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Magnetic moments in odd-A Cd isotopes and coupling of particles with zero-point vibrations
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Background: The coupling of the last nucleon with configurations in the ground state of the even-even core is
known to augment the single quasiparticle fragmentation pattern. In a recent experimental study by Yordanov
et al. the values of the magnetic dipole and electric quadrupole moments of the 11/2− state in a long chain of
Cd isotopes were found to follow a simple trend which we try to explain by means of incorporating long-range
correlations in the ground state.
Purpose: Our purpose is to study the influence of ground-state correlations (GSCs) on the magnetic moments
and compare our results with the data for the odd-A Cd isotopes.
Method: In order to evaluate if the additional correlations have bearing on the magnetic moments we
employ an extension to the quasiparticle-phonon model (QPM) which takes into account quasiparticle⊗phonon
configurations in the ground state of the even-even core affecting the structure of the odd-A nucleus wave
function.
Results: It is shown that the values for the magnetic moments which the applied QPM extension yields deviate
further from the Schmidt values. The latter is in agreement with the measured values for the Cd isotopes.
Conclusions: The GSCs exert significant influence on the magnetic dipole moments and reveal a potential for
reproducing the experimental values for the studied cadmium isotopes.
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I. INTRODUCTION

The important role that the particle-vibration interaction
plays in explaining the deviations of nuclear magnetic mo-
ments from the Schmidt values was first acknowledged in
Refs. [1,2]. The strength of this interaction depends mainly
on the state that the participating nucleon occupies as well as
on the distribution of multiparticle-multihole configurations
constituting the vibrating core. Intuitively clear, and still
supported by the experimental data, is the finding that this
interaction is weak near the magic nuclei and becomes
substantial in the open-shell regions. For example, performing
calculations relying on the first- and second-order perturbation
theory, as shown in Ref. [3], this interaction manifests itself
as capable of explaining the differences between the magnetic
moments in the near magic odd-A Tl isotopes. In the open-shell
regions, however, there are a large number of nuclei, referred
to as transitional, in which the diversity of configurations
contributing to the vibration grows rapidly, and the terms
which could be neglected near the magic configurations are no
longer small. In this respect the data and analysis by Yordanov
et al. [4], which we interpret in this work, are important for at
least two reasons. In the first place, the long chain of cadmium
isotopes, which is explored in Ref. [4], enters the transitional
region with respect to the neutron subsystem. Second, the
measured quantities, namely, the magnetic dipole and electric
quadrupole moments, not only triggered the invention of the
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nuclear shell model and the collective model [5,6] but still are
a major tool to test the validity of modern nuclear theories.

The theoretical interpretations of the data concerning the
quadrupole moments, reported in Ref. [4], were previously
carried out by using two kinds of pairing models: the seniority
scheme [7] and the BCS approximation [8]. Decent agreement
with the experimental data is reached by the authors of
Ref. [4] using the seniority model at the cost of introducing
an effective neutron charge and by neglecting configurations
with seniorities greater than 1. A more robust study, which does
not compromise the use of effective charges, is performed in
Ref. [9] by employing the BCS approximation to account for
the pairing of nucleons. The important result of this study
is the estimation that the contribution from a polarized core
with 40 protons to the quadrupole moment is as large as
the contribution from the valence protons in the g9/2 orbital.
The authors of Ref. [10] elaborated on the influence of the
density dependence of the effective pairing interaction on the
quadrupole moments in odd-N Sn and Pb nuclei, which they
found to be notable and produce deviations between 10% and
50% in different isotopes. The electric quadrupole moments
in odd-A Sn nuclei have been successfully reproduced in
Ref. [11] using the nucleon-pair approximation of the shell
model, and also the magnetic moments were found to be very
close to their single-particle estimates.

If the pairing correlations seem sufficient to describe
the trends in the behavior of the quadrupole moments, the
magnetic moments of the low-lying states require further
efforts mainly due to the role of the 1+ magnetic excitations
and the nucleon correlations in the ground state induced by
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the long-range part of the residual nucleon-nucleon force.
Although the contribution to the wave function coming from
configurations owing to the coupling with the magnetic giant
dipole resonance are small, their influence on the magnetic
moments is significant because of the strong M1 transition to
the ground state. In Ref. [12] a systematic theoretical analysis
of experimental data on magnetic moments in different nuclei
is performed utilizing the theory of finite Fermi systems. The
effects of the M1 giant resonance on the magnetic moments
(the Arima-Horie effect) were the main focus of many research
studies while the contribution from other modes seem to be a
less explored territory. The configuration mixing generated by
such modes can be taken into account in the calculations of the
magnetic moments by either introducing effective two-body
operators [13,14] or evaluating the average values of the
single-particle operator in multiparticle configurations.

