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Shape phase transition in 144−152Nd isotopes
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Background: The Z = 60 144–152Nd isotopes span the spherical to the well-deformed collective nuclear structures.
The shape phase transition at N = 86–88 and N = 88–90 is intermediate between (Ba,Ce) and (Sm,Gd). The
role of the Z = 64 subshell closure in this forms an interesting subject of study.
Objective: To analyze these complex features of the Nd spectra and the effects of the Z = 64 subshell by
comparing with predictions from the microscopic dynamic pairing plus quadrupole model to explain the shape
transition at N = 86–90.
Method: Empirical analysis of the Nd spectra is illustrated. The K-band structures of the collective Iπ = 2+

states in 144−152Nd are described. The predicted B(E2) values and the interband B(E2) ratios are compared with
experimental data. The potential-energy surfaces of 146−152Nd are illustrated, and the role of protons and neutrons
filling the Nilsson orbits is described.
Results: The different effects of the Z = 64 subshell on the ground-state band and the excited vibrational bands
of 146−148Nd are illustrated.
Conclusion: The important role of the dynamics of the nucleus, besides the static features, is made more
transparent.
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I. INTRODUCTION

The light (A = 144–152) lanthanides are among the heavy
nuclei with neutron excesses of more than a few units from
the β-stability line that can be produced today. These are
produced in the low-energy fission of heavy neutron-rich
actinides. With five valence proton pairs above the Z = 50
closed shell, the Z = 60 144−152Nd isotopes span the spherical
to the well-deformed collective nuclear structures. The energy
ratio R4/2(=E4/E2), a good measure of the nuclear core
deformation independent of the nuclear mass, varies from
1.89 to 3.26 for the N = 84–92 Nd isotopes in quadrant
1 of the Z = 50–82 major shell. A plot of the ratio R4/2

for the N = 86, 88, and 90 isotones versus Z, across the
Ba-Hf nuclei (Fig. 1), illustrates the relative importance of
the 146−150Nd isotopes. The profound dependence of the
shape transition at N = 86, 88, and 90 isotones on the proton
number Z exhibited here offers an interesting area of study
for the nuclear structure theory. The sharpness of the shape
phase transition at N = 88–90 for the Nd isotopes lies in
between the (Ba,Ce) isotopes and the (Sm,Gd) isotopes. This
is also the case at N = 86–88 for (Ba,Ce,Nd) and (Sm,Gd) [1]
(Fig. 1).

Over the past four decades, numerous studies of the
144−152Nd isotopes have been performed, and information
on the energy levels and the transition rates has become
available [2]. The lowest few collective energy levels, grouped
into the Kπ = 0+

1 ground, Kπ = 0+
2 β−, and Kπ = 2+γ bands

are usually studied in the evolving collective nuclear models.
With the advent of the algebraic L = 0,2 sd-interacting boson
models (IBM-1 and IBM-2) [3], new insights in the inter-
pretation of the data have been possible. The three dynamic
symmetries [3] of U(5), SU(3), and O(6) enable the association
of the specific Nd isotopes with these symmetries. The
144−152Nd isotopes lie on the U(5)-SU(3) path, corresponding
to the axially symmetric deformed shape transition. The

Z = 64 subshell effects have been invoked [4] to explain the
anomalous dependence of the structure on the proton number
Z at N = 86, 88. The Z = 64 subshell effects are visible in
N = 88 148Nd since R4/2 drops from 2.65 in 144Ba to 2.50 in
148Nd, which drops further in 150Sm and 152Gd.

The identification of the analytically solvable critical point
symmetry X(5) at the edge of the spherical to the axially
symmetric deformed (A = 150–200) region [5] (except for the
scaling factors) led to the recognition of 150Nd as a possible
candidate for the X(5) symmetry [6]. Clark et al. [7] studied
the validity of the X(5) symmetry for 150Nd and other N = 90
isotones. IBM-2 was employed to study the variation in nuclear
structure with N for the Nd isotopes in Refs. [8,9,10]. In these
works, the shape transition with varying neutron number N is
illustrated, and the effect of the Z = 64 subshell is taken into
account by using the reduced proton boson numbers Np. The
relativistic energy density-functional framework, using a five-
dimensional quadrupole vibrator, was applied by Li et al. [11]
to study the variation in the intrinsic shape V (β, γ ) in Nd
isotopes with N . The self-consistent Hartree-Fock-Bogoliubov
(HFB) approximation based on the finite-range and density-
dependent Gogny interaction (parametrization DIS) has been
used to generate potential-energy curves (PECs) in Nd isotopes
and other nuclides by Robledo et al. [12].

The nuclear structure of the near U(5) symmetry nucleus
144Nd was studied earlier in the microscopic dynamic pairing
plus quadrupole model (DPPQM) [13] by Gupta [14]. The
IBM-1 was used to analyze the variation in the nuclear
structure of 146−150Nd with neutron number N in Ref. [15].
Recently, the special characters of the N = 86 isotones of
(Ce, Nd, Sm, and Gd) were reported in Ref. [16] using
the IBM-1 and the DPPQ models [13]. Using the updated
data [2] (including revised information for 148−152Nd from
Nucl. Data Sheets up to the year 2014), in the present
paper, I extend the application of the DPPQ model to the
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FIG. 1. Energy ratio R4/2 versus Z for N = 86, 88, and 90
isotones of Ba-Hf.

heavier 148−152Nd isotopes. In Sec. II the ground-band data
are analyzed empirically, and the special features of the
N = 86–90 region are illustrated for Nd isotopes. A brief
introduction to the IBM-1 and DPPQ model is given in Sec. III.
In Sec. IV, the predictions from the IBM and the DPPQ model
are compared with the experimental data. A summary and
conclusion are given in Sec. V.

