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The recently proposed effective shell-model interaction, the pairing-plus-multipole Hamiltonian with the
monopole interaction obtained by empirical fits starting from the monopole-based universal force (PMMU), is
systematically applied to nuclei of the pf5/2g9/2 shell region. It is demonstrated that the calculation describes
reasonably well a wide range of experimental data, including not only the low-lying and high-excitation spectra,
E2 transitions, quadrupole moments, and magnetic moments, but also the binding energies, for Ni, Cu, Zn, Ga,
Ge, As, and Se isotopes with A = 64–80. In particular, a structure of the neutron-rich Ge and Se isotopes is
discussed in detail.
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I. INTRODUCTION

Nuclei in the pf5/2g9/2 shell, i.e., those with nucleon
numbers between the magic numbers 28 and 50, show at least
two attractive properties. The first one is a structure variation
around the semimagic shell closure at N = 40. It has been
known that the Z = 28 isotone 68Ni has one of the main
characters of a double closed-shell nucleus [1,2], and isomers
have been found in the neighborhood of this nucleus. The
lowered first excited 02

+ state in 68Ni is interpreted so as
to support the magicity. However, 68Ni does not exhibit an
irregularity in two-neutron separation energy as expected for
magic nuclei [3]. It has been shown that this contradiction can
be understood by the parity change across the N = 40 shell gap
[3–6]. Moving to heavier isotones of N = 40 with increasing
proton number, there have been many experimental evidences
suggesting an increasing collectivity, for example those in the
Ge [7,8] and Se isotopes [9–12]. With Z approaching 40,
the N = Z isotone 80Zr is known to be strongly deformed
[13], and signs of a shell closure disappear completely and the
nucleus can be regarded as a good rotor.

Another interesting property to be mentioned for the
pf5/2g9/2 shell is the shape evolution in the mass-70 region
[10–12,14–16]. In particular, the nuclei around the N = Z line
exhibit a variety of nuclear shapes [17,18]. Shape changes are
sensitive probes of the structure, and the corresponding nuclei
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can serve as good testing grounds for shell-model interactions.
For example, 64,66,68Ge were studied using large-scale shell-
model calculations [19–21]. For 70,72,74,76Ge, shape changes
were discussed with the observed spectroscopic quadrupole
moment [22], which were attributed to the large shell gaps at
the prolate and oblate deformation for proton and neutron
numbers 34 and 36 as seen in the Nilsson diagram. For
68Se, it was found that the oblate ground-state band coexists
with a prolate excited band, forming a shape coexistence
phenomenon [16,18]. Shape coexistence was also investigated
for 70,72,74Se [10–12]. It was reported that in 70Se, the oblate
shape near the ground state evolves quickly to a prolate shape
at higher spins [10]. Further experiments suggested that in
72Se, there is no well-defined shape for the lowest levels due
to shape mixings [11], and the low-lying states in 74Se show
coexistence of spherical and prolate shapes [12].

Various theoretical approaches based on deformed mean
fields have been applied to this mass region [23–27]. On the
other hand, shell-model calculations using different effective
interactions, such as JUN45 [21] and JJ4B [28–30] for the
pf5/2g9/2 model space, have also been reported. In principle,
interactions for nuclear shell-model calculations should be
derived microscopically from the free nucleon-nucleon forces
[31,32] and also the three-body nucleon forces [33]. However,
it has been shown that such effective interactions fail to
describe nuclear properties such as binding energies, excitation
spectra, and E2 transitions once the number of valence
nucleons becomes large. Therefore, considerable effort has
been put forward to construct effective interactions for differ-
ent shell-model spaces [5,28–30,34–38]. For the JUN45 and
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JJ4B effective interactions, the starting point for the fitting
procedure is a realistic G-matrix interaction based on the
Bonn-C NN potential and core-polarization corrections with
a 56Ni core. With the inclusion of the proton f7/2 and neutron
d5/2 orbitals, in addition, the LNPS [5,38] interaction based on
the Kuo-Brown interaction including the Kahana-Lee-Scott
potential [39] has also been proposed.

Among the effective interactions, the pairing-plus-
quadrupole–quadrupole (P + QQ) interaction [40,41] has
been widely applied to describe various nuclear properties,
such as excitation energies, moments, transitions, and reaction
rates, for a wide range of nuclei in the medium to heavy
mass regions. This interaction is represented by two basic
components, the pairing and quadrupole forces as the short
and long range parts of the interaction, respectively. Dufour
and Zuker have shown that any realistic effective interaction
is dominated by the P + QQ interaction with the monopole
terms [42]. It has been understood that, while the pairing and
quadrupole terms take care of the main and smooth part of
the structure properties, the monopole terms play important
roles for the shell evolution and are often responsible for
explaining anomalous behaviors in spectra and transitions.
It has been shown that the extended P + QQ model with
the monopole interaction (EPQQM) works surprisingly well
for the N ≈ Z nuclei [19,43], where the monopole terms are
treated as corrections. The strength parameters in EPQQM
have been chosen so as to fit the known data. In a series
of publications, we have found that the monopole terms are
important to account for the unusual shell evolution in the
neutron-rich region. The model has also demonstrated its
capability of describing the microscopic structure in different
N ≈ Z nuclei, as for instance, in the pf -shell [43] and the
pf5/2g9/2-shell regions [19]. It has been shown that this model
is also applicable for the neutron-rich nuclei in the fpg-shell
region [44] and the sd-pf shell region [45]. Quite recently,
the EPQQM model has also been successfully applied to the
neutron-rich nuclei around 132Sn [46–49].

One of the important issues in nuclear structure is per-
sistence or disappearance of the traditional magic numbers
when moving away from the β-stability line. It has been
known that the conventional magic numbers disappear in some
cases of the neutron-rich region, but new magic numbers may
emerge. For example, the neutron-rich nuclei 12Be, 32Mg,
and 42Si were found to exhibit large collectivity in spite of
the corresponding neutron magic numbers N = 8, 20, and 28.
The monopole interaction is the key ingredient for explaining
the binding energies, the emergent magic numbers, and the
shell evolution in the neutron-rich region. The connection
between the monopole interaction and the tensor force [50]
was confirmed within the self-consistent mean-field model
using the Gogny force [51]. Thus one of the physical origins
of the monopole interaction was attributed to the tensor force
[50] which explains the shell evolution. This explanation is
an important development in understanding the structure of
unknown mass regions. Recently, general properties of the
monopole components of the effective interactions have been
presented through introducing the monopole-based universal
interaction [52], which consists of simple central and tensor
forces and can produce a variety of shell evolution across

different mass regions. It has been shown that the monopole
matrix elements obtained from this interaction are in good
agreement with those of the SDFP-M in the sd shell and
of the GXPF1A in the pf shell [34]. The monopole-based
universal interaction seems to be really a universal one,
applicable for different nuclear shell regions. Thus it is of great
interest to perform shell-model calculations with the pairing
and multipole interactions, starting from the monopole part
constructed from the monopole-based universal interaction.

The present authors have recently proposed a unified real-
istic shell-model Hamiltonian called PMMU [53], employing
the P + QQ Hamiltonian with the monopole interaction
V MU

m constructed from the monopole-based universal force.
It was demonstrated [53] that PMMU describes well nuclear
properties of the pf and pf5/2g9/2 shell nuclei, such as
systematics of the first excited 2+ states and B(E2) values, and
detailed energy spectrum for 56Ni, 72Ge, 55Co, and 69Ge. It
is now important to investigate general nuclear properties for a
considerable amount of nuclei including binding energies, de-
tailed energy levels, and E2 transitions, to confirm further the
reliability of the PMMU model. The present article is a com-
prehensive work following Ref. [53], and we perform large-
scale shell-model calculations systematically for nuclei in the
pf5/2g9/2 model space. We shall show that starting from the
monopole interaction V MU

m , a set of 28 parameters including
four P + QQ force strengths, 14 monopole matrix elements,
and four single-particle energies are determined by refitting to
the experimental binding energies of 91 nuclei with the mass
A = 64–80. Data for excited states are also used to fit these
parameters. We will discuss the shell evolution, binding ener-
gies, excited energy spectrum, and E2 transitions. Thus, the
main purpose of the present work is to test the PMMU model
for a wide range of nuclei in the pf5/2g9/2 shell region, with a
particular attention paid to the structure of Ge and Se isotopes.

The paper is arranged as follows. In Sec. II, we outline our
model. In Sec. III, we present the model parameters with the
detailed fitting procedure and description of binding energies.
The remaining sections are devoted to discussion of the results:
the structure of low-lying states is discussed in Sec. IV
and the structure of highly excited states in Ge and Se isotopes
are presented in Sec. V. Finally, a summary and conclusions
are given in Sec. VI.