The influence on the magnetic moments coming from
the coupling of the last nucleon with the low-lying collec-
tive quadrupole and octupole core excitations is studied in
Ref. [15]. The generated admixtures from these interactions
were found to give important contributions in most of the
studied isotopes but are most considerable in odd-Z nuclei.

In the present development we account for the above effects
by relying on the concepts and instruments of the quasiparticle
phonon model (QPM) [16] without making use of two-body
operators for the magnetic moment. Of special interest for our
research is the evaluation of the role of the quasiparticle and the
quasiparticle⊗phonon configurations residing in the ground
state of the even-even core on the magnetic moments. This
problem, which has not been explored so far, is approached
by allowing nonzero values for the amplitudes in the wave
function of an odd-A nucleus corresponding to the above
configurations [17–20]. Our previous investigation on this
topic showed considerable fragmentation of the low-energy
single-quasiparticle states due to such long-range correlations.
The latter is a crux in reliably applying the perturbation
theory, which otherwise yields rather tractable results [1–3,21].
In applying this, idea using the so-called backward-going
amplitudes in the odd-A nucleus wave function to calculate
the expectation value of the magnetic operator, we registered
considerable shifts in the magnetic moments. The subtle effects
owing to the account of the ground state correlations is what
distinguishes our work from the studies performed in Ref. [15].

The meson exchange currents between the nucleons inside
a nucleus, which modify the single-particle nature of the
magnetic moment operator [22], are taken into account by
introducing effective gs-factor values.

This paper proceeds as follows. In Sec. II, we outline
the basics of the approach that we utilize to estimate the
magnetic moments. Numerics and physical interpretations are
the subject of Sec. III. The results of this work are summarized
in Sec. IV.

II. THEORETICAL FRAMEWORK

In the approach that we follow, the properties of the nuclear
states are interpreted as a result of the interaction between
two types of fictitious particles: quasiparticles and phonons
represented in spherical basis by operators denoted by αjm

and Qλμi , respectively [16]. In this framework the odd-even
nuclei are formed by the interaction of the last quasiparticle
with the ground and excited states of the even-even core. The
possibilities for the last particle to couple with different states
of the even-even core are accounted for by constructing a wave
function as a mixture of one quasiparticle and quasiparticle-
phonon pure states [17,18]:

�ν(JM) = O
†
JMν |〉 (1)

with

O
†
JMν = CJνα

†
JM +

∑
jλi

Djλi(Jν)P †
jλi(JM)

−EJνα̃JM −
∑
jλi

Fjλi(Jν)P̃jλi(JM), (2)

where |〉 denotes the ground state of the even-even core,
P †(JM) = [α†

jQ
†
λi]JM is the quasiparticle⊗phonon creation

operator, and ˜ stands for time conjugation according to
the convention ãjm = (−1)j−maj−m. The last terms of this
equation address the nonzero probabilities for the last quasipar-
ticle to interact with quasiparticle and quasiparticle⊗phonon
configurations residing in the ground state of the even-even
core. The importance of these terms to the magnetic and
electric moments is discussed in detail in Sec. III.

The dynamics of the physical setting described in this way
is governed by the following Hamiltonian:

H = HMF + HPAIR + HRES, (3)

which includes parts representing the integral effect from
the mean-field generating forces of the nucleon-nucleon
interaction, the monopole pairing field, and the residual central
long-range interaction between the spatial and spin degrees of
freedom:

HRES = HM + HSM. (4)

Assuming this part of the interaction to be a separable form,
we expand it by multipoles and spin multipoles:

HM = −1

2

∑
λ

ρ = ±1

(
κ

(λ)
0 + ρκ

(λ)
1

) ∑
μ

τ = n,p

M
†
λμ(τ )Mλμ(ρτ ),

(5)