II. EMPIRICAL ANALYSIS OF THE LEVEL
STRUCTURE OF 144−152Nd

A. Ground-state band

For Nd, the shape transition at N = 88–90 is much sharper
than for N = 86–88 (Fig. 1). This is further highlighted in
the plots of the energy ratio RI /2(= EI/E2) versus spin I

in Fig. 2. This is in contrast to 144,146Ba isotopes for which
there is almost no shape transition at N = 88–90 as illustrated
recently in Ref. [17].

Using the empirical two-term rotation-vibration formula,

EI = aI + bI (I + 1), (1)
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FIG. 2. Energy ratio RI /2(= EI/E2) in the ground bands of
146−150Nd.
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FIG. 3. The plot of R10/2 versus R4/2. The straight line is due to
Eq. (2). The SRF values are on the dashed curve, and the power-law
values are on the continuous curve. The symbols are experimental
data.

one can derive the linearity relation of RI /2 with R4/2,

RI/2 = R4/2[I (I − 2)/8] − [I (I − 4)/4]. (2)

Up to spin Iπ = 10+, generally for a medium mass nuclide,
one gets a regular energy-level sequence. Hence it can serve
as a good measure for the structure of a rotational band built
on the ground state (g.s.). For the energy ratio R10/2, Eq. (2)
yields a linear plot of R10/2 versus R4/2 as shown in Fig. 3. The
ratio R10/2 varies from a value of 5.0 for a spherical vibrator to
18.33 for a deformed rotor. The deviations of the experimental
data for the Nd isotopes from the linearity relation (2) for the
energy ratio R10/2 are exhibited here.

The soft rotor formula (SRF) (3) [18] expresses the variation
in level energies in terms of the varying moment of inertia
θI = θ0(1 + σI ),

E(I ) = �I (I + 1)/2θ0(1 + σI ), (3)

which yields

R10/2 = (110/6)[3R4/2/(40 − 9R4/2)]. (4)

It is represented by the concave-shaped curve (dashed line)
labeled SRF (Fig. 3). A third curve based on the power index
formula [19],

E(I ) = aIb (5)

is also drawn. Equation (5) yields the relation,

R10/2 = 5b, (6)

where the index b = log10 R4/2/ log10 2.
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In Fig. 3, I exhibit the data for Ba-Dy (N > 82). It is
apparent that all data span the whole linearity curve and lie
close on the lower side of it (see Ref. [20]).

Among the four data points at R4/2 = 3.0 [besides the N =
92 Ba (×), Sm, Gd (∇,©) lie highest, Dy, Nd (�,�) lie lower.
The Ce, Ba (+,×) (N = 90) lie lowest. These are the X(5)
nuclei. On the other hand, at N = 88, Ba, Ce, and Nd lie higher
than the other two isotones. See the cross (×) and plus (+)
symbols for Ba and Ce and the � for Nd (at R4/2 = 2.55–2.7),
respectively (labeled N = 88 in the central part). The R10/2

data of Sm (∇), Gd (©), and Dy (�) lie progressively much
lower (labeled N = 88) in the lower part. The N = 86, Ba (×),
Nd (�), and Sm,Gd data lie the lowest. The decrease in the
ratio R4/2 with increasing Z is usually explained on the basis
of the Z = 64 subshell closure [4]. A microscopic view of this
feature is given in Ref. [1].

B. The nonyrast levels

The spectral features of the nonyrast states present a
picture vastly different from the features discussed above for
the ground-state band (Fig. 4). At N = 84, the 2+

2 state at
1560.9 keV is above the 4+ ground state, but the 0+

2 state lies
too high at 2084.7 keV, that is at nearly 3 × E(2+

1 ) energy. The
third 2+ state lies below it. With R4/2 less than 2.0, it is not
a good collective vibration like pattern. A detailed analysis of
the spectrum of 144Nd vis-à-vis the microscopic theory of the
pairing plus quadrupole model was given in Ref. [14].

At N = 86, the 0+
2 state (at 1602.6 keV) descends below

the 2+
3 state, but the energy of the 2+

2 state varies slowly with
increasing N . Also its nature is that of the K = 2 quasi-γ
band. The ground-state band energies vary sharply with N ,
and the 4+

1 state is far below the higher excited states. The
(4+

1 , 2+
2 , and 0+

2 ) states do form a two-phonon triplet, but
the higher states lie closely packed to form the three-phonon
anharmonic multiplet. The state 4+

2 lies below the 3+
1 state

(Table I). The collective structure of 146Nd (along with other
N = 86 isotones of Ce, Sm, and Gd) has been briefly analyzed
in Ref. [16]. In this paper the special complex structures of the
N = 86 isotones have been illustrated in the DPPQ model.
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FIG. 4. The partial energy-level spectrum of 144−152Nd. At N =
84, 86 the 2+

2 state is K = 2, 2γ , but for N = 88–92 it is the K = 0+
2

state.

TABLE I. The energy spectrum (upper rows) (in keV) [2] of
144−152Nd. The values from the DPPQ model (lower rows) are
included.