II. PMMU MODEL

The Hamiltonian of the PMMU model, proposed by the
present authors in Ref. [53], takes the following form:

H = H0 + HPM + Hm,

H0 =
∑

α

εac
†
αcα,

HPM = −
∑

J=0,2

1

2
gJ

∑
Mκ

P
†
JM1κPJM1κ

−1

2
χ2

∑
M

: Q
†
2MQ2M : −1

2
χ3

∑
M

: O
†
3MO3M :,

Hm =
∑

a�b,T

Vm(ab,T )
∑
JMK

A
†
JMT K (ab)AJMT K (ab),
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where H0 is the single-particle Hamiltonian, HPM is the
pairing-plus-multipole term, and Hm is the monopole term.
For HPM , we take the J = 0 and J = 2 forces in the pairing
channel, and the quadrupole-quadrupole (QQ) and octupole-
octupole (OO) forces in the particle-hole channel [19,43].
Higher order pairing and multipole terms can be added if
necessary. The monopole matrix elements Vm(ab,T ) in Hm

are defined as [54]

Vm(ab,T ) =
∑

J (2J + 1)V JT
ab,ab∑

J (2J + 1)
, (1)

where V JT
ab,ab are the diagonal matrix elements between the

two-nucleon states coupled to angular momentum J and
isospin T . The monopole interaction has connections with
the tensor force, which generally explains the shell evolution
[51]. It was pointed out that the three-nucleon forces in
the monopole interaction are also important for neutron-rich
nuclei [52,55,56]. Recently, Otsuka et al. have discussed
universal properties of the monopole interaction in the effective
interaction [57] and suggested the so-called monopole-based
universal force [52] as an NN potential, VMU , which consists
of the Gaussian central force and the tensor force. The VMU

force has been successfully applied to light nuclei [58,59] and
somewhat heavier ones [60].

In a recent publication [53], we have proposed a unified
realistic shell-model Hamiltonian employing the pairing-
plus-multipole Hamiltonian with the monopole interaction
constructed from VMU , subject to modifications through fitting
the known experimental data. The monopole-based universal
force consists of two terms, the Gaussian central force and the
tensor force,

VMU = Vcentral + Vtensor, (2)

with

Vcentral =
∑
S,T

fS,T PS,T exp[−(r/μ)2],

Vtensor = (�τ1 · �τ2)([�s1�s2](2) · Y (2))g(r),

where S(T ) means spin (isospin), P denotes the projection
operator onto the channels (S,T ) with strength f , and r
and μ are the internucleon distance and Gaussian parameter,
respectively. Here �τ1,2 (�s1,2) denotes the isospin (spin) of
nucleons. In the central force, the Gaussian parameter is
fixed to be μ = 1.0 fm, and the strength parameters are
f0,0 = f1,0 = −166, f0,1 = −99.6, and f1,1 = 132.8 (all in
MeV). The π + ρ meson exchange force is used for the
strength g(r) [51]. Figure 1 illustrates the triplet-even potential
due to the Gaussian central force Vcentral and the tensor force
Vtensor with the above parameters. The monopole Hamiltonian
Hm in Eq. (1) can then be rewritten in the known form [54,61]

Hm =
∑
a�b

[
rabn̂a(n̂b−δab)+sab

(
T̂a · T̂b− 3

4
n̂aδab

)]
, (3)
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FIG. 1. Triplet-even potential due to the central force and the
tensor force.

with

rab = 3Vm(ab,T = 1) + Vm(ab,T = 0)

4(1 + δab)
,

sab = Vm(ab,T = 1) − Vm(ab,T = 0)

1 + δab

.

III. PMMU INTERACTION AND THE
GROUND-STATE DESCRIPTION

In this section and the two subsequent sections, we
present the results obtained from systematical shell-model
calculations with the PMMU model, and compare the results
with available experimental data. The present section dis-
cusses how the PMMU interaction parameters are determined.
The two subsequent sections are devoted to discussions of
systematical calculations for low-lying states and for states
of high excitations, respectively. Most of the shell-model
calculations shown in the present paper are carried out by
using the shell-model code MSHELL64 [62], which enables
calculations with a M-scheme dimension up to ∼3 × 109.

A. Determination of the PMMU interaction

In Ref. [53], we have shown that the PMMU model is
successful in describing energy levels and E2 transitions
for a large number of nuclei in the pf - and pf5/2g9/2-shell
regions. In this paper, we consider pf5/2g9/2 as the model
space. Starting from the monopole interaction V MU

m , a set of
28 parameters, which include the four strengths for the pairing-
plus-multipole forces, 20 for the monopole matrix elements,
and four single-particle energies, are determined by fitting
to the known experimental data of 91 nuclei. These nuclei
are taken from the mass region with A = 64–80, including
64−76Ni, 64−78Cu, 65−80Zn, 66−80Ga, 69−80Ge, 67−78As, and
73−80Se. For the Ni, Cu, Zn, Ga, and Ge isotopes, calculations
are performed without any truncation, while for As and Se
isotopes, some truncations have to be introduced.

The detailed fitting procedure carried out in Ref. [53] is as
follows. We take the pairing-plus-multipole Hamiltonian, and
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for the monopole part, we start from V MU
m (ab,T ) constructed

by the monopole-based universal force of Otsuka et al.
[52] and modify the monopole matrix elements so as to fit
the experimental data. The experimental yrast states of the
even-even Zn, Ge, and Se isotopes and the low-lying 1/2−,
3/2−, 5/2−, and 9/2+ states of the odd-mass Ni, Zn, Ge, Se
are considered for the fitting. In total, 91 binding energy data
and 186 experimental energies of excited states from these 91
nuclei are taken in the fitting procedure. For example, the four
pairing-plus-multipole force strengths, the four single-particle
energies, and the T = 1 matrix elements V MU

m (p3/2,f5/2,T =
1), V MU

m (p3/2,p3/2,T = 1), and V MU
m (p3/2,p1/2,T = 1) are

modified to fit mainly the yrast energy levels for 60−64Zn
and 64−68Ge. The T = 0 matrix elements are adjusted to fit
the binding energies of the nuclei with 28 � Z � 34 and
30 � N � 50. As a result, the rms deviations for binding
and excitation energies (see discussions below) are 691 and
256 keV, respectively.

All together, a total of 14 monopole terms are modified
from the original V MU

m , and all the monopole matrix elements
are scaled by a factor (58/A)0.3 for the calculation with the
present model space. The modified monopole matrix elements,
denoted as V PMMU

m , are shown in Fig. 2. The original monopole
matrix elements V MU

m , also displayed in the same figure, are
found for most cases to be closer to those of the JUN45 effec-
tive force [21]. Thus from Fig. 2, it can be seen that our fitted
V PMMU

m is clearly different from the original one in the fol-
lowing matrix elements: V MU

m (p3/2,p1/2,T = 0), V MU
m (f5/2,

g9/2,T = 0), V MU
m (p3/2,f5/2,T = 0), V MU

m (g9/2,g9/2,T = 0),
V MU

m (p1/2,p1/2,T = 0) and V MU
m (p1/2,g9/2,T = 0) for T =

0, and V MU
m (p3/2,f5/2,T = 1), V MU

m (p3/2,p3/2,T = 1), and
V MU

m (p3/2,p1/2,T = 1) for T = 1.
The modifications of the T = 0 monopole matrix elements

between the fp shell and the g9/2 orbit are particularly
important for the shell evolutions seen in the shell-structure
changes due to the filling of specific single-particle orbits. The
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FIG. 2. (Color online) Comparison of the monopole matrix ele-
ments Vm(ab,T ) among the effective interactions JUN45, VMU, and
PMMU.

single-particle energies and interaction strengths in Eq. (1) are
taken from Ref. [53] as follows (all in MeV):

εp3/2 = −9.40,εf 5/2 = −8.29,εp1/2 = −7.49,

εg9/2 = −5.70,
(4)

g0 = 18.0/A, g2 = 0.0,

χ2 = 334.0/A5/3, χ3 = 259.2/A2.

The modifications for the T = 0 monopole matrix elements
V PMMU

m (f5/2,g9/2,T = 0) and V PMMU
m (p1/2,g9/2,T = 0) cause

significant shell variations with increasing neutron number.
The proton effective single-particle energies (ESPEs) as a
function of neutron number are shown in Fig. 3(a). Due
to the large difference between the T = 0 matrix elements
V PMMU

m (p3/2,g9/2,T = 0) and V PMMU
m (f5/2,g9/2,T = 0), the

ESPEs of the proton f5/2 orbit is pushed down drastically
relative to the p3/2 orbit as the neutron g9/2 orbit is occupied for
N > 40, and becomes lower than the other orbits for N > 46.
This shell variation reflects the behavior of the low-lying 5/2−
energy level of Cu isotopes as shown in Fig. 3(b), where the
calculation reproduces the experimental data reasonably. As
another example, the experimentally observed feature of the
near degeneracy of the 5/2− and 1/2− states for N > 40 is
reproduced very well. This is due to the large T = 0 matrix
element V PMMU

m (p1/2,g9/2,T = 0), which is adjusted to have a
similar magnitude to the one of V PMMU

m (f5/2,g9/2,T = 0).
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FIG. 3. (Color online) (a) Effective single-particle energies of
proton orbits for Cu isotopes. (b) Comparison of the energy levels
of the lowest 3/2−, 5/2−, and 1/2− states for odd-mass Cu isotopes.
The filled symbols and the lines are the experimental data and the
shell-model results, respectively. Experimental data are taken from
Ref. [63].
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FIG. 4. (Color online) Deviations of the calculated binding en-
ergies from the experimental data for Z = 28 − 34 as functions of
neutron number. Data are taken from Ref. [64].

