 23.797 31.946
rvol2 1.272 1.100 1.101
avol2 0.652 0.680 0.680
Wvol 0.717 5.660 6.195
rvol
w 1.293 1.300 1.299

avol
w 0.680 0.680 0.680

W surf
w 5.950 2.952 2.573

r surf
w 1.197 1.239 1.259

asurf
w 0.536 0.550 0.539

Vso 3.773 1.908 3.469
rso 1.167 1.100 1.100
aso 0.615 0.600 0.602
W so

w 0.322 1.688 0.647
r so
w 1.220 1.100 1.299

aso
w 0.647 0.600 0.680

the nonlocal DOM. The same is true for the PB interaction.
The PB interaction was not fit to Ca isotopes at all and
therefore one does not expect it to follow the data closely.
Conversely, the DOM potential was fit using a wide array of
scattering data for neutrons and protons on 40Ca, as well as
bound-state properties. It is thus understandable that the elastic
scattering predicted by the DOM and PB potentials differ, thus
the importance of determining the local PE interaction for
each case separately to isolate those effects coming only from
nonlocality.

Because we are interested in transfer reactions populating
a neutron bound state, we also need to consider nonlocality
in the calculation of the bound-state wave function. For the
particular reactions we are considering, this consists of a 1d3/2

bound state for n + 39Ca. The DOM predicts the shape of the
mean field around the Fermi level. Therefore, we computed
the bound-state wave function using the nonlocal DOM
interaction obtained at the experimental bound-state energy
of E = −15.6 MeV. The PB potential was only developed for
scattering states; so following Ref. [16], the real part of the PB

TABLE II. Same as in Table I, but for the PE PB potential.

20 MeV 35 MeV 50 MeV

Vvol 44.224 40.708 37.449
rvol 1.298 1.286 1.267
avol 0.614 0.617 0.610
Wsurf 10.181 9.542 8.917
rsurf 1.250 1.248 1.236
asurf 0.423 0.420 0.420
Vso 5.647 6.216 6.381
rso 1.255 1.248 1.258
aso 0.652 0.652 0.657
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FIG. 1. (Color online) Angular distributions for elastic scattering
normalized to Rutherford of protons on 40Ca at Ep = 20.0 MeV.
Predicted results with the nonlocal DOM potential (solid line), the
DOM local PE (open circles), the PB interaction (dashed line), and
the PB local PE (open squares) are compared to the experimental data
(closed diamonds) of Ref. [28].

interaction was taken to produce the mean field for the bound
state, assuming that around the Fermi level the imaginary
part is zero. The overall strength of this mean field was then
adjusted to reproduce the experimental binding energy of the
system of interest. We also added a spin-orbit force with a
standard strength of Vso = 6 MeV.

The bound-state wave functions with these two nonlocal
interactions are then compared with those obtained from the
typical approach in our field, consisting of a single-particle
state generated by a local mean field of Woods-Saxon form,
with standard geometry (radius parameter r = 1.25 fm and dif-
fuseness a = 0.65 fm) and a spin-orbit potential with strength
of Vso = 6 MeV. The depth of the Woods-Saxon interaction is
adjusted to reproduce the experimental separation energy of
Sn = 15.6 MeV.

The method used to solve the nonlocal Schrödinger equa-
tion for both scattering and bound states is described in detail
in Ref. [16]. To study (p,d) transfer, we still need to define the
Vnp interaction that determines the deuteron ground-state wave
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FIG. 2. (Color online) Same as for Fig. 1, but now for Ep =
50 MeV and the experimental data from Ref. [29].
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function as well as the optical potential for the deuteron exit
channel. We use the Reid interaction for the deuteron [30] and
the Daenick global optical potential for d + 39Ca [31]. We then
use the code FRESCO [32] to compute the transfer cross sections
in the postform distorted-wave Born approximation (DWBA).
Note that in general, the postform DWBA requires an auxiliary
potential to be introduced, which distorts the proton in the
final state and contributes to the remnant term in the operator
of the corresponding T matrix. Traditionally, this potential is
chosen to be the phenomenological potential that reproduces
proton elastic scattering in the final state. For intermediate
mass to heavy nuclei, this most often ensures that the remnant
contribution is very small.

III. RESULTS

A. Nonlocal effects on the wave functions

Before considering transfer cross sections, we first in-
vestigate the effect of nonlocality on the wave functions
themselves. In Fig. 3, we show the p + 40Ca scattering wave
function for the � = 0 partial wave obtained by solving the
nonlocal Schrödinger equation for both the DOM and the
PB interactions at Ep = 50 MeV. These are compared with
the wave functions obtained when using their respective
PE interactions. This is one of the cases where the largest
differences are observed. The main effect of nonlocality is
to reduce the amplitude of the wave function in the nuclear
interior. This is consistent with earlier studies [16–18].