HSM = −1

2

∑
λ

L = λ,λ ± 1
ρ = ±1

(
κ

(λL)
0 + ρκ

(λL)
1

)

×
∑
M

τ = n,p

(
Sλ

LM

)†
(τ )Sλ

LM(ρτ ), (6)

where τ enumerates the neutron (n) and proton (p) subsystems,

M
†
λμ =

∑
jj ′mm′

〈jm|iλRλ(r)Yλμ|j ′m′〉a†
j ′m′ajm, (7)
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and(
Sλ

LM

)† =
∑

jj ′mm′
〈jm|iλRλ(r)[σYλ]LM|j ′m′〉a†

j ′m′ajm (8)

are the single-particle multipole and spin-multipole oper-
ators [16]. From the sum over L in Eq. (6) we include
only the terms with L = λ − 1. In the phonon space, the
eigenstates of this part of the interaction are of unnatural
parity (−1)L−1. Of particular interest to our present research
are the 1+ states which in QPM accounts for the dipole core
spin polarization [15], induced by the σσ forces. The reduced
matrix elements related to equations (7) and (8) are denoted
by f

(λ)
jj ′ and f

(λL)
jj ′ respectively.

We obtain the eigenstates of the system, defined by the
Hamiltonian (4), using an approximate step-by-step diagonal-
ization procedure in which initially the first two terms are
diagonalized using the canonical Bogoliubov transformation

ajm = ujαjm + (−)j−mvjα
†
j−m. (9)

The term of the Hamiltonian (HRES), which contains nondiag-
onal elements in the quasiparticle basis after the first step of
this procedure, couples different quasiparticles to form mixed
states which in the QPM are understood using the concept of
phonons,

Q
†
λμi = 1

2

∑
jj ′

[
ψλi

jj ′ A
†(jj ′; λμ)

− (−1)λ−μϕλi
jj ′ A(jj ′; λ − μ)

]
, (10)

where A† (and its inverse) stand for the bifermion quasiparticle
operator:

A†(jj ′; λμ) =
∑
mm′

〈jmj ′m′ | λμ〉α†
jmα

†
j ′m′ . (11)

In order to determine the structure of even-even nuclei,
this part of the interaction is diagonalized in a space spanned
by one-phonon wave functions where it is assumed that the
ground state of the even-even core is a vacuum for the phonon
operators, i.e., Qλμi |〉 = 0. Of special interest is the fact

that the core’s ground state from Eq. (1) contains additional
correlations that are not included in the phonon vacuum
state. The latter are incorporated by equating numbers rather
than wave functions as theorized in the equation-of-motion
method [23], which we apply in the following form:

〈|{δOJMν,H,O
†
JMν}|〉 = ηJν〈|{δOJM,O

†
JM}|〉. (12)

This method allows us to harness the already obtained
phonon vacuum state for calculating the average values of
the Hamiltonian. In Eq. (12) {·, · ,·} stands for the double
commutator and ηJν is the energy of the νth eigenstate
with angular momentum J . Despite lowering of the particle
rank, the double commutator yields two-body operators whose
average values still depend on the ground-state correlations.
In this work, we evaluate the operators’ average values using
the random phase approximation (RPA) with corrections for
certain three-quasiparticle configurations affected by the Pauli
exclusion principle [24].

Having determined the structural composition of the odd-
even nucleus, estimates for the observable quantities of
interest are obtained by evaluating the average values of the
corresponding operators. For the magnetic dipole and electric
quadrupole moments they are defined as

μ1(Jν) =
√

4π

3
〈JJν|M(M; 10)|JJν〉, (13)

Q2(Jν) =
√

16π

5
〈JJν|M(E; 20)|JJν〉, (14)

where the electric and magnetic multipole operators are
expressed as

M(X; λμ) = 1

πλ

∑
j1m1
j2m2

(−1)j2−m2F (λ)
j1j2

×〈j1m1,j2 − m2|λμ〉a+
j1m1

aj2m2 .

Hereafter πλ = √
2λ + 1. F (λ)

j1j2
are the reduced single particle

matrix elements:

F (λ)
j1j2

=
{

e〈j2||rλiλYλμ||j1〉 for electric transitions,

μ0
(
gs〈j2||s · ∇(rλYλμ)||j1〉 + gl

2
λ+1 〈j2||l · ∇(rλYλμ)||j1〉

)
for magnetic triansitions.