B. Description of binding energies

The total binding energies are expressed as

B(Z,N ) = ESM (Z,N ) + EC(Z,N ) + BE(56Ni),

(5)

where ESM (Z,N ) is the shell-model ground-state energy
calculated by the present PMMU model, EC(Z,N ) is the
Coulomb energy, and BE(56Ni) is the binding energy of
the 56Ni core [64]. The Coulomb energy is evaluated by using
the empirical formula

EC(π,ν) = εCπ + π (π − 1)

2
VC +

(
1

2
π

)
bC + �npπν,

(6)

where π and ν denote the numbers of valence protons and
neutrons, respectively. We use the parameter set 2 in Table I
of Ref. [65], where the values of εC , VC , bC , and �np in
Eq. (6) are determined so as to fit the observed Coulomb
displacement energies for the mass region of 20 < Z < 42
and 32 < N < 50.

In Fig. 4, deviations of the calculated binding energies from
the experimental values are shown for various isotopic chains
as functions of neutron number N . All the results are obtained
by the shell-model calculations without any truncation for Ni,
Cu, Zn, Ga, Ge, As, and Se isotopes. The binding energies
of As and Se isotopes are calculated for N = 33, 34, 48, 49
and N = 34, 35, 48, 49, respectively. The overall agreement
with data is quite good for the entire mass range included in
the fitting (A = 58–83), except that one finds relatively large
deviations for nuclei below N = 36 where the calculations
give an overbinding. One can expect that the calculation may
also be applicable to other nuclei that have not been included
in the fitting procedure.

IV. STRUCTURES OF LOW-LYING STATES

To test the validity of a new effective shell-model inter-
action, it is important to examine it through systematical
calculations for the low-lying states of many nuclei. In this

section, the first excited 02
+, 21

+, 41
+ states and other

low-lying states are discussed.

A. Systematics of excited 21
+, 41

+, and 02
+ states

The systematics of the 21
+, 41

+, and 02
+ states are studied

for a wide range of even-even nuclei in this mass region.
Figure 5 shows the excitation energies of these states for
Ni, Zn, Ge, and Se isotopes. The lightest isotope in each
isotopic chain is taken to be the one with N = Z. Overall, the
calculations reproduce the experimental data fairly well. The
common discrepancy of the calculation is that beyond N = 40
in each isotopic chain, the theoretical 21

+ energies are higher
than the experimental ones. This would suggest that the present
model space is insufficient to describe the systematic behavior
beyond N = 40, possibly due to the missing d5/2 orbit. Other
discrepancies are seen in the description of the 21

+ states
of the Ni isotopes and the 41

+ states of the Zn isotopes. As
for the Ni isotopes, the observed excitation energy Ex(21

+)
takes the largest value at N = 40 while the calculation shows
a peak at N = 38. These could be attributed to the missing
f7/2 orbit in the present model space. If the f7/2 orbit had
been included, the attractive T = 0 monopole force between
the proton f7/2 and neutron p1/2 orbits would push down the
neutron p1/2 orbit, causing an increase of the shell gap between
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FIG. 5. (Color online) Systematics in the excitation energies of
the first excited 0+, 2+, and 4+ states for Ni, Zn, Ge, and Se isotopes.
The 0+, 2+, and 4+ states are indicated by the squares, circles, and
triangles, respectively. The calculated results are shown by the solid
lines with the same colors, and compared with the experimental data
taken from Ref. [63].
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lying states in the Ge isotopes. (a) The occupation numbers n(νg9/2) of
the low-lying states in the Ge isotopes. The broken line indicates the
naive filling configuration. (b) The differences between the neutron
occupation numbers and the naive filling configurations.

the neutron g9/2 and p1/2 orbits, which could result in a large
excitation energy Ex(21

+) at N = 40 as seen in the experiment.
We now focus the discussion on the interesting behavior of

the first excited 02
+ state. As can be seen in Fig. 5, the common

feature is that the excitation energy of the 02
+ states changes

drastically along each isotopic chain and reaches the minimum
at N = 40. In particular for 72Ge, the 02

+ state lies below
the 21

+ state. Thus this is a mysterious 02
+ state for the Ge

isotopes. There have been many theoretical attempts to explain
this behavior. However, most shell-model approaches did not
succeed to answer this question. The shell-model calculation
using the JUN45 effective interaction successfully reproduced
the irregular behavior of the 02

+ state [21]. Comparing the
theoretical results and the experimental data shown in Fig. 5,
one can see that the present calculation describes correctly the
trend of systematics of the 02

+ states for all the Ni, Zn, Ge,
and Se isotopes.

We can explain how this systematical trend is obtained
in our calculation. Figure 6 shows the occupation numbers,
n(νg9/2), of the neutron g9/2 orbit in the yrast 01

+, 21
+,

and 41
+ states, and in the excited 02

+ state. As one can see
from Fig. 6(a), n(νg9/2) in all the three yrast states increase
monotonously with the neutron number. On the other hand,
n(νg9/2) of the 02

+ state shows a different behavior: the
increasing trend turns back at N = 40 where the minimum
is seen. Moreover, the n(νg9/2) curve of the 02

+ state deviates
clearly from the yrast ones at N = 40 and 42, but behaves as
the broken line in Fig. 6(a) that represents the naive filling
configuration. The additional occupancy of the g9/2 orbit to
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FIG. 7. (Color online) Proton p3/2 occupancies for the low-lying
states in the Ge isotopes. (a) The occupation numbers n(νp3/2) of
the low-lying states in the Ge isotopes. The broken line indicates the
naive filling configuration. (b) The differences between the neutron
occupation numbers and the naive filling configurations.

the naive filling occupancy n(νg9/2)0, shown by the broken
line in Fig. 6(a), is considered as a measure of excitation
from the pf5/2 shell to the g9/2 orbit. The magnitude of the
additional occupancy �n(νg9/2) = |n(νg9/2) − n(νg9/2)0| can
be seen more clearly in Fig. 6(b). The enhanced excitations
of the yrast states increase the collectivity in the isotopes
of N = 40 and 42. In contrast, such excitations are largely
suppressed for the 02

+ state in these two isotopes. Thus the
magicity of the N = 40 leads to a lowering of the 02

+ state
toward N = 40. Similar conclusions were given in Ref. [21].

On the other hand, the proton occupation numbers n(πp3/2)
in the p3/2 orbit are shown in Fig. 7(a). One sees again the
distinct behavior of the 02

+ state from the 01
+, 21

+, 41
+ yrast

states. For the yrast states, n(πp3/2) are around two for the
isotopes below N = 40, but start to decrease with increasing
neutron number after N = 40. As the occupation number for
the naive filling configuration is 4, two protons are excited
from the p3/2 orbit to the upper orbits below N = 40, and the
proton excitation is gradually enhanced starting from N = 42.
For the heavier isotopes, additional protons are excited to the
f5/2 orbit, generally because of the deformation and the pairing
effect. For the excited 02

+ state, however, the proton occupancy
indicates a sudden jump at N = 40 before starting to decrease
after that neutron number. Figure 7(b) reinforces the discussion
in a form of �n(πp3/2) = |n(πp3/2) − n(πp3/2)0|.

Thus we can explain the lowering of the excited 02
+ energy

at N = 40 (see Fig. 5) as a result of cooperative effects
of magicity at the closed-shell configuration for proton and
neutron. The magicity of the N = 40 subshell gives rise to
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the lowering of the excited 02
+ state of the Ge isotopes at

this neutron number. When protons occupy the p3/2 orbit at
N = 40, the neutron p1/2 orbit is lowered due to the T = 0
attractive monopole force V PMMU

m (p3/2,p1/2,T = 0) between
the proton p3/2 and the neutron p1/2 orbits. This results in both
increases of the neutron shell gap between the p1/2 and g9/2

orbits and the proton shell gap between the f5/2 and p3/2 orbits,
which lowers the excitation energy of the first excited 02

+
state. For the Se isotopes, the calculated 02

+ energy increases
at N = 40, in contrast to the experimental data. In this isotopic
chain, the monopole interaction between the proton f5/2 orbit
and neutron g9/2 orbit results in a decrease of the proton shell
gap at N = 40 because the proton f5/2 and neutron g9/2 orbits
are lowered due to this monopole force. In fact, for 74Se the
proton p3/2 occupation numbers are 3.4 and 2.8 for the 02

+
and other states, respectively. The difference is not large and
is about half of that for 72Ge [see Fig. 7 (a)]. This monopole
component may be too strong for the lowering of the 02

+
state at N = 40 in the Se isotopes. For the ground-state band,
the neutron occupation number n(νg9/2) increases smoothly
in Fig. 6(a) due to the drastic increase of �n(νg9/2). This
means that the neutron shell gap at N = 40 is washed out due
to the strong pairing and quadrupole-quadrupole force. The
ground-state band thus varies smoothly without showing any
shell changes.