State A = 144 146 148 150 152

2+ 696.6 453.8 301.7 130.2 72.4

2+ DPPQ 785 485a 307 129 86

4+ 1314.7 1042.2 752.3 381.1 236.6

4+ DPPQ 1492 965 669 356.5 273

6+ 1791.5 1780.0 1279.8 720.2 484.0

6+ DPPQ 2129 1493 1119 661.4 545

0+
2 2084.7 1602.6 916.9 675.8 1139

0+
2 DPPQ 1615 1061 947 941 1107

2+
2 1560.9 1470.6 1171.0 850.8 1251.0

2+
2 DPPQ 1843 1387 1333 1210 1227

2+
3 2072.9 1787.3 1248.9 1062.1

2+
3 DPPQ 2525 1852 1624 1427 1497

3+ 2179.0 1777.2 1511.6 1200.6 1827b

3+ DPPQ 2666 2050 1912 1575 1597

4+
2 2109.8 1745.0 1604.1c 1137.8 1474.6

4+
2 DPPQ 2440 1972 1787 1453 1422

4+
3 2295.4 1918.5 1683.4 1352.5 1898b

4+
3 DPPQ 3276 2505 2162 1743 1740

2+
4 1905.3d 1659.9

2+
4 DPPQ 3069 2504

aThe slight increase in XQ to 73.0 for 146Nd yields E(2+
1 ) = 453 keV,

but higher spin energies are lowered.
bThe 1827- and 1898-keV levels in 152Nd are assigned Iπ = 3+ and
4+ in Ref. [2].
cA 1604.1-keV state is assigned Iπ = 4+ in 148Nd, but no Iγ

intensities are listed [2].
dTwo close-lying 2+ states are at 1905.3 and 1978 keV in 146Nd.

At N = 86–88, for the ground-state band, a mild shape
phase transition is noted in Fig. 2, but the nonyrast states
exhibit a very sharp change in the structure. The 0+

2 state
descends to the low value of ∼917 keV, and the character of
the 2+

2 state changes from the K = 2 to the K = 0β-vibrational
state (Figs. 4 and 5). Now the 2γ state lies above the 2β state.

It is instructive to see the spectral changes with proton
number Z at N = 88 (see Fig. 5). Although the ground-state
band energies are rising with Z, the 0+

2 state (and other higher
ones) are descending with increasing Z. The increase in g.s.
band energies with increasing Z is usually explained in terms
of the Z = 64 subshell closure effects (leading to effective
decreasing valence pair numbers or proton bosons). The
descending 0+

2 state provides a challenge to the application of
IBM-1 or IBM-2. In terms of the Bohr-Mottelson geometrical
framework, one can say that, although the nucleus is getting
spherical, at the same time it is getting soft to axially symmetric
β and γ vibrations.

III. THEORY

The phenomenological L = 0, 2 sd-IBM provides a useful
guide to the variation in the collective nuclear structure of the
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FIG. 5. N = 88 energy levels. The 22 = 2β are correlated with
0+

2 , forming the Kπ = 0+
2 bands. The 23 = 2γ states lie higher.

excited rotational vibrational bands. The four-term multipole
expansion form HIBM given by

HIBM = εnd + kQQ + k′LL + k′′PP (7)

is adequate for the study of relative level energies and B(E2)
values. The quadrupole operator Q(2) is given by [3]

Q(2) = (s+d + d+s) + χ (d+d)(2). (8)

The parameters of the IBM Hamiltonian require a fitting
to the known energy-level data [including the specific B(E2)
values]. The computer program PHINT [21] is used for the
calculation of the Hamiltonian in Eq. (7).

The microscopic dynamic pairing plus quadrupole model
of Kumar-Baranger [13] is based on the basic concept of the
Bohr-Mottelson geometrical model [22],

Hcoll = V (β, γ ) + Tvib(β, γ ) + Trot(β, γ ). (9)

The parameters of the collective Hamiltonian are de-
rived microscopically from the HPPQ. It employs the basic
quadrupole interaction between the particles-holes causing the
deformation and the particle-particle pairing forces leading
to the opposing spherifying effects. The PPQ Hamiltonian is
given by Eq. (10),

HPPQ = Hsph + HQ + HP . (10)

Starting from the spherical isotropic harmonic-oscillator
energies and wave functions, one adds the quadrupole interac-
tion to get the deformed single-particle energies and wave
functions. Then the pairing interaction is added on equal
footing in the HFB procedure to get the deformed quasiparticle
energies and wave functions. From these, the parameters of the
collective Hamiltonian are derived. The model is microscopic
in the sense that no input energy-level data are required to set
up the Hamiltonian Hcoll.

Only brief references to the previous study for 144Nd in
Ref. [14] and of 146Nd in Ref. [16] are included here to provide
a comprehensive view of the Nd isotopes. Also the relevant
results of the IBM-1, for 144−150Nd of (1995) in Ref. [15] are
included. The updated data over the past 20 years are included
for the present IBM analysis.

IV. NUCLEAR STRUCTURE OF 144−152Nd IN
THE IBM AND THE DPPQM

A. Energy levels and B(E2) values

In my earlier study of Nd isotopes in the interacting
boson model-1, the difficulty of (least-squares) fitting the
ground-state band levels and the excited bands simultaneously
was pointed out [15]. In fact, three different parameter sets of
HIBM−1 were cited for 148Nd. It was observed that the inclusion
of the different numbers of the levels in the ground band along
with the higher states gave different quality of fittings of the
higher levels. At that time, the cause of this was not apparent.
In the present paper, this problem is made more transparent
(see the next paragraph). In several other empirical studies of
the N = 88 (Nd,Sm,Gd) isotones the number of bosons were
varied to take into account the Z = 64 subshell effects [23].
However, the disappearance of the Z = 64 subshell effects
for the N > 88 isotopes indicates that the Z = 64 subshell is
not due to a larger energy gap in the single-particle Nilsson
orbitals of πd5/2 (which completes the Z = 64 subshell at
β = 0) and the πh11/2 shell. In Ref. [1] I have presented a
detailed explanation of the Z = 64 subshell effects and of its
disappearance for N > 88.