The neutron 1d3/2 bound-state wave function is depicted
in Fig. 4. As can be seen, the effect of nonlocality not only
reduces the strength in the nuclear interior but also shifts the
wave function out to larger radii, which results in a larger
asymptotic normalization coefficient. Again this is consistent
with results of Refs. [16,21]. When both mean fields are
adjusted to reproduce the experimental binding energy, we see
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FIG. 3. (Color online) The real and imaginary parts of the J π =
1/2+ partial wave of the scattering wave function for the reaction
40Ca(p,p)40Ca at Ep = 50.0 MeV. This figure compares results
obtained with the nonlocal DOM (solid line) and its local PE
(dotted line), with the PB interaction (dashed line) and its local PE
(dot-dashed line). The top (bottom) panel shows the absolute values
of the real (imaginary) part of the scattering wave function. The
coordinate R represents the relative distance p − 40Ca.
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FIG. 4. (Color online) The neutron ground-state, 1d3/2, bound-
state wave function for n + 39Ca. This figure compares the wave
functions obtained with the DOM potential (solid line) to those
obtained with the PB interaction (crosses) and the local interaction
(dashed line). The coordinate r represents the relative distance
n − 39Ca. The inset is the same figure in a log plot.

only minor differences between the bound-state wave function
obtained using the PB and the DOM interactions. Futhermore,
to quantify the effects of nonlocality in the bound state, we
adjust the parameters of the Woods-Saxon form to mimic
the wave function obtained by the nonlocal DOM potential.
We are able to reproduce the DOM wave function with an
increased radius and diffuseness (r = 1.31 fm and a = 0.8 fm)
while preserving the same binding energy Sn = 15.6 MeV and
the same asymptotic normalization. This quantifies what is
intuitively seen in Fig. 4.

B. Transfer cross sections

We now turn our attention to the transfer cross sections
obtained in the DWBA. In Fig. 5 we present the transfer
angular distributions for the 40Ca(p,d)39Ca(g.s.) reaction at
Ep = 20, 35, and 50 MeV. In this figure, we show the results
of including nonlocality in both the proton incoming wave
function and the initial neutron bound state, either with the
DOM potential (solid lines) or with the PB interaction (dashed
line). We compare these with the results obtained with local
interactions: the DOM local PE (dotted line) and the PB local
PE (dot-dashed line). Whether we consider the DOM or the
PB potential, nonlocality affects not only the magnitude of the
angular distribution but also the shape around the peak region
typically used to extract structure information. These effects
are consistent with those found in Ref. [16].

To quantify the effects of nonlocality in the potentials
on the transfer reaction, we compare total cross sections as
well as differential cross sections at the peak of the angular
distribution. The first gives us an overall measure of the
effect, integrating out shape differences, particularly at forward
angles. The second is relevant when using transfer reactions
to extract spectroscopic factors because only forward angles
are used (as done in, e.g., Refs. [1,2]). In Table III we show
the total cross sections obtained for the transfer process at
three different beam energies, Ep = 20, 35, and 50 MeV, for
the nonlocal and local equivalent DOM and PB potentials.
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FIG. 5. (Color online) Angular distributions for the
40Ca(p,d)39Ca reaction at (a) Ep = 20 MeV, (b) Ep = 35 MeV, and
(c) Ep = 50 MeV. This figure compares results obtained with the
nonlocal DOM (solid line), the DOM local PE (dotted line), the PB
interactions (dashed line), and the PB local PE (dot-dashed line).

Also shown are the percentage differences of nonlocal to local
relative to local cross sections. Results show that for the DOM,
it is only at the intermediate energy that nonlocality plays a
role, and even in this case effects are not very large. For the
PB potential, the effect of nonlocality is only significant at
20 MeV.

We then look at the percentage difference of the differential
cross sections at the peak of the angular distribution relative to

TABLE III. Total 40Ca(p,d)39Ca(g.s.) cross sections at the listed
beam energies using the DOM and PB potential relative to the
calculations with their PE potentials. Also shown are the percentage
difference between nonlocal and local cross sections. Total cross
sections are given in mb.