Finally, we discuss E2 transition probabilities within the
low-lying yrast states. Figure 8 compares the calculated
B(E2,21

+ → 01
+) and B(E2,41

+ → 21
+) with available

experimental data for Ni, Zn, Ge, and Se isotopes. The effective
charges in the E2 calculation are taken as ep = 1.5 and
en = 1.1 for protons and neutrons, respectively. The choice of a
larger neutron effective charge than the standard one (en = 0.5)
gives a better agreement for most of the data points. There
are however discrepancies. For the Ni isotopes, the calculated
B(E2) values are smaller than the experimental ones except
for N = 40. This could be due to the polarization effect from
the 56Ni core. The contributions from the f7/2 shell may be
important for enhancement of the B(E2) values. For the Zn
isotopes, most experimental data are reproduced except for
those near N = 40, where the calculated B(E2) values are
too small. As seen from the ESPE in Fig. 3, the proton shell
gap between the p3/2 and the f5/2 orbits increases particularly
at N = 40. The calculated small B(E2) results reflect this
increase of the shell gap. The results for the Ge isotopes are
overall in good agreement with the experimental data except
for N = 34 and N = 36, where the calculated B(E2) values
are larger than the experiment. This may indicate that the shell
gap between the p3/2 and the f5/2 orbits is too small in the
calculation. For the Se isotopes, the calculation reproduces the
experimental B(E2) values pretty well.

B. Other low-lying states of even-even nuclei

In addition to the systematic behavior of the 21
+, 41

+,
and 02

+ states, other energy levels of the low-lying states in
even-even nuclei are also calculated. In Fig. 9, the obtained
energy levels of the low-lying negative-parity states 31

− and
51

− are compared with the experimental data for Ni, Zn, Ge,
and Se isotopes. Although they have already been discussed
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FIG. 8. (Color online) Systematics in the B(E2; 21
+ → 01

+) and
B(E2; 41

+ → 21
+) values for Ni, Zn, Ge, and Se isotopes. The

calculated results are compared with the experimental data taken from
Ref. [63], where the 21

+ and 41
+ data are indicated by circles and

triangles, respectively. The effective charges for proton and neutron
are taken as 1.5 and 1.1, respectively.

in the previous subsection, the states with 21
+ and 41

+ are
also given as references to show the relative energies between
states with positive and negative parities. For the Ni isotopes,
the calculated energy levels of the 31

− and 51
− states agree

reasonably well with the experimental ones. Only for the light
isotopes with N = 30 and 32, the calculated 31

− states are
slightly higher. For the Zn isotopes, the calculation reproduces
the overall trend of the 31

− and 51
− states along the isotopic

chain. Nevertheless, the calculated 31
− levels are high for the

lighter isotopes as compared to the data. Again for N = 30 and
32 there are clear deviations of the theoretical results of 51

−
from the corresponding data. For the Ge isotopes, as already
discussed, the calculation of the 21

+ and 41
+ states reproduces

the known data quite well. The calculated 31
− energies are

found in good agreement with the experimental data, while the
calculated 51

− states are generally lower than the data (except
for N = 32). In Fig. 9, the calculated 5− energies generally
agree with the experimental data for the Ni and Zn isotopes.
An underestimation in the calculation is found only in the Ge
isotopes with N = 34–38 and the Se ones with N = 34,36. For
the Se isotopes, the systematics for the 2+

1 , 4+
1 , and 31

− states
are well described by the calculation. However, the calculation
seems to depart from the two data points (N = 34 and 36) for
the 51

− states.
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FIG. 9. (Color online) Energy levels of low-lying states for (a) Ni, (b) Zn, (c) Ge, and (d) Se isotopes with even number of neutrons.
Calculated energy levels of the first 2+, 4+, 3−, and 5− states are shown with solid, dotted, and dot-dashed lines, respectively. They are
compared with the experimental data denoted by circles, squares, and down triangles. Experimental data are taken from Ref. [63].

C. Low-lying states of odd-mass nuclei

Low-lying states in odd-mass nuclei contain valuable infor-
mation on the interplay between single-particle and collective
motion. We now discuss energy levels of the low-lying states
in odd-mass nuclei of this mass region, and try to extract
information on the shell evolution along the isotopic chains.
Figure 10 shows the comparison between the shell-model
results and experimental data for the Ni, Zn, Ge, and Se
isotopes with odd number of neutrons. The common feature
for these isotopes is that the three negative-parity states, 1/2−,
3/2−, and 5/2−, all appear near the ground state. In particular
for the Ni and Zn isotopes, the experimental data indicate that
these three energy levels are nearly degenerate for N = 31–37.
The degeneracy is lifted for heavier isotopes with N � 39. On
the other hand, the positive-parity 9/2+ state lies high in energy
in the lightest isotope with N = 31, and dives down quickly
as a function of neutron number. It enters into the ground-state
region at N = 41 (Ni and Zn) or 39 (Ge and Se).

As one can see in Fig. 10, our calculation reproduces the
global feature correctly although for some states the agreement
is only at a qualitative level. The largest deviation from the
experimental data is seen for the 1/2− state in the lightest
isotopes, where the calculated levels are higher than the data.
The observed excitation energy for the 5/2− state increases
at the neutron number N = 39 and N = 41, which is well
described by the calculation. The calculated 3/2− levels rise
up drastically from N = 37, and lie close to the 5/2− levels
for N � 41. For the Ge and Se isotopes, the overall variations

of the low-lying states are not very drastic when neutron
number increases. In all these isotopes, the calculations predict
a near degeneracy of the 3/2− and 5/2− states beyond
N = 45. This degeneracy can be understood by the influence
of the small difference of T = 1 monopole values between
V PMMU

m (f5/2,g9/2,T = 1) and V PMMU
m (p3/2,g9/2,T = 1).

Another notable feature is that, as the neutron f5/2 orbit
is occupied, the energy of the positive-parity 9/2+ state
goes down rapidly. This trend is correctly described by the
calculation, and in particular, the 9/2+ energy levels for
Ge and Se isotopes are reproduced very well, as seen in
Figs. 10(c) and 10(d). Honma et al. [21] has explained this
trend as well from their calculations. It can be interpreted as
a result of the monopole effect due to differences between
V PMMU

m (f5/2,f5/2,T ) and V PMMU
m (f5/2,g9/2,T ). For the 9/2+

state, however, the agreement between our shell-model results
and data becomes worse for nuclei near the closed shell.
In the Ni and Zn isotopes, the calculated 9/2+ states are
considerably higher than the experimental ones for nuclei with
N = 35 and N = 37. This may be due to the large difference
between V PMMU

m (f5/2,f5/2,T = 0) and V PMMU
m (f5/2,g9/2,T =

0). In the Ni and Zn nuclei with N = 33 − 37, the monopole
contribution disappears and the g9/2 ESPE goes up. This could
be the reason why the calculated 9/2+ states reproduce the
data well for the Ge and Se nuclei, while they fail for the Ni
and Zn nuclei with N = 35 and N = 37.

Next, we present the results for the low-lying states of
odd-mass nuclei with odd-proton and even-neutron numbers.
Figure 11 shows the energy levels of odd-Z Cu, Ga, and As
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FIG. 10. (Color online) Energy levels of low-lying states for (a) Ni, (b) Zn, (c) Ge, and (d) Se isotopes with odd number of neutrons.
Calculated energy levels of the first 3/2−, 5/2−, 1/2−, and 9/2+ states are shown with solid, dotted, and dot-dashed lines, respectively. They
are compared with the experimental data denoted by circles, squares, and down triangles. Experimental data are taken from Ref. [63].

isotopes as functions of neutron number. As already discussed
in Fig. 3, the 5/2− level comes down rapidly beyond the
neutron number N = 40 corresponding to the ESPE of the
f5/2 orbit in Fig. 3(a). The lowering of the 5/2− level can be
understood as a result of the large attractive T = 0 monopole
term V PMMU

m (f5/2,g9/2,T = 0) (see Fig. 2) due to the tensor
force discussed in Eq. (2). In all these isotopes, the 5/2− energy
levels are close to the 1/2− energy levels. This degeneracy
can also be understood by the effects of the small difference
of T = 0 monopole values between V PMMU

m (f5/2,g9/2,T = 0)
and V PMMU

m (p1/2,g9/2,T = 0). The shell-model description
is not successful for the 5/2− states of Cu isotopes with
N = 30–40. This could be due to the Z = 28 core excitations
that are not included in the present calculation. We can

see that the calculated results for the 9/2+ states reproduce
the experimental data for N > 40 (with an exception for
N = 44,46 Ga isotopes), while those are worse for N < 40.
This may be originated from the missing effects of the T = 0
monopole term between the f7/2 and g9/2 orbits. For the
Ga isotopes, the calculated results for the 1/2−, 3/2−, and
5/2− states are in good agreement with the experimental data,
while for N = 30 − 34 the calculated 3/2− state is higher
than the experiment. The calculations for the 9/2+ states
reproduce well the trend of the experimental data. For the As
isotopes, the energy of the 9/2+ state comes down drastically
and shows a minimum at N = 42. The minimum at N = 42
here can be associated with the development of deformation
and correlation with the 21

+ excitation energy of the doubly
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FIG. 11. (Color online) Energy levels of low-lying states for (a) Cu, (b) Ga, and (c) As isotopes with even number of neutrons. Calculated
energy levels of the first 3/2−, 5/2−, 1/2−, and 9/2+ states are shown with solid, dotted, and dot-dashed lines, respectively. They are compared
with the experimental data denoted by circles, squares, and down triangles. Experimental data are taken from Ref. [63].
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FIG. 12. (Color online) Magnetic moments and electric quadrupole moments for (a) Cu, (b) Ga, and (c) Ge isotopes. Magnetic moments
with geff

s , geff
s = 0.7g(f ree)

s , and electric quadrupole moments with the effective charges ep = 1.5e for proton and en = 1.1e for neutron.
Experimental data are taken from [8,22,63,66,67].

even Ge and Se isotopes, as discussed in Fig. 5. The present
calculations for the odd-proton As isotopes describe well such
a feature.