Here, it is apparent that the Z = 64 subshell affects the
static shape of the 148Nd nucleus and its quasirotational
ground-state band (R4/2 = 2.50), but its role in the vibrational
states is more complex since the K-band formation into the β-
and γ -vibrational bands is already exhibited here (see Figs. 4
and 5). So that just reducing the proton boson numbers Np may
not provide a full solution of the anomalous structure since the
vibrational spectrum does not correspond to an anharmonic
vibrator. The difficulty of a good fit simultaneously of the
quasirotational band and the vibrational states is a real one
in the phenomenological IBM. Even for the N = 90 150Nd
nucleus such an anomaly is noted in Ref. [24] in reproducing
the yrast levels and the B(E2) simultaneously.

In Table I, the energy spectrum data [2] for 144−152Nd
are given along with the DPPQM values. Although the
ground-band level energies show a regular decrease with
neutron number N , the E(0+

2 ) is minimum at 148,150Nd. In
general, in DPPQM, the ground band is slightly compressed
(except in 144Nd), and the vibrational bands lie higher.
However, the basic pattern of ground band and excited
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FIG. 6. Partial energy spectra of 148Nd along with the DPPQ
model predictions.
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nonyrast bands is well reproduced (see Figs. 6 and 7 for
148,150Nd). The minima of vibrational bands at N = 88–90 are
predicted.

In Table II the variable parameters of the DPPQM and the
calculated K-band structures of Iπ = 2+ states are given. The
change in the nature of 2+

2 and 2+
3 states at N = 88 is reflected

in their K-component structure. At N = 88 the second 2+
state attains a predominant Kπ = 0+ character, and the 2+

3
state attains the Kπ = 2+ character, although the K mixing is
still large. Only in 150,152Nd (at N = 90, 92) are almost pure K

bands of β and γ bands formed. The DPPQ model parameter
X0 is the quadrupole strength factor in HQ [Eq. (10)], which
is varied by a few percent with N . The parameter FB is the
inertial core renormalization factor of the moments of inertia
in Trot and of the mass parameters of the vibration term Tvib

of Hcoll [Eq. (9)]. The same factor is used for both terms
and varied within a factor of 2. The almost spherical nuclei
144,146Nd require relatively larger X0 and FB parameters.

B. The potential-energy surface, static moments,
and absolute B(E2) values

In the DPPQ model [13], the potential-energy function of
the nucleus is given by

V (β,γ ) = 
iv
2
i ηi − 
τg

−1
τ �2

τ + (1/2)χ−1β2.

Here i represents all the deformed quasiparticle (dqp) states
of the two oscillator shells, v2

i are the occupation probability
of a dqp state, ηi is the dqp energy, gτ is the pairing strength
(τ = n, p), and �τ is the calculated pairing gap. In the last
term, the coefficient χ = X0 × A−1.4 MeV is the quadrupole
force strength.

The calculated potential-energy curves V (β, γ = 0◦) for
146−152Nd are illustrated in Fig. 8. For 146Nd (also for 144Nd),
the PEC corresponds to a spherical vibrator (Fig. 8, upper left).
For 148Nd, the PEC has a minimum for β > 0 and lies on the
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FIG. 8. The potential-energy curve V (β, γ = 0◦) for 146−152Nd from the DPPQ model. The horizontal line labeled “ZPE” denotes the
zero-point energy.
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TABLE II. Parameters of the DPPQ model for Nd isotopes and
the K = 0 components in percentages for Iπ = 2+ states. The proton
charge parameter ep is kept constant.

Parameter 144 146 148 150 152

X0(MeV−1) 75.5 72.5 70.5 69.5 69.0
FB 4.0 3.0 2.45 2.7 2.4
ep 1.7 1.7 1.7 1.7 1.7
2+

1 87 96.4 95.9 99.9 99.95

2+
2 59a 43.7a 64 94.1 99.03

2+
3 52a 57.4a 38 6.3 1.06

aIn 144,146Nd, no proper excited K bands are formed.

prolate side at β = 0.2 with a depth Vdef below the spherical
barrier of 0.94 MeV and a shallow oblate minimum at β = 0.1
(Fig. 8, upper right). The ZPE, indicated by the horizontal
line, is 0.79 MeV above the spherical barrier and extends from
β = −0.17 to + 0.33. This explains its anharmonic vibrator
structure and the larger K admixture in the higher Iπ = 2+
states.

For 150Nd, the PEC (Fig. 8, lower left) lies at β = 0.236,
with a depth Vdef of 2.4 MeV and oblate minimum at β =
0.11 and depth of 0.24 MeV. The zero-point energy level is
0.63 MeV below the spherical barrier and extends from β =
0.11 to 0.36 in the prolate minimum. The βrms is 0.24, and
γrms = 15◦. Thus the nucleus is quite soft to fluctuations in
the β variable. This is in consonance with the low-lying 0+

2

state along with the 2+
2 state in 148,150Nd. For 152Nd, Vdef is

still larger (Fig. 8, lower right). These different PECs for the
N = 86 − 92 isotopes provide an insight of the difference in
their structures. The main characteristics of these potential-
energy surface (PES) plots including Vdef , VPO (the difference
between the prolate and the oblate minima), and deformation
βmin, βrms are listed in Table III.

TABLE III. Some static moments in Nd isotopes. Vdef and VPO

are in MeV.