Ep (MeV) DOM DOM-PE % diff PB PB-PE % diff

20 1.95 1.93 1.02 2.02 1.80 12.29
35 4.63 5.35 −13.46 6.51 6.42 1.28
50 3.55 3.62 −1.84 4.61 4.50 2.37

those resulting from local interactions only. The percentage
differences are listed in Tables IV and V for the DOM
and PB potentials, respectively, at the three different beam
energies considered: Ep = 20, 35, and 50 MeV. We show
the separate effects of nonlocality in the neutron bound state
and the proton-scattering state. To do this, we repeat the
calculations for the 40Ca(p,d)39Ca transfer reaction including
only nonlocality in the calculation of either the bound state or
the scattering state. The effect of nonlocality in the bound state
at all proton energies considered is to increase the magnitude
of the transfer cross section. This large effect is caused by
the shift of the bound-state wave function towards the nuclear
periphery. The T matrix for these reactions is mostly sensitive
to the peripheral region and therefore picks up that additional
strength. The effect of nonlocality in the scattering state is not
as pronounced as for the bound state, reducing the transfer
cross section in most cases. The total effect is shown in the
last column of Tables IV and V and is very significant in all
cases.

We note that the nonlocal effects shown here for the PB
interaction are generally larger than those found in Ref. [16].
While in Ref. [16] we studied particle states in closed-shell
nuclei, here we focus on a hole state in 40Ca, which is much
more deeply bound.

The percentage difference between the transfer cross
sections obtained with nonlocal versus local interactions can
vary considerably with beam energy. One naively expects that
as the beam energy increases, the reaction will become less
peripheral and therefore the strong enhancement felt from the
asymptotic behavior of the bound-state wave function will
become less pronounced. However, the calculations in this
work appear to show no simple trend. A full DWBA calculation
contains the remnant term corresponding to, in our case, the
difference between the optical potential between the proton

TABLE IV. Percent differences of the (p,d) transfer cross
sections at the first peak at the listed beam energies using the
DOM potential relative to the calculations with the phase-equivalent
potential. Results are listed separately for the effects of nonlocality
on the bound state, the scattering state, and the total.

Ep (MeV) Bound state Scattering state Full nonlocal

20 27% −14% 15%
35 31% 10% 52%
50 31% −3% 29%
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TABLE V. The same as for Table IV, but now for the PB potential.

Ep (MeV) Bound state Scattering state Full nonlocal

20 42% −15% 27%
35 55% −8% 52%
50 42% −11% 29%

and 39Ca and the final proton 40Ca optical potential. We have
checked that for both energies this term is negligible.

IV. CONCLUSIONS

In this work we studied the effects of nonlocality in
transfer reactions using a nonlocal potential obtained from the
dispersive optical model [25] and comparing it to the results
from the older PB interaction [15]. Our studies focused on
the 40Ca(p,d)39Ca reaction at Ep = 20, 35, and 50 MeV.
We considered the nonlocality in the proton channel and
solved the integral-differential equation to obtain the proton
scattering and neutron bound-state solutions for both nonlocal
potentials. We then computed the transfer matrix element in
the DWBA, ignoring nonlocality in the deuteron channel. To
isolate the effects arising from nonlocality alone, we generated
two local PE interactions that reproduced the elastic-scattering
predictions from the nonlocal DOM and the PB potentials
separately.

Our results show that, irrespective of the details of
the potential, nonlocality reduces the strength of the wave
function in the nuclear interior, an effect most notice-
able in the bound states, but also significant in scattering
states. Due to the normalization condition, nonlocality in
the bound state also shifts the wave function to the pe-
riphery region, causing an increase in the forward-angle
transfer cross sections. When nonlocality is considered only
in the bound state, both DOM and PB potentials produce
very large increases in the magnitude of the transfer cross

sections (≈30–50%). Typically, nonlocality in the scattering
state acts in the opposite direction, reducing the overall effect.
When nonlocality is included in both the bound and the
scattering states, the transfer differential cross sections are
increased by ≈15–50% for the DOM potential, in contrast
with ≈30–50% obtained with the PB interaction. In addition to
this change in magnitude, nonlocality also changes the shape
of the transfer angular distribution, an effect that may help
to constrain the details of the nonlocal parameters. Finally,
although qualitatively we find similar effects for all beam
energies, there are significant quantitative variations in the
magnitude of the differential cross section at the peak of the
distribution, the largest effects being found for the intermediate
energy of Ep = 35 MeV. The effects of nonlocality on the total
cross sections are not important for either the DOM or the PB
interactions.

In this study we focus on reactions on 40Ca nuclei, because
the nonlocal DOM was originally developed for this system.
Meanwhile extensions of this optical potential to heavier Ca
isotopes, as well as Sn and Pb, are under way. It will be
interesting to perform a more systematic study across the
nuclear chart to generalize our findings to other systems.

While in this work the transfer cross sections were
calculated within the DWBA, it is understood that deuteron
breakup should be included explicitly in the description of
these transfer reactions (e.g., Ref. [1]). An effective method
to include deuteron breakup is the finite-range adiabatic
wave approximation but the exact treatment of nonlocality is
intricate [33,34]. Work along these lines is now in the pipeline.
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