D. Magnetic dipole moments and electric quadrupole
moments in Cu, Ga, and Ge isotopes

In addition to energy levels, it is important to test the PMMU
model further with E2 transition calculations. The magnetic
moment operator is given as

μ = gss + gl l, (7)

where gs and gl are the spin and the orbital g factors,
respectively. In the calculation, we employ a quenching factor
0.7 (geff

s = 0.7g
f ree
s ) for the free-nucleon spin g factors,

g
f ree
s = 5.586 for protons and g

f ree
s = −3.826 for neutrons.

The effective charges in the electric quadrupole moment
calculation are taken as ep = 1.5e for protons and en =
1.1e for neutrons. Figure 12 shows the calculated results of
magnetic moments and electric quadrupole moments for the
Cu, Ga, and Ge isotopes. For comparison, the theoretical
results for the lowest states obtained from other effective
interactions, the JUN45 [21] and JJ4B interactions [21,30],
are also plotted. The calculated isotopes range from the magic
number N = 28 on the neutron-deficient side to N = 50 on the
neutron-rich side, including the semimagic subshell closure at
N = 40, where the parity change between the pf shell and the
g9/2 orbit occurs.

In the upper graph of Fig. 12(a), the calculated magnetic
moments are shown for the Cu isotopes [66]. One can see
that overall, the calculation reproduces well the experimental
data. For the odd-A Cu isotopes, the experimental magnetic
moments of 57Cu and 69Cu are close to the effective single-
particle value of the πp3/2 configuration, indicating clearly
the magicity at N = 28 and N = 40, respectively. The magic
behavior at N = 40 originates from the parity exchange

between the νp1/2 and νg9/2 single-particle levels, which
does not allow M1 excitations from the negative-parity pf
shell to the positive-parity νg9/2 orbit. Some differences in
magnetic moment between theory and experiment are found
below N = 40, which may indicate that the N = 28 shell
gap is not very large, and proton excitations from the πf7/2

shell become important. Indeed, the GXPF1A calculation
reproduced well the experimental magnetic moments [34]. The
calculated results begin to differ largely from the experimental
data for the neutron-rich side with N > 40. This could be due
to the influence of the missing πf7/2 orbit. When neutrons
begin to occupy the νg9/2 orbit, proton excitations from the
πf7/2 orbit for N > 40 may increase because the gap between
the πf5/2 and πf7/2 orbits decreases due to the attractive
T = 0 monopole interaction between the πf7/2 and νg9/2

orbits. Then g factors would be better reproduced for N > 40.
The calculated magnetic moments for the even-A isotopes are
shown in the same graph, and are found in good agreement
with the data. In the lower graph of Fig. 12(a), the calculated
spectroscopic quadrupole moments are compared to the known
experimental values. As one can see, a good description of the
data has been achieved by the calculation for all the isotopes.

In the upper graph of Fig. 12(b), the calculated magnetic
moments are shown for the Ga isotopes [67]. The results for
67,69Ga and 75,77Ga are smaller and larger than the effective
single-particle moments geff (πp3/2) = 2.96 of the πp3/2 orbit
and geff (πf5/2) = 1.46 of the πf5/2 orbit, respectively, which
suggests that the ground states of these isotopes have mixed
configurations. For 71Ga (N = 40), the observed magnetic
moment is close to the effective moment geff (πp3/2) = 2.96
of the πp3/2 orbit, thus the πp3/2 configuration with the single
proton is the leading one in the ground state. For 79Ga, the
calculated magnetic moment of the lowest I = 3/2− state
is significantly larger than the experimental data, and the
calculated quadrupole moment has opposite sign to that of
the experiment. This problem can be solved if we take the
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calculated magnetic and quadrupole moments for the first
excited I = 3/2− state instead of the lowest one to compare
with the experimental data. Then a good agreement with data
for the I = 3/2− state of 79Ga can be achieved, as can be
seen in Fig. 12(b). Also in the JUN45 and JJ4B calculations,
the magnetic moment of the first excited state was taken
to compare with experimental data. The electric quadrupole
moments of the lowest excited 3/2− states are plotted in the
lower graph of Fig. 12(b). One can see that the sign inversion
occurs around 73Ga with N = 42. The opposite sign in their
quadrupole moments suggests clearly a drastically different
structure. This can be understood by nonoccupation of the
πp3/2 orbit, because the proton πp3/2 configuration has the
negative quadrupole moment. The configurations of the ground
state in 75,77Ga have a dominant π (p3/2f

2
5/2) configuration. As

one can see, the JJ4B calculations for quadrupole moment fail
to reproduce experimental data for 69,71Ga.

The calculated magnetic moments and spectroscopic
quadrupole moments for the first excited 2+ states of the
Ge isotopes are shown in Fig. 12(c), and compared with
experimental data [8,22]. In the upper graph, the calculated
results underestimate the measured magnetic moments, except
for 70Ge (N = 38). It is interesting to notice that our
calculation suggests similar results as compared to the JUN45
calculations. As one shall see later, the calculated excitation
spectrum is in a reasonable agreement with the experimental
data. However, the quadrupole moments of the 21

+ states
are not at all accounted for by all the current shell-model
calculations, as seen in the lower graph of Fig. 12(c). This
remains to be a puzzle for future investigations.

V. STRUCTURE OF EXCITED STATES IN
GE AND SE ISOTOPES

In the previous section, we presented systematical results
for low-lying states from the shell-model calculation. In
Figs. 10 and 11, we have seen rapid changes in energy levels
occurring around N = 40. In Fig. 8, the B(E2) values increase
rapidly around N = 42 for Ge and Se isotopes. All these
can be clear signals for transitions from a near-spherical to
a prolate shape. In the transitional region, a shape coexistence
phenomenon would show up. The first excited 0+ state, 02

+
in doubly even nuclei, is a key measure to indicate shape
coexistence, because the 02

+ state is usually the bandhead of
the emerging sideband. As we have already seen in Fig. 5,
the energy of the 02

+ state decreases rapidly and becomes the
lowest at N = 40 among all isotopes. In 72Ge, the 02

+ state
becomes notably the first excited state, lower than 21

+. This
state has been suggested to have a spherical shape from the
experimental B(E2) data. As already mentioned, there have
been many theoretical approaches based on the mean-field
model to understand this problem [68]. The shell-model
approach described well the 02

+ state [21]. Thus we can
expect that there are significant structure changes between
the lighter (N < 40) and heavier (N > 40) isotopes. It is thus
interesting to see whether our PMMU model is applicable to
the description of full spectra including high excitations. In
this section, we will discuss the energy levels and the E2
transitions for the Ge and Se isotopes. As already shown in

Figs. 9 and 10, our shell-model calculation describes fairly
well the experimental energy levels for both even-even and
odd-mass isotopes. In particular, the anomalous behavior of the
02

+ states around N = 40 is reproduced correctly. Of course,
there are too many excited states in the calculation. Hereafter,
we show only the excited energy levels and bands that may
have at least some experimental indications.

A. Even-even Ge isotopes

We start with the N = Z = 32 nucleus 64
32Ge. This nucleus

has been known as a typical example showing the γ -soft struc-
ture among the N = Z nuclei [15,69], which was supported
by shell-model calculations with mean-field approximation
[17]. The calculation [17] predicted γ instability in the
ground state and triaxial deformation in the excited states.
Comparing our current shell-model calculations for 64Ge with
the experimental data in Fig. 13, one can see that the low-lying
states below 3 MeV are reasonably reproduced. However,
the sidebands for positive- and negative-parity states cannot
be well described. The calculated energy levels are too high
compared to the experimental ones. This could be due to the
missing f7/2 orbit, which is not included in the present model
space.

Figure 14 shows the energy levels of the next isotope 66Ge.
Overall, the calculation describes well the level distribution for
both positive- and negative-parity states. For the positive-parity
states, one finds a one-to-one correspondence between the
theoretical levels and experimental ones. The 31

− excitation
energy obtained in the calculation is in good agreement with
data. However, the calculated 51

− state is predicted to be
too low by about 0.8 MeV, and is almost degenerate with
the 31

− state. The two closely lying 7− and two 9− states
seen in the experiment are reasonably well reproduced. As
shown in Table I, the E2 transition probabilities cannot be
reproduced by the calculation. The calculated B(E2,21

+ →
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FIG. 13. Comparison of energy levels between the shell-model
results and the experimental data for 64Ge.
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FIG. 14. Comparison of energy levels between the shell-model
results and the experimental data for 66Ge. The experimental
(calculated) energy levels are shown in the left (right) side. In each
side, the first (second) line indicates the positive- (negative-)parity
states. Experimental data are taken from [63].