A = 144 146 148 150 152

R4/2 1.887 2.30 2.498 2.927 3.263
βmin DPPQM 0 0 0.205 0.236 0.267
βrms (g.s.) 0.134 0.156 0.194 0.240 0.275
β2 [26] 0.1241 0.1522 0.2014 0.285 21 0.349 12
γrms (g.s.) 28° 25° 0.20° 15° 13°
Vdef 0.0 0.0 0.936 2.414 4.16
VPO 0.0 0.0 0.817 2.18 3.375

The quadrupole deformation parameter β2 increases with
N . The βmin of the PEC is zero for 144,146Nd, but the βrms

is greater than zero. The γrms is close to 30°. For 148Nd
the βmin is 0.205, and for 152Nd, βmin shifts to 0.267. The
βrms’s are larger. The latter are closer to β2 [derived from,
B(E2),2+

1 − 0+
1 )] from experiment. Calculated Vdef and VPO

affect the E(2γ )–E(4+
1 ) energy gap of the spectra [25].

In Table IV, some E2, M1, and E0 moments predicted
in the DDPQ model are also given. The quadrupole moment
Q(2+

1 ) is a good measure of the structural changes with N .
In the DPPQ model, these variations are well reproduced
Magnetic moments μ(2+

1 ) (nm) from the DPPQ model are
compared with data [2]. The magnetic moments exhibit slow
variation with A (except for 144Nd) corresponding to g(21) =
Z/A values. The DPPQM also gives the slow variation with
A. The electric monopole moments for the 2+

2 − 2+
1 transition

are increasing with increasing N . The value is negative for the
anharmonic vibrator nucleus 146Nd. The same is true for the
E0 amplitude for the 2+

3 − 2+
2 transition, indicating a phase

difference in their wave functions.
The larger values of ρ(E0) at N = 90, 92 reflects the β-

vibrational nature of the 2+
2 state. For the 2+

3 − 2+
1 transitions,

it is decreasing, which is an indication of the lesser β-γ band

TABLE IV. Quadrupole moments (eb), magnetic moments, electric monopole transition matrix elements, and B(E2)’s in e2b2 for 146−152Nd.

A 144 146 148 150 152

Q(2+
1 ) expt.a − 0.635 3 − 0.79 2 − 1.05 2 − 1.50 1 − 1.85 6

DPPQM − 0.48 − 0.89 − 1.21 − 1.50 − 1.71
μ(2+

1 ) (nm) exptb 0.30 2 0.58 2 0.64 8 0.64 2
DPPQM 0.51 0.54 0.63 0.56 0.61
ρ(E0)(22–21) 0.23 − 0.34 0.55 0.73 0.80
(ρ(E0)(23–21) 0.10 0.32 0.40 0.17 0.06
X(E0/E2E)0+

2 − 2+
1 0.027 0.074 0.17 0.47 1.14

B(E2,0+
1 − 2+

1 )a 0.491 5 0.760 23 1.37 2b 2.72 2b 4.20 28c

DPPQM 0.69 1.05 1.72 2.73 3.60
B(E2,0+

1 − 2+
2 ) 0.0030 4d 0.073 2d 0.020 2b 0.012 1b

DPPQM 0.027 0.056 0.033 0.004 0.024
B(E2,0+

1 − 2+
3 ) 0.073 3b 0.072 3b

DPPQM 8 × 10−5 0.007 0.064 0.115 0.110

aReference [26].
bReference [2].
cPrevious tabulation of Raman et al. At. Data and Nucl. Data Tables 36, 1 (1987) was of 2.6 (7).
dDeduced from Ref. [28].
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TABLE V. The absolute B(E2) values (in e2b2) in 148,150Nd.

148Nd 150Nd
Ii If Expt [2]. IBM [15] DPPQ Expt [2]. Expt [6]. IBM [15] DPPQ X(5)a

0+
1 2+

1 1. 37 2 1.37 1.37 2.72 2 2.72 2.72 2.72 2.72

2+
2 0.020 3 0.002 0.026 0.012 1 0.0065 0.068 0.004 0.054

2+
3 0.073 3 0.039 0.051 0.072 3 0.080 20 0.084 0.115 0.079

0+
2 2+

1 0.013 5 0.013 0.31 0.21 1 0.21 1 0.13 0.21 0.34

2+
2 2+

1 0.085 5 0.0105 0.09 0.034 5 0.049 11 0.10 0.041 0.047

2+
3 2+

1 0.026 6 0.009 0.017 0.032 5 0.029 4 0.009 0.038 0.025

4+
1 2+

1 0.44 1 0.38 0.49 0.84 6 0.99 1 0.80 0.84 0.86

2+
2 0+

2 0.165 0.22 0.45 15 0.62 12 0.22 0.49 0.43

E2SD 0.12 0.16
E2DD − 0.20 −0.20

aX(5) symmetry values normalized to B(E2, 01–21) from Refs. [6,29].

TABLE VI. Interband B(E2) ratios in 144Nd. The level energy and Eγ are in keV. ε = 644.8, 2k = variables QQ = −8.4, ELL = 2k′ =
−30.6, PAIR = k′′/2 = −33.2 keV, eb = 0.16, and E2DD = −0.20. In PHINT QQ = 2k, ELL = 2k′, PAIR = k′′/2, and E2DD = ebχ .