(15)

Here e and μ0 are the electron charge and nuclear magneton, respectively.
The matrix elements of the electromagnetic operator (15) in nuclear wave functions derived by using the independent-particle

approximation can be decomposed into two parts [25]: one evaluating its expectation value in the even-even core and the other
representing the matrix element of this operator between the corresponding single-particle states. For the magnetic moments, only
the second term gives a contribution. Depending on the degree of correlation of the core in its ground state this simple picture
gets modified by correcting these terms and also by considering additional terms which vanish in the single-particle model.
To take such corrections into account, we represent all respective quantities in terms of quasiparticles (9) and phonons (10).
In that way the matrix elements in Eqs. (13) and (14) are obtained in a form which can be derived from the following
formulas:

〈J2M2ν2|M(X; λμ)|J1M1ν1〉 = 〈J1 − M1λ − μ|J2 − M2〉
πJ2

(xqp-qp + xqp-ph + xph-ph), (16)
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where xqp-qp gives the transition amplitude between two quasiparticle states:

xqp-qp = 〈∣∣{(CJ2ν2αJ2M2 − EJ2ν2 α̃
†
J2M2

)
,
[M(X; λμ),CJ1ν1α

†
J1M1

− EJ1ν1 α̃J1M1

]}∣∣〉
= (−CJ1ν1CJ2ν2 + EJ1ν1EJ2ν2

)Fλ
J1J2

v±
J1J2

; (17)

xqp-ph evaluates the transition amplitudes between quasiparticle and quasiparticle⊗phonon states:

xqp-ph = 1

2

1

πλ

∑
i

[
πJ1

(−CJ2ν2D
λi
J2

(J1ν1) + EJ2ν2F
λi
J2

(J1ν1)
) − (−1)J1+J2+λπJ2

(
CJ1ν1D

λi
J1

(J2ν2) − EJ1ν1F
λi
J1

(J2ν2)
)]

×
[

n∑
12

F (λ)
j1j2

u∓
j1j2

(
ψλi

j1j2
∓ ϕλi

j1j2

) +
p∑
12

F (λ)
j1j2

u∓
j1j2

(
ψλi

j1j2
∓ ϕλi

j1j2

)]
; (18)

and xph-ph corresponds to the transition amplitudes between two quasiparticle⊗phonon states:

xph-ph = πJ1πJ2

∑
j1j2λ′i ′

(−)j1+J2+λ′(
Dλ′i ′

j1
(J2ν2)Dλ′i ′

j2
(J1ν1) − Fλ′i ′

j1
(J2ν2)Fλ′i ′

j2
(J1ν1)

){J1 λ J2

j1 λ′ j2

}
F (λ)

j1j2
v±

j1j2
. (19)

In formulas (17)–(19), the plus and minus signs in ± and ∓
apply to the magnetic and the electric moments, respectively.
If the residual interaction is switched off, then the terms (18)
and (19) disappear and the term (17) gives the well-known
Schmidt values. The terms (18) and (19) have the following
important difference: while the term (18) involves proper-
ties of the phonons whose angular momenta coincide with
the multipolarity of the transition operator, the summation
in Eq. (19), in contrast, runs over all angular momenta
λ = 1,2,3 . . ..

III. RESULTS

For the evaluation of the electromagnetic moments it is of
great importance to know the values of the structural coeffi-
cients entering into Eqs. (17), (18), and (19). In performing
calculations for determining these coefficients we retain only
the quadrupole term from the multipole expansion of the
residual interaction between the nucleons’ spatial degrees of
freedom and only the dipole term from the part describing
the residual interaction between the spacial (5) and spin (6)
degrees of freedom. In our investigation the strengths of these
interactions are free parameters that are fixed by fitting on
the experimental data. The mean field is approximated, for
simplicity, by the potential well of Woods-Saxon form with
the parameters determined by reproducing the nuclear binding
energies. The monopole pairing strengths Gτ are obtained to
match the odd-even mass differences in neighboring nuclei, as
detailed in Ref. [17]. The strength of the isoscalar quadrupole-
quadrupole interaction κ

(2)
0 is adjusted so as to reproduce

the experimental spectrum of the low-lying states of each
individual odd-even nucleus. The dependence of the magnetic
moment on this parameter are shown in Fig. 2, varying it in
a broad range of values. The parameter κ