01
+) value is more than twice the observed one. Nevertheless,

the B(E2,22
+ → 21

+) value is in good agreement with the
experimental data. As seen early in Fig. 8, the theoretical
B(E2,21

+ → 01
+) for the Ge isotopes reproduce quite well

the experimental data, but those for the 66Ge and 68Ge are
larger than the data.

Figure 15 shows the comparison of the 68Ge energy
levels between our calculation and the experiment. The
calculated results are overall satisfactory. We note that many
experimentally observed states for the energy range 3–4 MeV
have no spin assignment. The calculation predicts the second
excited 22

+ state above the known 21
+ state and the second

excited 62
+ state above the known 61

+ state. On the other hand,
the calculated negative-parity energy levels correspond better
to the experimental ones. For electric quadrupole transitions
in the positive-parity states, one sees from Table I that similar
to 66Ge, the calculated B(E2,21

+ → 01
+) value is quite

large compared to the corresponding data. The calculated
B(E2,22

+ → 21
+) is also much larger than the data. However,

TABLE I. B(E2) values for the positive-parity yrast states and
some collective states of 66Ge and 68Ge. Experimental data are taken
from Refs. [7,63].

66Ge (W.u.) 68Ge (W.u.)

J π
i → J π

f Expt. Calc. Expt. Calc.

21
+ → 01

+ 12.0(23) 29.0 15.3(8) 25.4
41

+ → 21
+ >9.6 33.2 12.8(15) 22.4

61
+ → 41

+ >1.2 36.1 12(4) 1.8
81

+ → 61
+ 0.0 14(3) 0.1

22
+ → 21

+ 16(7) 14.5 1.0(5) 29.5
22

+ → 01
+ 0.13(5) 0.5 0.40(5) 0.1
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FIG. 15. Comparison of energy levels between the shell-model
results and the experimental data for 68Ge. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.

the calculated B(E2,61
+ → 41

+) and B(E2,81
+ → 61

+) are
too small compared to the measurement.

Calculated energy levels of 70Ge are presented in Fig. 16
and compared with experimental data. The known experimen-
tal levels for both positive and negative parities below 7 MeV
are taken for comparison. The calculation reproduces correctly
the first excited 02

+ state as well as the 2+ and 4+ states.
Nevertheless, different from the experiment, the calculated
02

+ state is lower than the 21
+ state. Many experimental

levels in the energy range 2–4 MeV have no spin assignment.
The calculated higher spin states above 4 MeV with 8+,
10+, and 12+ correspond well to the observed ones. For the
negative-parity states, the first excited 31

− state is in very good
agreement with the experimental data at ∼2.5 MeV, while the
higher spin states 51

−, 71
−, and 101

− can find correspondence
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FIG. 16. Comparison of energy levels between the shell-model
results and the experimental data for 70Ge. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.
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TABLE II. B(E2) values for the positive-parity yrast states and
some collective states of 70Ge and 72Ge. The experimental data are
taken from [22].

70Ge (W.u.) 72Ge (W.u.)

J π
i → J π

f Expt. Calc. Expt. Calc.

21
+ → 01

+ 21.0(4) 22.9 23.5(4) 26.0
41

+ → 21
+ 24(6) 29.4 37(5) 40.0

61
+ → 41

+ 34(7) 31.2 36+49
−31 41.0

81
+ → 61

+ 6.5(17) 7.8 4(3) × 101 1.7
22

+ → 21
+ 1.11(60) × 102 8.0 62(11) 19.9

22
+ → 01

+ 25(14) 0.2 0.130(24) 1.3

with the observed levels. The calculated B(E2) values for
the positive-parity states are compared with experimental
data in Table II. The agreement with data is satisfactory,
however, with one exception of B(E2,22

+ → 21
+), for which

the measurement has large uncertainties.
Figure 17 shows energy levels of 72Ge. For this isotope, it is

expected that the levels reflect the N = 40 subshell structure.
However, both the observed 21

+ and 02
+ states are lower than

corresponding ones in 70Ge. As already seen in the systematics
of Fig. 2 and discussed previously, the 02

+ state becomes
lowest at N = 40. This feature is correctly described by the
calculation. The calculated second excited 03

+ state at about
2 MeV is also in good agreement with the experimental data.
For the positive-parity states, there is basically a one-to-one
correspondence between theory and experiment up to 4 MeV,
although the observed level ordering is not always reproduced.
The predicted 6+ and 8+ states are lower than the experimental
data. For the negative-parity states, the 31

− state from the
calculation is slightly lower than the data, and the 11

− state
is quite low compared to the data. The E2 transitions of the
positive-parity states are shown in Table II. It is found that
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FIG. 17. Comparison of energy levels between the shell-model
results and the experimental data for 72Ge. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.
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the calculated B(E2) values reproduce the experimental data
for B(E2,21

+ → 01
+), B(E2,41

+ → 21
+), and B(E2,61

+ →
41

+), but not for B(E2,81
+ → 61

+) and B(E2,22
+ → 21

+).
Energy levels of 74Ge are shown in Fig. 18. The shell-

model description for this isotope is found to be reasonable.
Comparing the energy levels between 74Ge and 72Ge, the
02

+ state in 74Ge is considerably higher than that in 72Ge.
This feature is successfully reproduced by the calculation.
For the negative-parity levels, the 11

− state is the lowest in
experiment while the theory gives 31

−. Comparing the E2
transitions between the calculation and experiment in Table III,
one can see that a reasonable agreement is obtained, although
there is again a problem for B(E2,22

+ → 21
+). The large

B(E2) values in this isotope suggest an increasing collectivity
beyond N = 40.

Energy levels of 76Ge are shown in Fig. 19. The observed
02

+ state lies at about 1.9 MeV, but the calculated one is found
much lower than that. The first two 2+ states are calculated too
high compared to the data. Nevertheless, the B(E2) values for
this isotope are successfully reproduced by the calculation, as
can be seen in Table III.

TABLE III. B(E2) values for the positive-parity yrast states and
some collective states of 74Ge and 76Ge. The experimental data are
taken from [22].

74Ge (W.u.) 76Ge (W.u.)

J π
i → J π

f Expt. Calc. Expt. Calc.

21
+ → 01

+ 33.0(4) 36.7 29(1) 31.7
41

+ → 21
+ 41(3) 51.3 38(9) 42.4

61
+ → 41

+ 50.7 0.7
81

+ → 61
+ 44.3 27.6

22
+ → 21

+ 43(6) 39.6 42(9) 33.7
22

+ → 01
+ 0.71(11) 1.7 0.90(22) 0.0
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FIG. 19. Comparison of energy levels between the shell-model
results and the experimental data for 76Ge. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.

B. Odd-mass Ge isotopes

We now turn our discussion on the odd-mass Ge isotopes.
Figure 20 shows the energy levels of 69Ge. A reasonable
correspondence between theory and experiment can be seen
for both the negative- and positive-parity states, and up to
about 8 MeV. The calculation reproduces correctly the ground
state 5/2− and other nearby states. The positive-parity states
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states. Experimental data are taken from [63].

TABLE IV. B(E2) values for the positive-parity yrast states and
some collective states of 69Ge and 71Ge. The experimental data are
taken from [63].

69Ge (W.u.) 71Ge (W.u.)

J π
i → J π

f Expt. Calc. Expt. Calc.

1/21
− → 5/21

− 0.583(25) 5.7 6.87(18) 2.1
3/21

− → 1/21
− 32(23) 7.4 4.3

3/21
− → 5/21

− 65(19) 21.4 15.5
7/21

− → 3/21
− 12(5) 6.8 21.2

11/21
+ → 9/21

+ 27(4) 30.2 23(6) 29.4
13/21

+ → 9/21
+ 23(4) 19.1 42(9) 10.4

9/21
− → 5/21

− 9.0(17) 8.0 8.7(18) 21.8
3/21

+ → 5/21
+ 5+7

−5 × 101 1.3 0.1
15/21

+ → 13/21
+ 2.4(11) 18.0 3.7

17/21
+ → 13/21

+ 12.4(21) 18.3 1.8
15/21

− → 13/21
− 3+4

−3 × 101 0.0 0.2
17/21

+ → 15/21
+ 10(6) 0.2 12.1

19/21
− → 15/21

− 8.5(10) 5.2 8.2
21/21

− → 19/21
− 1.2(4) 1.1 20.4

23/21
− → 19/21

− 1.86(15) 11.7 0.9

are also in good agreement with data, while the second excited
5/22

+ state is calculated higher than the observed one. This
may suggest that this state has contributions from the d5/2

orbit, which is not included in the present model space.
The calculated highest spin states in Fig. 20, the states with
25/2−, 33/2−, and 35/2−, are by about 1 MeV higher than
the experimental data. Moreover, we find in Table IV that
the most known E2 transitions can be reasonably described
by the current theoretical results.