E (keV) Ii If /If ′ Eγ 1/Eγ 2 Expt. [2] IBM-1 DPPQ

1560.9 2+
2 0/2 1561/864 0.050 (2) 0.003 0.035

2072.9 2+
3 0/2 2073/1376 0.055 2 <0.07 0.00004

2179.0 3+
1 2/4 1482/864 0.038 3 0.017 0.082

2109.8 4+
2 2/4 1413/795 0.82 6a 0.007 0.12

2295.4 4+
3 2/4 1599/981 0.014 2 <0.04 0.0004

22/4 735/981 0.31 8 0.002 0.03

aUsing the relative Iγ from Ref. [30].

TABLE VII. B(E2) ratios in β-g,γ -g transitions in 146Nd. The level energy and Eγ are in keV. ε = 836.7, 2k = QQ = −28.0, ELL =
2k′ = 26.1, PAIR = k′′/2 = 22.3 keV, eb = 0.13, and E2DD = −0.25.

E (keV) Ii If /If ′ Eγ 1/Eγ 2 Expt. [15] Expt. [2] IBM [15] DPPQ

1470.6 2+
2 0/2 1471/1017 0.15 2 0.15 1 0.011 0.074

1745.0 4+
2 4/2 702/1292 53.6 60 54 8 104 18

1777.2 3+
1 4/2 736/1323 10 1 0.70 7a 17 2.5

1787.3 2+
3 0/2 1787/1333 0.029 5 0.029 3 >1 0.12

1905.3 2+
4 0/2 1905/1651 0.005 1 0.005 1 >0.5 0.012

1918.5 4+
3 4/2 876/1465 12.4 14 13 1 8 28.6

22/21 448/1465 228 24 236 60 25 0.7

aThe previous value of 10 (1) is from Ref. [31]. There is an uncertainty in the B(E2) ratio due to the M1 component.
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TABLE VIII. B(E2) ratios in β-g,γ -g transitions in 148Nd. The level energy and Eγ are in keV. ε = 356.3, 2k = QQ = −45.4, 2k′ =
ELL = 36.6, and k′′/2 = PAIR = 7.0 keV, eb = 0.12, and E2DD = −0.20.

E (keV) Ii If /If ′ Eγ 1/Eγ 2 Expt. [15] Expt. [2] IBM [15] DPPQ

1171.0 2+
2 0/2 1171/869 0.034 8 0.037 6 0.04 0.068

2/4 869/418 0.92 46 2.65 1.12
1248.9 2+

3 0/2 1249/947 0.60 12 0.57 6 0.90 0.61
2/4 847/497 0.35 25 1.93 0.41

1511.6 3+
1 4/2 759/1210 2.31 46 2.32 40 1.09 1.22

1604.1 4+
2 2/4 1302/852 0.028 0.004

22/4 17.4 8.7
1683.4a 4+

3 2/4 1381/933 1.57 68 0.39 2.95
22/4 512/933 34 30 2.07 0.006
23/4 20.5 12.4

aA 1604.1-keV I = 4 level is listed without Iγ values for the E2 transitions.

mixing [27] in 150,152Nd. The X(E0/E2)(0+
2 − 2+

1 ) factor
varies with N with a maximum in 150,152Nd, indicating a purer
β band. All the parameters of the DPPQ model calculation are
kept constant, except the ones listed in Table II.

The increase in the absolute B(E2,0+
1 → 2+

1 ) with neutron
number N is well given in the DPPQ model with constant
charge parameter (en = 0.7) (ep = 1 + en). In contrast, in
IBM-1 the boson charge eb of the E2 transition operator
T (E2) = eb × Q(2) has to be varied with N [15] as listed in
the tables below. The larger B(E2,0+

1 − 2+
2 ) at N = 86 than

for heavier isotopes supports the change in the character of the
2+

2 state from K = 2 at N = 86 to K = 0 at N = 88–90. A
complementary change takes place for the 2+

3 state.

C. Absolute B(E2) values in 148,150Nd

The predictions of the absolute B(E2) values from the
model (Table V) provide useful tests of the applicability of
the model to the nucleus. In 148Nd, the absolute B(E2,0+

1 →
2+

2 ) is smaller than B(E2,0+
1 → 2+

3 ) indicating 2+
2 = 2β and

2+
3 = 2γ , as also given in IBM-1 and the DPPQ model. In

all cases, the B(E2) values from the DPPQ model are closer
to experiment than in IBM-1. The values are normalized to
B(E2,0+

1 → 2+
1 ) for a better comparison.

In 150Nd also, the absolute B(E2,0+
1 − 2+

2 ) is smaller than
B(E2,0+

1 − 2+
3 ), indicating 2+

2 = 2β and 2+
3 = 2γ , as also

given in IBM-1 and the DPPQ model. Again the DPPQ model
values are in better agreement with experiment than IBM-1
values in most cases. The ratio B(E2,4−2)/B(E2,2−0) is 1.5
in 148Nd and 1.6 in 150Nd. The other B(E2) ratios are well
given The X(5) symmetry values [6] are in fair agreement with
experiment. Values for the 2+

3 states are from Ref. [29].

D. The interband B(E2) ratios

The calculated interband B(E2) ratios for 144−152Nd are
listed in Tables VI–X. The data as available in 1995 for
Ref. [15] and the updated present data are listed. Also the
IBM-1 values of Ref. [15] are included for comparison with
the DPPQ model results.

In 144Nd (Table VI), the B(E2) ratios for E2 transitions to
the ground band are listed. There are differences in the IBM-1
and DPPQ model values, but on the average the DPPQM values
are better.

In 146Nd (Table VII), the calculated B(E2, 22–0/2) and
B(E2, 23–0/2) ratios from the DPPQ model agree with data
within a factor of 2, much improved in comparison with the

TABLE IX. B(E2) ratios in β-g,γ -g transitions in 150Nd. The level energy and Eγ are in keV. ε = 464.3, QQ = −31.4, ELL = 1.4,
PAIR = 10.0 keV, eb = 0.16, and E2DD = −0.20.