(2)
1 is calculated by

using the relation (cf. Ref. [26])

κ
(λ)
1 = −0.2(2λ + 3)κ (λ)

0 . (20)

The isovector spin-multipole–spin-multipole interaction
strength κ

(10)
1 is determined by the centroid of the giant dipole

magnetic resonance while the strength of the isoscalar spin-

multipole–spin-multipole interaction κ
(10)
0 plays a negligible

role for the structure of the 1+ giant resonance and is set to 0.
The structural compositions of the wave functions of

the 11/2−
1 states in the studied isotopes is a result of

the interplay between the neutron subshell 1h11/2 and the
quasiparticle⊗phonon configurations in the ground and in the
excited states. The calculated components of these wave func-
tions in versions of the model including backward amplitudes
(FRW+BCW for short) and disregarding them (abbreviated by
FRW) are listed in Table I. As seen in this table, by allowing
quasiparticle⊗phonon configurations in the ground state, one
obtains an increased fragmentation of the 1h11/2 quasiparticle
strength (cf. Refs. [17,20]) which causes a reduction in the
contribution xqp-qp [see Eq. (16)] to the quantities of interest. In

TABLE I. Major components of the 11/2−
1 state in 121Cd,

123Cd, 125Cd, and 127Cd calculated using both forward (FRW) and
forward+backward (FRW+BCW) amplitudes in the wave functions.

Isotope FRW+BCW FRW

C(D) E(F) Component C(D) Component

121Cd 0.88 0.02 ν1h11/2 0.98 ν1h11/2

−0.01 −0.42 ν1h11/2 ⊗ 2+
1 0.08 ν2f7/2 ⊗ 2+

1

0.14 −0.11 ν2f7/2 ⊗ 2+
1 0.08 ν1h11/2 ⊗ 1+

8

0.08 0.00 ν1h11/2 ⊗ 1+
8 0.07 ν1h11/2 ⊗ 1+

3
123Cd 0.87 −0.01 ν1h11/2 0.98 ν1h11/2

−0.08 −0.41 ν1h11/2 ⊗ 2+
1 0.10 ν1h11/2 ⊗ 1+

8

0.14 −0.11 ν2f7/2 ⊗ 2+
1 0.07 ν2f7/2 ⊗ 2+

1

0.1 0.00 ν1h11/2 ⊗ 1+
8 −0.06 ν1h9/2 ⊗ 1+

8
125Cd 0.91 −0.03 ν1h11/2 0.98 ν1h11/2

−0.15 −0.30 ν1h11/2 ⊗ 2+
1 −0.13 ν1h11/2 ⊗ 2+

1

0.09 −0.10 ν2f7/2 ⊗ 2+
1 0.10 ν1h11/2 ⊗ 1+

8

0.09 0.00 ν1h11/2 ⊗ 1+
8 0.07 ν2f7/2 ⊗ 2+

1
127Cd 0.92 −0.05 ν1h11/2 0.97 ν1h11/2

−0.22 −0.23 ν1h11/2 ⊗ 2+
1 −0.20 ν1h11/2 ⊗ 2+

1

0.10 0.00 ν1h11/2 ⊗ 1+
8 0.10 ν1h11/2 ⊗ 1+

8

0.06 −0.08 ν2f7/2 ⊗ 2+
1 0.05 ν2f7/2 ⊗ 2+

1
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the FRW+BCW model version the largest part of this strength
is transferred to the ν1h11/2 ⊗ 2+

1 admixture in the ground
state of the even-even core which interacts most intensely
with the last quasiparticle. The main part of the strength of
this interaction is given by

W (Jjλ1) = 〈|α†
JMHP

†
jλi(JM)|〉

= −1

4

πλ

πJ

∑
τ0

Aτ0 (λi1)ϕλ1
Jj , (21)

where ϕλi
Jj are the phonons’ backward amplitudes andAτ0 (λii ′)

is defined in [17].
As seen from Eq. (21), the only two-quasiparticle state

which influences this interaction strength is the one which
bears nucleons from shells designated by the quantum numbers
of the participating noncollectivized quasiparticles, namely
J and j . The high amplitude of ϕλi