For 71Ge, energy levels between theory and experiment
are compared in Fig. 21. The calculation describes correctly
the change of the ground state from the 5/2− state in 69Ge
to the 1/2− state in 71Ge. The calculated level sequences are
essentially similar to those of 69Ge, although there are no
spin-parity assigned levels above 3 MeV in the experimental
data. While the yrast states with negative parity are predicted
at reasonable excitation energies, the positive-parity states are
not reproduced well. For example, the excited states above the
lowest 9/2+ state are predicted too high by the calculation.
However, the behavior of the 1/2+ and 17/2+ doublet states
are nicely described. In Table IV, the calculated B(E2) values
are compared with the known experimental data.

As seen in Fig. 22, the shell-model results for 73Ge suggest
the lowest-lying 7/2+, 1/2+, and 9/2+ states, however, they
fail to reproduce the experimental ground-state spin 9/2+.
The calculated 5/2+ (1/2+) state is higher (lower) than the
experimental one. The failure to describe the 5/2+ state can
be systematically seen in 69Ge and 71Ge, which could be
due to the missing d5/2 orbit in the present model space.
The higher-lying yrast states 11/2+, 13/2+, and 17/2+ are
reasonably reproduced, while there is no observed spectrum
above 2 MeV for this isotope. For the negative-parity states,
the calculated 7/2− is higher than the experimental one. The
calculated B(E2) values are shown in Table V.
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FIG. 21. Comparison of energy levels between the shell-model
results and the experimental data for 71Ge. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 20.

In Fig. 23, energy levels of the heaviest odd-mass isotope
studied in this paper, 75Ge, are shown. Energy levels for
this isotope are experimentally observed below 2 MeV. The
calculation reproduces correctly the spin parity for the ground
state 1/2−. The low-lying negative-parity states 3/2− and
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FIG. 22. Comparison of energy levels between the shell-model
results and the experimental data for 73Ge. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 20.

TABLE V. B(E2) values for the positive-parity yrast states
and some collective states of 73Ge and 75Ge. Nonyrast states are
distinguished with their subscripts from the yrast states with no
subscript. The subscript denotes a serial number for each spin J .

73Ge (W.u.) 75Ge (W.u.)

J π
i → J π

f Expt. Calc. Expt. Calc.

5/21
+ → 9/21

+ 23.1(8) 20.5 28.4
7/21

+ → 9/21
+ 41(8) 48.4 44.0

13/21
+ → 9/21

+ 30(2) 29.5 37.8
5/21

+ → 7/21
+ 4.8 30(24) 18.4

5/2− are reproduced reasonably. For the positive-parity states,
the triplet 9/2+, 7/2+, and 5/2+ states are also in good
agreement with the experimental data. Since a precise level
ordering for states with high density can be sensitive to the
interaction matrix elements, the reproduction of the data may
be accidental. As for electric quadrupole transitions, only the
B(E2) value between 7/2+ and 5/2+ has been observed, and
is in good agreement with our calculation, as seen in Table V.
The other E2 transition probabilities are predicted.

C. Even-even Se isotopes

The A ∼ 70 nuclei with N ∼ Z are known to exhibit a
variety of nuclear shapes. Experimental data have provided
clear evidence for shape coexistence in this mass region. The
experimental signature of shape coexistence is the presence of
a low-lying 02

+ state. Determination of shapes was inferred
indirectly from the study of rotational bands, while direct
quadrupole measurements are difficult for short-lived states.
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FIG. 23. Comparison of energy levels between the shell-model
results and the experimental data for 75Ge. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 20.
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FIG. 24. Comparison of energy levels between the shell-model
results and the experimental data for 68Se. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.

The expectation of oblate deformation in this mass region
was confirmed by the observation of an oblately deformed
ground-state band in 68Se [16]. Figure 24 shows the calculated
energy levels up to high-spin states, which are compared with
the known experimental data. The yrast states are fairly well
described up to spin 10. The calculation predicts the first
excited 02

+ state just above the second excited 2+ state, while
the 02

+ state is not yet observed in experiment. Our calculation
supports the interpretation of an oblately deformed rotational
ground-state band in 68Se. The calculated E2 transition
strength B(E2; 21

+ → 01
+) = 27.5 W.u. is in good agreement

with the experimental value 27(4) W.u. The negative-parity 5−
and 7− levels are well described.

There have been experiments that propose an oblate shape
for the ground state in 70Se [10], while the others have
reported a prolate shape [9]. There have been a number
of microscopic calculations [10,23,26], among which the
Hartree-Fock-Bogoliubov (HFB) calculation [10] predicted an
oblate shape for the 2+ and 4+ states in the yrast band that
changes to a prolate shape for the 6+ state. The self-consistent
collective coordinate method [26] provided a similar picture.
These calculations show that the ground 01

+ state has oblate
shape, the first excited 21

+ and 41
+ states have mixed the

oblate-prolate configurations, and the 61
+ state has a prolate

shape. Indeed, the spectroscopic quadrupole moments in
the HFB calculations suggest positive values for the 21

+
and 41

+ states but a negative value for 61
+ in 70Se [10].

Figure 25 compares the energy levels between experiment and
calculation. The calculated yrast states are in good agreement
with the experimental ones, except for the 6+ and 5− states.
The calculation predicts the low-lying 02

+ state above the
first excited 21

+ state, while the experimental one is not yet
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FIG. 25. Comparison of energy levels between the shell-model
results and the experimental data for 70Se. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.

observed. In Table VI, the E2 transition strengths for the
21

+, 41
+, and 61

+ states are listed. The calculated B(E2)
values explain fairly well the trend of variation with increasing
spin J . The calculated spectroscopic quadrupole moments are
0.17, 0.49, and 0.70 eb, respectively for the Jπ = 21

+,41
+,

and 61
+ states. Using these values and assuming an axial

deformation, we can estimate the quadrupole deformation β2

as −0.10, −0.22, and −0.28 for the Jπ = 21
+, 41

+, and 61
+

states, respectively, suggesting that the yrast states in 70Se are
oblately deformed. This is consistent with the calculations in
Ref. [10], except for Jπ = 61

+.
72Se is another well-known example that exhibits an

oblate-prolate shape coexistence. The ground-state band in
72Se in the HFB-based configuration mixing method shows a
positive value of spectroscopic quadrupole moment for the 21

+
state that turns into negative for states above 41

+ [10,11]. The
present calculation suggests positive values for Jπ = 2+–6+
but a negative value for Jπ = 8+. The moment of inertia
in the ground-state band exhibits anomalous behavior at the
low-spin states of 70,72Se, while the high-spin states with
J > 8 follow a smoothly varying moment of inertia interpreted
as collective rotation. Thus as 70,72Se rotate, their ground-state
band evolves quickly into a prolate collective rotation, while
the 21

+ state can be associated with an oblate shape. The
signature of shape coexistence is the presence of a low-lying

TABLE VI. B(E2) values for the positive-parity yrast states and
some collective states of 70Se and 72Se. The experimental data are
taken from [10,63].

70Se (W.u.) 72Se (W.u.)

J π
i → J π

f Expt. Calc. Expt. Calc.

21
+ → 01

+ 44(9) 27.1 23.7(17) 21.9
41

+ → 21
+ 21(5) 34.7 55(5) 36.5

61
+ → 41

+ 15(4) 42.9 65(5) 48.5
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FIG. 26. Comparison of energy levels between the shell-model
results and the experimental data for 72Se. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.

first excited 02
+ state. In 72Se, the observed 02

+ state lies only
75 keV above the 21

+ state. As seen in Fig. 26, the calculation
produces exactly the 02

+ state just above the 21
+ state. The

calculated B(E2; 21
+ → 01

+) is also in good agreement with
the experimental data. Thus the present calculations describe
well the shape coexistence in 72Se.

There have been many discussions on the structure of 74Se.
Quite recently, it has been shown that the low-lying states
of 74Se can be described as a coexistence of near-spherical
and prolate shapes [12]. As seen in Figs. 27 and 28, the
experimental data indicate that the 41

+, 22
+, and 02

+ levels
may be regarded as candidates of two-phonon states. Indeed,
the B(E2) transition strengths agree well with the predictions
for a spherical structure, as can be seen in Fig. 28. The
small B(E2,22

+ → 02
+) = 3.5 W.u. is consistent with the
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FIG. 27. Comparison of energy levels between the shell-model
results and the experimental data for 74Se. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.
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FIG. 28. Comparison of level scheme between the shell-model
results and the experimental data for 74Se. Experimental data are
taken from [63]. The numbers with the arrows represent the absolute
B(E2) transition strengths (in W.u.).

interpretation that both states are members of the two-phonon
states. At high spins, the yrast states become highly deformed
with a prolate shape, as the moment of inertia becomes larger.
Our calculations are compared with the experimental data in
Fig. 27. The results reproduce qualitatively the experimental
data. Large deviations are seen for the calculated first excited
02

+ state and the first excited 6+ state, which are higher
in energy than the data. The B(E2,J → J − 2) values for
the E2 transitions de-exciting the Jπ = 21

+, 41
+, and 61

+
states are shown in Fig. 28. These E2 transitions indicate a
trend of increasing magnitude with increasing spin, while the
calculated magnitudes are smaller than the experimental data
reported in Refs. [10,12].