E (keV) Ii If /If ′ Eγ 1/Eγ 2 Expt [2]. Expt [6].a IBM [15] DPPQ X(5)b

850.5 2+
2 0/2 850/720 0.070 30 0.13 5 0.14 0.018 0.22

4/2 470/720 1.96 20 1.89 76 0.10 1.99 4.1
02/4 174/470 8.6 60 6.7 27 23.6 6.0 9.1

1061.4 2+
3 0/2 1061/932 0.55 14 0.56 30 1.96 0.60 0.66

4/2 680/932 0.31 24 0.48 40 5.5 0.35 0.05
1200.6 3+

1 4/2 819/1070 0.80 28 1.09 0.82 0.42

1137.8 4+
2 4/2 756/1007 910 270 58 18 26.5 24 5.7

2/4 1007/756 0.0011 4 0.017 7 0.038 0.043 0.17
22/4 287/756 1.6 7 24 11 5.5 22 20

1352.5 4+
3 4/2 972/1223 8.1 20 4.3 24 2.0 3.4 3.2

23/4 290/972 27 7 27 105

aValues from Ref. [6] are from the lifetime measurements.
bβ-g values are from Ref. [6], and γ -g values are from Ref. [29].
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TABLE X. B(E2) ratios in β-g,γ -g transitions in 152Nd. The
level energy and Eγ are in keV. ε = 472.0, QQ = −58.4, ELL =
−10.6, PAIR = −14.0 keV, eb = 0.145, and E2DD = −0.20.

E (keV) Ii If /If ′ Eγ 1/Eγ 2 Expt. IBM DPPQM

1251.0 2+
2 0/2 1251/1178 0.21 4 0.167 0.215

4/2 1014/1178 2.83 28 2.70 2.85
1474.6 4+

2 4/6 1238/990 0.37 10 0.78 0.37

1827.1 3+ 2/4 1754/1591 1.96 50 1.56 1.40

1898.0 4+
3 2/4 0.21 0.23

2+
3 0/2 0.57 0.58

2/4 13 7.9
1893.9 3, 4+ 2/4 1821/1658 5.2 13

IBM values [14]. The weak B(E2, 24–0/2) ratio is also well
given in the DPPQM. The B(E2) ratio for 1777-keV 3+ in the
DPPQM differs by a factor of 3 from the revised value [2] (see
footnote in Table VII). The DPPQ model values are closer to
the data than the IBM-1 values, including the B(E2) ratio for
the 4+

2 state. But the B(E2, 4+
3 –22/21) ratio is not reproduced

in the DPPQM.
In 148Nd (Table VIII), the calculated B(E2, 22–0/2) and

B(E2, 23–0/2) ratios from the DPPQ model and IBM-1 agree
with data and support the 1171-keV 22 = 2β and 1249-keV
23 = 2γ assignments. The IBM-1 values for the other B(E2)
ratios from the I = 2 states and 3+

1 are in better agreement with
the data than that obtained in the lighter isotope. The 1604-keV
level is assigned to Iπ = 4+ in Ref. [2], but no Iγ values for E2
transitions to 2+

1 and 4+
1 are listed. Ibbotson et al. [32] in their

Coulomb excitation work listed an E3 transition from 1604 to
1023 keV. Also a 2149-keV 6β level is listed in Refs. [2,32],
again without Iγ values. The 1683-keV 4+ decays to 2g and
4g yielding B(E2, 4–2/4) = 1.57 (68) and to the 1171-keV
2β state. But the error margin in the B(E2) ratio is large.

For 148Nd, the B(E2, 42–2/4) in the DPPQM and IBM-1
is small, and B(E2, 43–2/4) is 0.4 and 3.0, respectively. The
B(E2, 42–22/41) is large in theory. But for B(E2, 43–22/41)
IBM and the DPPQM results differ. Thus from the available
data on the Iπ = 4+ states, the association of 1604- and
1683-keV states with model 4+ states remains ambiguous.

In 150Nd (Table IX), the weak B(E2, 2+
2 –0/2) and the

much larger B(E2, 2+
3 –0/2) support their K = 02 and K = 2

characters as also indicated in the IBM and DPPQM. The X(5)
value for the B(E2, 22–0/2) of 0.22 is larger than experiment
by a factor of 2. For other B(E2) ratios from these states, the

DPPQ model values are in better agreement with the data. The
revised B(E2, 3+–4/2) value is given better in the DPPQM.
Similar fair agreement is obtained for the transitions from the
Iπ = 4+ states. B(E2, 42–2/4) is 0.17 in X(5) symmetry and
is again larger than the DPPQM and IBM-1 values [24]. It is
worth noting that the relative strength of the E2 transitions
from the 4+

2 to the 2+
1 and 4+

1 changes drastically for 148Nd to
150Nd in experiment, which is not reproduced in theory. There
is also the problem of the identification of the 1604.1-keV
I = 4+ state in 148Nd.