Jj (between 0.3 and 0.5
in different isotopes) from annihilating the two-quasineutron
state [ν1h11/2 ⊗ ν1h11/2]2 in the ground state for the formation
of the 2+

1 phonon explains the enhanced magnitude of the
interaction between the ν1h11/2 and ν1h11/2 ⊗ 2+

1 states,
which varies from −1.5 MeV to −2.5 MeV along the isotope
chain as in Fig. 1. The contribution from the configuration
[ν2f7/2 ⊗ 2+

1 ]11/2 to the structure of the 11/2−
1 state is the

121 123 125 127
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−1.5

−1

−0.5

A

W
(J

jλ
i)

W (ν1h11/2; ν1h11/2 ⊗ 2+
1 )

W (ν1h11/2; ν2f7/2 ⊗ 2+
1 )

−1.5

−1

−0.5

0

0.5

V
(J

jλ
i)

V (ν1h11/2; ν1h11/2 ⊗ 2+
1 )

V (ν1h11/2; ν2f7/2 ⊗ 2+
1 )

V (ν1h11/2; ν1h11/2 ⊗ 1+
8 )

FIG. 1. Evolution of select interaction vertices in the forward
V (Jjλi) and backward W (Jjλi) directions with the mass number A.

second largest. The reason for such a high rank of this
component is the considerable (of the order of 0.13) 2+

1
phonon amplitude from annihilating the [ν1h11/2 ⊗ ν2f7/2]2

state residing in the ground state of the neighboring even-even
nucleus.

On the other hand, if the particle-vibration interaction in
the ground state is not taken into account, then the structure
of the 11/2−

1 states changes significantly from one nucleus to
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m
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Exp
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FIG. 2. Magnetic moments in units μ0 of the first 11/2−, 3/2+,
and 1/2+ states in the chain 111–127Cd for which experimental
data is available [4,27]. The calculations are performed within the
BCW+FRW (dotted line) and FRW (dashed line) versions of the
model. The solid line represents the experimental values. The error
bars give the uncertainty in evaluating the magnetic moments when
varying the strength of the quadrupole-quadrupole interaction in a
wide range of values. See text for details.
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another, as seen from Table I. The reason for the reordering
of the components is the interaction between the last particle
and different excited quasiparticles⊗phonon configurations,
which is quantified by the vertex:

V (Jjλi) = −〈|αJMHP +
jλi(JM)|〉

=

⎧⎪⎨
⎪⎩

1√
2

πλ

πJ

f
(λ)
Jj v

(−)
Jj√

Yλi
for λπ = 2+,

1√
2

πλ

πJ

f
(λL)
Jj v

(+)
Jj√

Yλi
for λπ = 1+,

(22)

where v
(±)
Jj = uJ uj ± vJ vj with uj and vj being the pairing

occupation numbers for the level j .
The trends for these interaction vertices, imposed by the

relationship in Eq. (22), when changing the neutron number
are complex because of their dependence on both the pairing
properties of the noncollectivized particles and the degree of
collectivity of the participating phonon. For instance, the key to
understanding the trends in V (ν1h11/2; ν1h11/2 ⊗ 2+

1 ), plotted
in Fig. 1, are the changes in the values of v

(−)
ν1h11/2,ν1h11/2

which

drop from 0.4619 in 117Cd, pass through 0.05 in 121Cd, and
reach −0.530 in 127Cd. Analogously, the line for the vertex
V (ν1h11/2; ν2f7/2 ⊗ 2+

1 ) is explained by the attenuation of the
quantity v−

ν1h11/2,ν2f7/2
from 0.61 in 121Cd to 0.36 in 127Cd. In

contrast, the vertex V (ν1h11/2; ν1h11/2 ⊗ 1+
8 ) does not depend

on the pairing directly since v
(+)
ν1h11/2,ν1h11/2

= 1 and its evolution
over the isotope chain is driven by the collective properties of
the 1+