D. Odd-mass Se isotopes

Odd-mass Se nuclei in this mass region exhibit also rapidly
changing structures [70–72]. The study of odd-mass nuclei
completes the information on the structural properties of
shape-coexisting nuclei, and thus can be helpful in understand-
ing the effects produced by the coupling of the last particle with
an even-even core, which gives more insight into the interplay
between oblate and prolate shapes. As one can see from the
levels in Fig. 29, for 69Se the low-lying negative-parity states
suggest a small deformation and appear to be dominated by
single-particle excitations, where the 1/2− state is the ground
state [70]. These states have irregular level spacings that do
not follow a rotational pattern. Our calculation reproduces
nicely the ground state with correct spin and parity 1/2− and
the low-lying states with 5/2− and 3/2−, as well as 9/2+.
The reported experimental results [70] have confirmed that the
oblate g9/2 band in 69Se is generated by the coupling of the odd
neutron to 68Se, which also has an oblate shape in the ground
state. The 9/2+ level is an isomeric state and the bandhead
of the positive-parity band. The one-quasiparticle states of the
yrast and near yrast positive-parity bands have been discussed
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FIG. 29. Comparison of energy levels between the shell-model
results and the experimental data for 69Se. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.

in terms of a particle coupled to a rigid triaxial rotor model
[70]. Above spin 15/2− around 3 MeV, collective excitations
predominate, and can be regarded as the g9/2 neutron coupled
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FIG. 30. Comparison of energy levels between the shell-model
results and the experimental data for 71Se. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.

TABLE VII. B(E2) values for the positive-parity yrast states and
some collective states of 71Se and 73Se. The experimental data are
taken from [63,71,72].

71Se (W.u.) 73Se (W.u.)

J π
i → J π

f Expt. Calc. Expt. Calc.

1/21
− → 5/21

− 1.63(21) 1.6 6.0
13/21

+ → 9/21
+ 30(10) 8.7 41(4) 9.1

17/21
+ → 13/21

+ 8.5 140(40) 3.8
21/21

+ → 17/21
+ 9.4 110(30) 1.3

5/21
+ → 9/21

+ 10.6 22(6) 6.7

to the 3−, 5−, and 7− states of the neighboring even-even
nucleus 68Se. The high-lying negative-parity states 25/2−,
27/2−, 29/2−, and 31/2− above 5 MeV can be interpreted as
the g9/2 neutron coupled to 8−–11− states in 68Se.

The 71Se nucleus, lying between 69Se and the collective
73Se, represents a transitional feature in the level scheme
[71]. The spin-parity assignment of 5/2− was established for
the ground state, and the first excited state was observed as
1/2−. The calculations reproduce well the low-lying energy
scheme. As seen in Fig. 30, the 5/2− ground state found in
experiment can be reproduced by the calculation, and the
1/2− and 3/2− states are also well described. The lowest
positive-parity 9/2+ state is an isomer with a half-life (T1/2 =
19μs). The high-lying states above 2 MeV are interpreted
as the coupled states of a g9/2 neutron to the lowest 3−,
5−, and 7− states of the 70Se core. Thus the 71Se nucleus
shows transitional characters between neighboring nuclei that
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FIG. 31. Comparison of energy levels between the shell-model
results and the experimental data for 73Se. Experimental data are
taken from [63]. Conventions are the same as those in Fig. 14.
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indicate single-particle excitations and collectivity. The E2
transition probabilities between the low-lying positive-parity
states are shown in Table VII. The shell-model calculation
predicts smaller B(E2) values than the experimental data.

In contrast to 71Se, 73Se has a different picture with highly
collective behavior [72]. Our calculations are compared with
the experimental data in Fig. 31. The calculation predicts
well the ground state 9/2+. The yrast positive-parity states
with high spins show a collective character with large B(E2)
values, as seen in Table VII. However, the calculation cannot
describe these features. This may be due to the missing d5/2

orbit in the present model space, because the attractive T = 0
monopole interaction between the πf5/2 and νd5/2 orbits would
push down the νd5/2 orbit when protons occupy the πf5/2

orbit and neutrons occupy the πf5/2 orbit at high spins. The
total Routhian surface (TRS) calculation for this band [73]
indicated the γ softness and some potential minima. Thus the
shape coexistence picture found in the neighboring even-even
isotopes 70,72,74Se persists in 73Se.

VI. SUMMARY AND CONCLUSIONS

We have recently proposed a new effective interaction
PMMU [53] for shell-model calculations within the pf5/2g9/2

model space. We employ the pairing-plus-multipole Hamilto-
nian and adopt the monopole interaction obtained by empirical
fits starting from the monopole-based universal force. For this
shell model space, 14 monopole terms of V MU

m are modified so
as to fit energy levels, E2 transitions, and binding energies for
91 nuclei in the pf5/2g9/2 space. In the present paper, this new
PMMU interaction has been examined systematically with
a wide range of nuclei of the pf5/2g9/2 mass region, from
the neutron-deficient N = Z nuclei to neutron-rich ones. The
calculation has been performed not only for the low-lying
states, but also for high excitations for which collective
rotations are dominant.

It has been demonstrated that the proposed shell model
works well for most nuclei considered in the calculation,

except for the Ni isotopes. Large discrepancies with the
experimental data are found for the Ni isotopes. This would
be due to the effects of the f7/2 orbit, which is not included
in the present model space. The effects of the missing d5/2

orbit have also been discussed with the shell-model results for
nuclei with neutron numbers beyond N = 36. The d5/2 orbit
could be necessary for generating a strong collectivity in the
heavier N = Z nuclei beyond the mass A = 72.

In the present paper, we have particularly studied the 02
+

state, which is the key measure of shape coexistence. It has
been found that 02

+ has an irregular behavior around the
subshell at N = 40. Our shell-model calculation using the
PMMU interaction has well explained the behavior of this
subshell closure. We have also discussed the excited spectra
of the Ge and Se isotopes in detail, and concluded that the
PMMU interaction also describe the high-spin states.

As mentioned in our previous paper [53], the PMMU model
could be a feasible method to unify different shell models
and could extend shell-model calculations to heavier systems.
In this way, one may begin to talk about universality for
shell models. With the inclusion of the d5/2 orbit, shell-model
calculations in the pf5/2g9/2d5/2 model space are in progress.
We expect that the PMMU model could be applicable for
the neutron-rich nuclei in the fpg-shell region [44], the
sd-pf shell region [45], and even the heavy neutron-rich
nuclei around 132Sn [46–48], where the pairing-plus-multipole
Hamiltonian have been applied and monopole corrections have
been found to be important.
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[7] R. Lüttke, E. A. McCutchan, V. Werner, K. Aleksandrova,
S. Atwater, H. Ai, R. J. Casperson, R. F. Casten, A. Heinz,
A. F. Mertz, J. Qian, B. Shoraka, J. R. Terry, E. Williams, and
R. Winkler, Phys. Rev. C 85, 017301 (2012).

044331-19

http://dx.doi.org/10.1016/0370-2693(82)90039-9
http://dx.doi.org/10.1016/0370-2693(82)90039-9
http://dx.doi.org/10.1016/0370-2693(82)90039-9
http://dx.doi.org/10.1016/0370-2693(82)90039-9
http://dx.doi.org/10.1103/PhysRevLett.74.868
http://dx.doi.org/10.1103/PhysRevLett.74.868
http://dx.doi.org/10.1103/PhysRevLett.74.868
http://dx.doi.org/10.1103/PhysRevLett.74.868
http://dx.doi.org/10.1103/PhysRevC.75.044303
http://dx.doi.org/10.1103/PhysRevC.75.044303
http://dx.doi.org/10.1103/PhysRevC.75.044303
http://dx.doi.org/10.1103/PhysRevC.75.044303
http://dx.doi.org/10.1103/PhysRevLett.83.3613
http://dx.doi.org/10.1103/PhysRevLett.83.3613
http://dx.doi.org/10.1103/PhysRevLett.83.3613
http://dx.doi.org/10.1103/PhysRevLett.83.3613
http://dx.doi.org/10.1103/PhysRevLett.88.092501
http://dx.doi.org/10.1103/PhysRevLett.88.092501
http://dx.doi.org/10.1103/PhysRevLett.88.092501
http://dx.doi.org/10.1103/PhysRevLett.88.092501
http://dx.doi.org/10.1103/PhysRevC.67.044314
http://dx.doi.org/10.1103/PhysRevC.67.044314
http://dx.doi.org/10.1103/PhysRevC.67.044314
http://dx.doi.org/10.1103/PhysRevC.67.044314
http://dx.doi.org/10.1103/PhysRevC.85.017301
http://dx.doi.org/10.1103/PhysRevC.85.017301
http://dx.doi.org/10.1103/PhysRevC.85.017301
http://dx.doi.org/10.1103/PhysRevC.85.017301


K. KANEKO, T. MIZUSAKI, Y. SUN, AND S. TAZAKI PHYSICAL REVIEW C 92, 044331 (2015)
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T. Otsuka, M. Schug, H. H. Stroke, G. Tungate, and D. T.
Yordanov, Phys. Rev. C 82, 064311 (2010).
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