In 152Nd (Table X), the weak B(E2, 22–0/2) supports its
K = 02 character of the second Iπ = 2+ state. Both B(E2)
ratios from the 2+

2 state are well given in the DPPQM and IBM.
The same is well obtained for the second Iπ = 4+ state. The
23 = 2γ is not yet assigned from experiment. From the DPPQ
model I get the larger B(E2, 23–0/2) value of 0.58, closer to
the Alaga value of 0.70, as expected for a K = 2 state, vis-à-vis
the B(E2, 22–0/2) value of = 0.215 which is farther from the
Alaga value of 0.70. Similar values are obtained in IBM-1. In
the National Nuclear Data Center [2], a 1827-keV Iπ = 3+
state is listed which decays to 2g and 4g states. The calculated
B(E2) ratio agrees with the DPPQ model and IBM-1 values.
No Iπ = 2+ state of this band is listed in Ref. [2]. The listed
4+ at 1898.0 keV decays to 4g only in the ground band. So
no B(E2) ratios from experiment are listed. Also a level at
1893.9 keV is assigned the ambiguous spins of 3+ or 4+. So
we cannot assign any spin to it from theory.

E. Role of protons and neutrons for shape phase transition

As explained in Sec. III A, from the solution of the
PPQ Hamiltonian, I get the quasiparticle energies and wave
functions. Therein I also calculate the occupation probabilities
of neutrons and protons in the deformed Nilsson orbits. In
Table XI, I list the occupation numbers of the νf7/2, νh9/2,
and νi13/2, which lie lowest for neutrons, and πg7/2, πd95/2,
and πh11/2 for protons. The other orbits contribute only small
amounts. The occupation of ten protons of Nd above the
Z = 50 shell varies slightly with N . A slight shift from the
lower orbits to h11/2 occurs at N = 86–90. The increasing
filling of neutrons in the down-sloping neutron orbits
cooperating with protons produces the deformation. From the
table it appears that the increased filling of the νh9/2 orbit at
N = 86–88 provides the small deformation at N = 88, and
the additional filling of the νi13/2 orbits triggers the shape
transition at N = 88–90 (mild relative to Sm,Gd, as illustrated
in Fig. 1). The effect of the n-p interaction of the πh11/2 and

TABLE XI. The occupation numbers of protons and neutrons in Nilsson orbits at β = 0 for 146Nd, β = 0.205 for 148Nd, and β = 0.236
for 150Nd calculated in the DPPQ model.

Orbit A = 146 148 150 Orbit A = 146 148 150

νf7/2 1.684 2.018 2.286 πg7/2 4.038 3.648 3.542
νh9/2 1.399 2.180 2.684 πd5/2 2.559 2.273 2.182
νi13/2 0.717 0.638 1.446 πh11/2 2.657 2.947 3.069
Sum 3.800 4.836 6.416 Sum 9.254 8.868 8.793
N = 82 4 6 8 Z = 50 10 10 10
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νh9/2 orbitals, along with the contribution of the νi13/2 orbital,
leads to the sharp phase transition at N = 88–90 (see Ref. [1]).

V. DISCUSSION AND CONCLUSION

With increasing N , the collective K-band formation evolves
in the Nd isotopes. With the help of the empirical data on
the ground band, I have illustrated the special status of the
Nd isotopes vis-à-vis the (Ba,Ce) and (Sm,Gd) isotones for
N = 86, 88, and 90. Here the effect of the Z = 64 subshell
is evident. This is in accord with the variation in the PESs
illustrated by Li et al. [11]. The variation in the energy spectra
with N is also well illustrated by Giannatiempo in Ref. [8].

In the present paper, I have illustrated the very interesting
complex structure of the N = 86, 88 isotopes in the excited
K = 0+

2 , K = 2 bands, which explains the difficulty in the
simultaneous fitting of data for the ground and the excited
bands as also experienced in the IBM-2 [8] and IBM-1 stud-
ies [24] of Nd isotopes. However, in the dynamic PPQ model

where the intrinsic microscopic structure is involved, this
difficulty is mitigated to some extent, and the model predicts
the B(E2) values and the interband B(E2) ratios in 148,150Nd
in fair agreement with experimental data. The variation in the
B(E2) values is achieved here with constant charge parameter
en = 0.7 (ep = 1 + en) as distinguished from the variation in
boson charge in the IBM-2 study of Ref. [8] and in my IBM-1
calculation. The shape changes at N = 86–88 and N = 88–90
are also illustrated through the PEC for the three isotopes.
The variation in E2, M1, and E0 components with N are
illustrated. I have also illustrated the role of neutron and proton
filling in producing the shape transition. Besides the static
shape of the nucleus affecting the ground band, the dynamics
of the nuclear motion affecting the excited bands is illustrated.

ACKNOWLEDGMENTS

J.B.G. appreciates the postretirement association with
Ramjas College.

[1] J. B. Gupta, Phys. Rev. C 87, 064318 (2013).
[2] Brookhaven National Laboratory, Chart of nuclides of National

Nuclear Data Center [http://www.nndc.bnl.gov/ENSDF].
[3] F. Iachello and A. Arima, The Interacting Boson Model

(Cambridge University Press, Cambridge, UK, 1987).
[4] R. F. Casten, D. D. Warner, D. S. Brenner, and R. L. Gill, Phys.

Rev. Lett. 47, 1433 (1981).
[5] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[6] R. Krucken et al., Phys. Rev. Lett. 88, 232501 (2002).
[7] R. M. Clark, M. Cromaz, M. A. Deleplanque, R. M. Diamond, P.

Fallon, A. Görgen, I. Y. Lee, A. O. Macchiavelli, F. S. Stephens,
and D. Ward. Phys. Rev. C 67, 041302 (2003).

[8] A. Giannatiempo, Phys. Rev. C 84, 024308 (2011).
[9] A. Giannatiempo, L. Fortunato, and A. Vitturi, Phys. Rev. C 86,

034311 (2012).
[10] N. Turkan and I. Inci, Phys. Scr. 75, 515 (2007).
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