8 state in the respective even-even core.
The first-order core polarization is manifested by the

significant contribution to the magnetic moment of the
quasiparticle ⊗ 1+-phonon states. The structure of the 1+
states has a simple form and is represented by a mixture of
coupled quasiparticle states belonging to spin-orbit doublets.
Although the contribution to the odd-even nucleus wave
function coming from the configurations including 1+ states

is small, its importance to describing the magnetic moments is
vital, as will be discussed in the following section. The 1+
state which mostly contributes to the structure of the first
11/2- states in the odd-even cadmium isotopes is the one
acquiring the highest degree of collectivity and having an
energy in the region of 13 MeV. Its structure is dominated
by the configuration [ν1h11/2 ⊗ ν1h9/2]1. If the higher order
correction, given by Eq. (19), could be neglected, then the
coupling of the last nucleon with the 1+ states might be treated
by following the classical approaches by Blin-Stoyle [1] and
Arima and Horie [2], which are based on the smallness
of the mixing coefficients. In our calculations we confirm
that the perturbing configuration from Ref. [1],—which,
applied to the 11/2− state in the cadmium isotopes, is
[[ν1h11/2 ⊗ ν1h9/2]1 ⊗ ν1h11/2]11/2—indeed contributes the
most to the magnetic moment if the backward amplitudes
are not taken into account. However, the inclusion of a single
complex configuration to the wave function is not adequate for
describing the magnetic moments because the coupling with
excitation modes of the even-even core having higher angular
momenta is crucial to gain a more realistic picture of the wave
function.

A. Magnetic moment

The particularities in the structure of the odd-A isotopes
discussed in the previous section determine the deviations of
the magnetic moment of the 11/2+

1 ,3/2+
1 , and 1/2+

1 states
from their single-particle estimates. The results from the
calculations performed by using the featured QPM versions
are plotted in Fig. 2 and are compared to the experimental
values. The dotted and dashed lines in this figure depict the
most important achievement of this work: the finding that
the interaction between the last quasiparticle and the ground-
state phonon admixtures produces configurations which con-
tribute significantly to the magnetic moment of odd-A nuclei
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FIG. 3. Contribution to the magnetic moment of the 11/2− state in the series of isotopes 117–127Cd.
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and reveal a potential for reproducing their experimental
values, which proves impossible if this interaction is neglected.
The importance of each contribution from Eqs. (17)–(19) to the
magnetic dipole moment is visualized in Fig. 3. The enhanced
fragmentation due to the quasiparticle-phonon interaction in
the ground state leads to systematically shrunk values of the
single-quasiparticle contribution μqp-qp and to an increase in
the quasiparticle-phonon contribution μqp-ph leading to an
overall decrease in the magnitude of the magnetic moment.
The escalation of the magnetic transitions between different
quasiparticle⊗phonon configurations, given by μph-ph, is due
to configurations involving a quadrupole phonon, of which
ν1h11/2 ⊗ 2+

1 plays the most important role. It is worth noting
that, because of the weakened coupling between the quasiparti-
cles and the quadrupole phonons in the core’s ground state near
the neutron shell closure, the quantity μph-ph tends to diminish
while μqp-qp remain almost unchanged along the isotope
chain. This interaction, however, leaves the first-order core
polarization term μqp-ph, describing the magnetic transitions
between quasiparticle and quasiparticle⊗1+-phonon states,
virtually unaffected because the latter configurations represent
a negligible part in the 11/2−

1 state mixture.
However, despite its capacity of reaching the experimental

values, this theoretical development suffers from the shortcom-
ing (cf. [17,20]) that the residual interaction strength, which
yields results that are of sound agreement with the odd-A
experimental data, generates substantially less collective 2+

1
states in the even-even cores than the ones implied from the

data for the neighboring even-even nuclei. The origin of this
inconsistency is the set of approximation techniques embedded
in the considered QPM versions, namely, the BCS and RPA,
which tend to overestimate the degree of correlations in the
ground state for open-shell nuclei. One path to solving this
problem is to apply the more consistent extended RPA [28], or
use a tractable method based on the variational principle for
the ground state, as in [29].

IV. CONCLUSIONS

The magnetic dipole moments of the low-lying states
in odd-A Cd nuclei are found to be significantly affected
by the correlations in the ground state. The obtained cor-
rections allow one to reproduce the experimental values in
open-shell nuclei, which proves impossible if the existence
of the quasiparticle⊗phonon configurations in the ground
states of even-even nuclei is ignored. Despite the reported
improvements, the calculations based on this version of the
model exhibit a very high sensitivity to interaction parameters
which limit its predictive power, and pertinent work in this
direction is ongoing.
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